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Abstract

Controlling an approximation model of a con-
trollable infinite dimensional linear control sys-
tem does not necessarily yield a good approxi-
mation of the control needed for the continuous
model. In the present paper, under the main as-
sumptions that the discretized semigroup is uni-
formly analytic, and that the control operator
is mildly unbounded, we prove that the semidis-
crete approximation models are uniformly control-
lable. Moreover, we provide a computationally
efficient way to compute the approximation con-
trols. An example of application is implemented
for the one- and two-dimensional heat equation
with Neumann boundary control.

Keywords: Controllability, partial differential
equation, discretization, observability inequality,
Hilbert uniqueness method.

1 Introduction

Consider an infinite dimensional linear control
system

ẏ(t) = Ay(t) +Bu(t), y(0) = y0, (1)

where the state y(t) belongs to a Hilbert space
X, the control u(t) belongs to a Hilbert space U ,
A : D(A) → X is an operator, and B is a con-
trol operator (in general, unbounded) on U . Dis-
cretizing this partial differential equation, using
for instance a finite difference, or a finite element
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scheme, leads to a family of finite dimensional lin-
ear control systems

ẏh(t) = Ahyh(t) +Bhuh(t), yh(0) = y0h, (2)

where yh(t) ∈ Xh and uh(t) ∈ Uh, for 0 < h < h0.
Let y1 ∈ X; if the control system (1) is con-

trollable in time T , then there exists a solution
y(·) of (1), associated with a control u, such
that y(T ) = y1. The following question arises
naturally: is it possible to find controls uh, for
0 < h < h0, converging to the control u as the
mesh size h of the discretization process tends
to zero, and such that the associated trajectories
yh(·), solutions of (2), converge to y(·)? More-
over, does there exist an efficient algorithmic way
to determine the controls uh?

For controllable linear control systems of the
type (1), we have available many methods in or-
der to realize the controllability. A well known
method, adapted to numerical implementations,
is the Hilbert Uniqueness Method (HUM), intro-
duced in [14], which consists in minimizing a cost
function, namely, the L2 norm of the control. In
this paper, we investigate the above question in
the case where controllability of (1) is achieved
using the HUM method. Our objective is to es-
tablish conditions ensuring a uniform controlla-
bility property of the family of discretized control
systems (2), and to establish a computationally
feasible approximation method for realizing con-
trollability.

The question of uniform controllability and/or
observability of the family of approximation
control systems (2) has been investigated by
E. Zuazua and collaborators in a series of articles
[4, 8, 13, 16, 18, 26, 30, 31, 32, 33, 35], for dif-
ferent discretization processes, on different exam-
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ples. When the observability constant of the finite
dimensional approximation systems does not de-
pend on h, one says that the property of uniform
observability holds. For classical finite difference
schemes, a uniform boundary observability prop-
erty holds for one-dimensional heat equations [16],
beam equations [13], Schrödinger equations [33],
but does not hold for 1-D wave equations [8]. It is
actually well known that discretization processes
generate high frequency spurious solutions that do
not exist in the continuous problem, and that may
lead, in the exact controllability problem, to the
divergence of the control approximations.

In the parabolic case, the strong dissipative
properties induced by the analyticity of the semi-
group totally damp out these spurious high fre-
quencies in 1-D (see [16]), but do not suffice how-
ever in general in the multi-dimensional case (see
[33]). In the hyperbolic case, where there is no
such strong damping, the divergence phenomenon
of controls may be drastic (see [8, 33, 35]).

The discretization framework used in this pa-
per is in the same spirit as the one of [1, 2, 6,
9, 12, 15, 20]. In these references, approximation
results are provided for the linear quadratic reg-
ulator (LQR) problem in the parabolic case, that
show, in particular, the convergence of the con-
trols of the semidiscrete models to the control of
the continuous model. However, in the LQR prob-
lem, the final point is not fixed, and the exact
controllability problem is a very different matter.

In the present paper, we prove a uniform con-
trollability property of the discretized models (2),
in the case where the operator A generates an an-
alytic semigroup. Of course, due to regularization
properties, the control system (1) is not exactly
controllable in general. Hence, we focus on ex-
act null controllability. Our main result, Theorem
3.1, states that, for an exactly null controllable
parabolic system (1), under standard assumptions
on the discretization process (that are satisfied for
most of classical schemes), if the discretized semi-
group is uniformly analytic (see [12]), and if the
degree of unboundedness of the control operator B
with respect to A (see [21]) is lower than 1/2, then
the approximating control systems are uniformly
controllable, in the following sense: we are able
to construct a bounded sequence of approximat-

ing controls uh, that converge to the HUM con-
trol of the continuous model; morever, the norm
of yh(T ), where yh(·) is the corresponding solu-
tion of (2), tends to zero as h tends to zero, with
a rate of convergence that is estimated. A uni-
form observability and admissibility type inequal-
ity is proved. We stress that we do not prove a
uniform exact null controllability property for the
approximating systems (2). A minimization pro-
cedure to compute the approximation controls is
provided, and an important fact in view of the nu-
merical implementation is that the uniform prop-
erty implies a uniform conditioning of the gradi-
ent method. Note that the condition on the de-
gree of unboundedness of B is satisfied for dis-
tributed controls (that is, if B is bounded), and,
if B is unbounded, it is for instance satisfied for
the heat equation with Neumann boundary con-
trol, but not with Dirichlet boundary control.

The outline of the article is as follows. In Sec-
tion 2, we briefly review some well known facts on
controllability for finite and infinite dimensional
linear control systems. The main result is stated
in Section 3, and proved in Section 4. An ex-
ample of application, and numerical simulations,
are provided in Section 5, for the one- and two-
dimensional heat equation with Neumann bound-
ary control. In Section 6, we formulate some fur-
ther comments, and open problems. Section 7 is
an appendix devoted to the proof of a lemma.

2 A short review on control-

lability

2.1 Controllability of finite dimen-

sional linear control systems

Let T > 0 fixed. Consider the linear control sys-
tem

ẋ(t) = Ax(t) +Bu(t), (3)

where x(t) ∈ R
n, A is a (n × n)-matrix, B is a

(n×m)-matrix, with real coefficients, and u(·) ∈
L2(0, T ; Rm).

Let x0 ∈ R
n. The system (3) is controllable

from x0 in time T if, for every x1 ∈ R
n, there

exists u(·) ∈ L2(0, T ; Rm) so that the correspond-
ing solution x(·) of (3), with x(0) = x0, satisfies
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x(T ) = x1.
It is well known that the system (3) is con-

trollable in time T if and only if the matrix∫ T

0

e(T−t)ABB∗e(T−t)A∗

dt, called Gramian of the

system, is nonsingular (here, M∗ denotes the
transpose of the matrix M). In finite dimension,
this is equivalent to the existence of α > 0 so that

∫ T

0

‖B∗e(T−t)A∗

ψ‖2dt ≥ α‖ψ‖2, (4)

for every ψ ∈ R
n (observability inequality).

It is also well known that, if such a linear sys-
tem is controllable from x0 in time T > 0, then it
is controllable in any time T ′, and from any initial
state x′0 ∈ R

n. Indeed, another necessary and suf-
ficient condition for controllability is the Kalman
condition rank(B,AB, . . . , An−1B) = n, which is
independent on x0 and T .

2.2 Controllability of linear partial

differential equations in Hilbert

spaces

In this section, we review some known facts on
controllability of infinite dimensional linear con-
trol systems in Hilbert spaces (see [28, 29]).

Throughout the paper, the notation L(E,F )
stands for the set of linear continuous mappings
from E to F , where E and F are Hilbert spaces.

Let X be a Hilbert space. Denote by 〈 , 〉X
the inner product on X, and by ‖ ‖X the as-
sociated norm. Let S(t) denote a strongly con-
tinuous semigroup on X, of generator (A,D(A)).
Let X−1 denote the completion of X for the norm
‖x‖−1 = ‖(βI −A)−1x‖, where β ∈ ρ(A) is fixed.
Note that X−1 does not depend on the specific
value of β ∈ ρ(A). The spaceX−1 is isomorphic to
(D(A∗))′, the dual space of D(A∗) with respect to
the pivot space X, and X ⊂ X−1, with a contin-
uous and dense embedding. The semigroup S(t)
extends to a semigroup on X−1, still denoted S(t),
whose generator is an extension of the operator A,
still denoted A. With these notations, A is a lin-
ear operator from X to X−1.

Let U be a Hilbert space. Denote by 〈 , 〉U the
inner product on U , and by ‖ ‖U the associated
norm.

A linear continuous operator B : U → X−1 is
admissible for the semigroup S(t) if every solution
of

ẏ(t) = Ay(t) +Bu(t), (5)

with y(0) = y0 ∈ X and u(·) ∈ L2(0,+∞;U),
satisfies y(t) ∈ X, for every t ≥ 0. In this case,
y(·) ∈ H1(0,+∞;X), the differential equation (5)
on X−1 holds almost everywhere on [0,+∞), and

y(t) = S(t)y0 +

∫ t

0

S(t− s)Bu(s)ds, (6)

for every t ≥ 0.
For T > 0, define LT : L2(0, T ;U) → X−1 by

LTu =

∫ T

0

S(T − s)Bu(s)ds. (7)

A control operator B ∈ L(U,X−1) is admissible if
and only if ImLT ⊂ X, for some (and hence for
every) T > 0. Note that the adjoint L∗

T of LT

satisfies

L∗
T y0(t) = B∗S(T − t)∗y0 a.e. on [0, T ], (8)

for every y0 ∈ D(A∗).

Let B ∈ L(U,X−1) denote an admissible con-
trol operator.

For y0 ∈ X, and T > 0, the system (5) is ex-
actly controllable from y0 in time T if, for every
y1 ∈ X, there exists u(·) ∈ L2(0, T ;U) so that
the corresponding solution of (5), with y(0) = y0,
satisfies y(T ) = y1.

It is clear that the system (5) is exactly control-
lable from y0 in time T if and only if LT is onto,
that is ImLT = X. In particular, if the system
(5) is exactly controllable from y0 in time T , then
it is exactly controllable from any point y′0 ∈ X in
time T . One says that the system (5) is exactly
controllable in time T . It is well known that the
system (1) is exactly controllable in time T if and
only if there exists α > 0 so that

∫ T

0

‖B∗S∗(t)ψ‖2
Udt ≥ α‖ψ‖2

X , (9)

for every ψ ∈ D(A∗) (observability inequality).
For T > 0, the system (5) is said to be exactly

null controllable in time T if, for every y0 ∈ X,
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there exists u(·) ∈ L2(0, T ;U) so that the corre-
sponding solution of (5), with y(0) = y0, satisfies
y(T ) = 0. The system (1) is exactly null control-
lable in time T if and only if there exists α > 0 so
that

∫ T

0

‖B∗S∗(t)ψ‖2
Udt ≥ α‖S(T )∗ψ‖2

X , (10)

for every ψ ∈ D(A∗).

Remark 2.1. Assume that B is admissible and
that the control system (5) is exactly null con-
trollable in time T . Let y0 ∈ X. For every
ψ ∈ D(A∗), set

J(ψ) =
1

2

∫ T

0

‖B∗S(t)∗ψ‖2
Udt+ 〈S(T )∗ψ, y0〉X .

(11)
The functional J is strictly convex, and, from the
observability inequality (10), is coercive. Hence,
it admits a unique minimizer ϕ ∈ D(A∗). Define
the control u by

u(t) = B∗S(T − t)∗ϕ, (12)

for every t ∈ [0, T ], and let y(·) be the solution
of (5), such that y(0) = y0, associated with the
control u. Then, one has y(T ) = 0, and more-
over, u is the control of minimal L2 norm, among
all controls whose associated trajectory satisfies
y(T ) = 0.

This remark proves that observability implies
controllability, and gives a constructive way to
build the control of minimal L2 norm (see [32]).
This is more or less the contents of the Hilbert
Uniqueness Method (see [14]). Hence, in what
follows, we refer to the control (12) as the HUM
control.

3 The main result

Let X and U be Hilbert spaces, and let A :
D(A) → X be a linear operator, generating a
strongly continuous semigroup S(t) on X. Let
B ∈ L(U,D(A∗)′) be a control operator. We make
the following assumptions.

(H1) The semigroup S(t) is analytic.

Therefore (see [19]), there exist positive real
numbers C1 and ω such that

‖S(t)y‖X ≤ C1e
ωt‖y‖X , ‖AS(t)y‖X ≤ C1

eωt

t
‖y‖X ,

(13)
for all t > 0 and y ∈ D(A), and such that, if we
set Â = A−ωI, then the fractional powers (−Â)θ

of Â are well defined, for θ ∈ [0, 1], and there holds

‖(−Â)θS(t)y‖X ≤ C1
eωt

tθ
‖y‖X , (14)

for all t > 0 and y ∈ D(A).
Of course, inequalities (13) hold as well if one

replaces A by A∗, S(t) by S(t)∗, for y ∈ D(A∗).
Moreover, if ρ(A) denotes the resolvent set of

A, then there exists δ ∈ (0, π/2) such that

ρ(A) ⊃ ∆δ = {ω+ρeiθ | ρ > 0, |θ| ≤
π

2
+δ}. (15)

For λ ∈ ρ(A), denote by R(λ,A) = (λI − A)−1

the resolvent of A. It follows from the previous
estimates that there exists C2 > 0 such that

‖R(λ,A)‖L(X) ≤
C2

|λ− ω|
, ‖AR(λ,A)‖L(X) ≤ C2,

(16)
for every λ ∈ ∆δ, and

‖R(λ, Â)‖L(X) ≤
C2

|λ|
, ‖ÂR(λ, Â)‖L(X) ≤ C2,

(17)
for every λ ∈ {∆δ + ω}. Similarly, inequalities
(16) and (17) hold as well with A∗ and Â∗.

(H2) The degree of unboundedness of B is lower
than 1/2, i.e., there exists γ ∈ [0, 1/2) such
that

B ∈ L(U,D((−Â∗)γ)′). (18)

In these conditions, the domain of B∗ is D(B∗) =
D((−Â∗)γ), and there exists C3 > 0 such that

‖B∗ψ‖U ≤ C3‖(−Â
∗)γψ‖X , (19)

for every ψ ∈ D((−Â∗)γ).
Note that this assumption implies that the con-

trol operator B is admissible.
We next introduce adapted approximation as-

sumptions, inspired by [12] (see also [1, 2, 6, 9,
15, 20]). Consider two families (Xh)0<h<h0

and
(Uh)0<h<h0

of finite dimensional spaces, where h
is the discretization parameter.
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(H3) For every h ∈ (0, h0), there exist linear map-

pings Ph : D((−Â∗)1/2)′ → Xh and P̃h :
Xh → D((−Â∗)1/2) (resp., there exist linear

mappings Qh : U → Uh and Q̃h : Uh → U),
satisfying the following requirements:

(H3.1) For every h ∈ (0, h0), there holds

PhP̃h = idXh
, and QhQ̃h = idUh

. (20)

(H3.2) There exist s > 0 and C4 > 0 such that
there holds, for every h ∈ (0, h0),

‖(I− P̃hPh)ψ‖X ≤ C4h
s‖A∗ψ‖X , (21)

‖(−Â∗)γ(I − P̃hPh)ψ‖X

≤ C4h
s(1−γ)‖A∗ψ‖X ,

(22)

for every ψ ∈ D(A∗), and

‖(I − Q̃hQh)u‖U −→
h→0

0, (23)

for every u ∈ U , and

‖(I−Q̃hQh)B∗ψ‖U ≤ C4h
s(1−γ)‖A∗ψ‖X

(24)
for every ψ ∈ D(A∗).

Note that (22) makes sense since, by as-

sumption, γ < 1/2, and thus, Im P̃h ⊂
D((−Â∗)1/2) ⊂ D((−Â∗)γ).

For every h ∈ (0, h0), the vector space Xh

(resp. Uh) is endowed with the norm ‖ ‖Xh

(resp., ‖ ‖Uh
) defined by

‖yh‖Xh
= ‖P̃hyh‖X , (25)

for yh ∈ Xh (resp., ‖uh‖Uh
= ‖Q̃huh‖U , for

uh ∈ Uh). In these conditions, it is clear that

‖P̃h‖L(Xh,X) = ‖Q̃h‖L(Uh,U) = 1, (26)

for every h ∈ (0, h0). Moreover, it follows
from (21), (22), (23), and from the Banach-
Steinhaus Theorem, that there exists C5 > 0
such that

‖Ph‖L(X,Xh) ≤ C5, and ‖Qh‖L(U,Uh) ≤ C5,
(27)

and

‖(−Â∗)γ(I − P̃hPh)ψ‖X ≤ C5‖(−Â
∗)γψ‖X ,

(28)
for all h ∈ (0, h0) and ψ ∈ D((−Â∗)γ).

(H3.3) For every h ∈ (0, h0), there holds

Ph = P̃ ∗
h , and Qh = Q̃∗

h, (29)

where the adjoint operators are consid-
ered with respect to the pivot spaces X,
U , Xh, and Uh.

Note that this assumption indeed holds for
most of classical schemes (Galerkin or spec-
tral approximations, centered finite differ-
ences, ...).

(H3.4) There exists C6 > 0 such that

‖B∗P̃hψh‖U ≤ C6h
−γs‖ψh‖Xh

, (30)

for all h ∈ (0, h0) and ψh ∈ Xh.

For every h ∈ (0, h0), we define the approx-
imation operators A∗

h : Xh → Xh of A∗, and
B∗

h : Xh → Uh of B∗, by

A∗
h = PhA

∗P̃h, and B∗
h = QhB

∗P̃h. (31)

Due to (H3.3), it is clear that Bh = PhBQ̃h, for
every h ∈ (0, h0). On the other hand, we set Ah =
(A∗

h)∗ (with respect to the pivot space Xh). Note

that, if A is selfadjoint, then Ah = PhAP̃h.

(H4) The following properties hold:

(H4.1) The family of operators etAh is uni-
formly analytic, in the sense that there
exists C7 > 0 such that

‖etAh‖L(Xh) ≤ C7e
ωt,

‖AhetAh‖L(Xh) ≤ C7
eωt

t
,

(32)

for all t > 0 and h ∈ (0, h0).

Under (H4.1), there exists C8 > 0 such that

‖R(λ,Ah)‖L(Xh) ≤
C8

|λ− ω|
, (33)

for every λ ∈ ∆δ. Note that (32) and (33)
hold as well if one replaces Ah with A∗

h.
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(H4.2) There exists C9 > 0 such that, for ev-
ery f ∈ X and every h ∈ (0, h0), the
respective solutions of Â∗ψ = f and
Â∗

hψh = Phf satisfy

‖Phψ − ψh‖Xh
≤ C9h

s‖f‖X . (34)

In other words, there holds ‖PhÂ
∗−1 −

Â∗−1
h Ph‖L(X,Xh) ≤ C9h

s. This is a (strong)
rate of convergence assumption.

Remark 3.1. Assumptions (H3) and (H4.2) hold
for most of the classical numerical approxima-
tion schemes, such as Galerkin methods, spectral
methods, centered finite difference schemes, ... As
noted in [12], the assumption (H4.1) of uniform
analyticity is not standard, and has to be checked
in each specific case. However, it can be shown to
hold, under Assumption (H1), provided the bilin-
ear form associated with Ah is uniformly coercive
(see [3] for the selfadjoint case, and [11, Lemma
4.2] for the general nonselfadjoint case).

The main result of the paper is the following.

Theorem 3.1. Under the previous assumptions,
the control system ẏ = Ay+Bu is exactly null con-
trollable in time T > 0, if and only if the family
of discretized control systems ẏh = Ahyh + Bhuh

is uniformly controllable in the following sense.
There exist β > 0, h1 > 0, and positive real num-
bers c, c′, such that the uniform observability and
admissibility inequality

c‖eTA∗

hψh‖
2
Xh

≤

∫ T

0

‖B∗
hetA∗

hψh‖
2
Uh
dt+ hβ‖ψh‖

2
Xh

≤ c′‖ψh‖
2
Xh

(35)

holds, for every h ∈ (0, h1) and every ψh ∈ Xh.
In these conditions, for every y0 ∈ X, and ev-

ery h ∈ (0, h1), there exists a unique ϕh ∈ Xh

minimizing the functional

Jh(ψh) =
1

2

∫ T

0

‖B∗
hetA∗

hψh‖
2
Uh
dt+

1

2
hβ‖ψh‖

2
Xh

+ 〈eTA∗

hψh, Phy0〉Xh
,

(36)

and the sequence (Q̃huh)0<h<h1
, where the control

uh is defined by

uh(t) = B∗
he(T−t)A∗

hϕh, (37)

for every t ∈ [0, T ], converges weakly (up to a sub-
sequence), in the space L2(0, T ;U), to a control u
such that the solution of

ẏ = Ay +Bu, y(0) = y0, (38)

satisfies y(T ) = 0. For every h ∈ (0, h1), let yh(·)
denote the solution of

ẏh = Ahyh +Bhuh, yh(0) = Phy0. (39)

Then,

• yh(T ) = −hβϕh;

• for every t ∈ [0, T ], the sequence

(P̃hyh(t))0<h<h1
converges strongly (up

to a subsequence), in the space X, to y(t);

• the sequence (P̃hyh(·))0<h<h1
converges

strongly (up to a subsequence), in the space
L2(0, T ;X), to y(·).

Furthermore, there exists M > 0 such that

∫ T

0

‖u(t)‖2
Udt ≤M2‖y0‖

2
X , (40)

and, for every h ∈ (0, h1),

∫ T

0

‖uh(t)‖2
Uh
dt ≤M2‖y0‖

2
X ,

hβ‖ϕh‖
2
Xh

≤M2‖y0‖
2
X ,

‖yh(T )‖Xh
≤Mhβ/2‖y0‖X .

(41)

Remark 3.2. The left-hand side of (35) is a uni-
form observability type inequality for the control
systems ẏh = Ahyh + Bhuh. The right-hand side
of that inequality implies that the control opera-
tors Bh are uniformly admissible.

Remark 3.3. From the numerical point of view, in
order to construct approximating controls uh, the
procedure consists in minimizing the functional Jh

defined by (36), for instance using a gradient like
method. Note the very important fact that the
uniform inequality (35) implies a uniform condi-
tioning of the minimization problem, and thus,
the number of iterations needed in the gradient
method is uniformly bounded with respect to h.
This crucial property ensures the effective appli-
cability of the algorithm.
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Note that the notion of uniform controllability
provided by this result is relevant from the nu-
merical point of view. Indeed, numerically, it is
impossible to realize exactly zero.

Remark 3.4. As noticed in the introduction, we
stress that this is not a result of uniform exact
null controllability for the approximating systems
(39). Such a result is indeed wrong in general:
for two-dimensional heat equations, finite differ-
ence approximations are not uniformly exactly
null controllable in general (see [33, 35]).

Furthermore, notice the following fact. On the
one hand, exact null controllability of the con-
tinuous model implies approximate controllabil-
ity, with the additional fact that controls remain
bounded as ε tends to zero (see [34]). On the
other hand, if the continuous model is approxi-
mately controllable, and if the numerical scheme
is convergent, then it is possible to prove, without
using an assumption of analyticity of the semi-
group, a property of uniform approximate con-
trollability (see [32]). Combining these two facts
leads to a similar result as the one of Theorem 3.1,
not requiring the assumption of analyticity. How-
ever, it is not possible a priori with this argument
to derive a uniform observability type inequality,
and hence, to ensure that the number of iterations
of the gradient method is uniformly bounded. In
[32], it is indeed explained, in the case of the wave
equation, that such a uniform observability type
inequality cannot hold, even though one adds a
term in O(hβ) with respect to the norm of Xh.
In this particular case, a stronger norm is actu-
ally necessary. This remark indicates that, in our
analysis and method, the analyticity assumption
cannot be removed.

Remark 3.5. A similar result holds if the control
system ẏ = Ay+Bu is exactly controllable in time
T > 0. However, due to Assumption (H1), the
semigroup S(t) enjoys in general regularity proper-
ties. Therefore, the solution y(·) of the control sys-
tem may belong to a subspace of X, whatever the
control u is. For instance, in the case of the heat
equation with a Dirichlet or Neumann boundary
control, the solution is a smooth function of the
state variable x, as soon as t > 0, for every con-
trol and initial condition y0 ∈ L2. Hence, exact
controllability does not hold in this case in L2.

The theorem states that the controls uh defined
by (37) tend to a control u realizing the exact null
controllability for (38). One may wonder under
which assumptions the control u is the HUM con-
trol such that y(T ) = 0 (see Remark 2.1). The
following result provides an answer.

Proposition 3.2. With the notations of Theo-
rem 3.1, if the sequence of real numbers ‖ϕh‖Xh

,
0 < h < h1, is moreover bounded, then the
control u is the unique HUM control such that
y(T ) = 0. Moreover, the sequence (Q̃huh)0<h<h1

converges strongly (up to a subsequence), in the
space L2(0, T ;U), to the control u.

A sufficient condition on y0 ∈ X, ensuring the
boundedness of the sequence (‖ϕh‖Xh

)0<h<h1
, is

the following: there exists η > 0 such that the
control system ẏ = Ay+Bu is exactly null control-
lable in time t, for every t ∈ [T−η, T+η], and the
trajectory t 7→ S(t)y0 in X, for t ∈ [T − η, T + η],
is not contained in a hyperplane of X.

An example where this situation indeed occurs
is the following. Additionally to the previous as-
sumptions, assume that the operator A admits
a Hilbertian basis of eigenvectors ek, associated
with eigenvalues λk, for k ∈ N, satisfying

+∞∑

k=1

−1

λk
< +∞. (42)

Let y0 =
∑

k∈N
y0kek a point of X such that

y0k 6= 0, for every k ∈ N. Then, the assump-
tion of Proposition 3.2 is satisfied. Indeed, if the
trajectory t 7→ S(t)y0 in X, for t ∈ [T − η, T +
η], were contained in a hyperplane of X, there
would exist Φ =

∑
k∈N

Φkek ∈ X \ {0} so that∑
k∈N

eλkty0kΦk = 0, for every t ∈ [T − η, T + η].
It is well known that the condition (42) implies
that the functions eλkt, k ∈ N, are independent
in L2. Hence, y0kΦk = 0, for every k ∈ N. This
yields a contradiction.

4 Proof of the main results

4.1 Proof of Theorem 3.1

The proof is based on the following approximation
lemma, whose proof readily follows that of [12,
Lemma 4.3.1 p. 446]. To be self-contained, a proof
of this lemma is provided in Appendix.
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Lemma 4.1. There exists C10 > 0 such that, for
all t ∈ (0, T ] and h ∈ (0, h0), there holds

‖(etA∗

hPh − PhS(t)∗)ψ‖Xh
≤ C10

hs

t
‖ψ‖X , (43)

‖Q̃hB
∗
hetA∗

hψh‖U ≤
C10

tγ
‖ψh‖Xh

, (44)

for all ψ ∈ D(A∗) and ψh ∈ Xh, and moreover,
for every θ ∈ [0, 1],

‖Q̃hB
∗
hetA∗

hψh −B∗S(t)∗P̃hψh‖U

≤ C10
hs(1−γ)θ

tθ+(1−θ)γ
‖ψh‖Xh

, ∀ψh ∈ Xh.
(45)

Remark 4.1. It follows from the proof of this
lemma that (43) can be improved to

‖(etA∗

hPh − PhS(t)∗)ψ‖Xh
≤ C10

hsθ

tθ
‖ψ‖X , (46)

for every ψ ∈ D(A∗).

Let us prove that, if the system ẏ = Ay + Bu
is exactly null controllable, then the uniform in-
equality (35) holds. Since the degree of unbound-
edness γ of the control operator B is lower than
1/2, there exists θ ∈ (0, 1) such that 0 < θ + (1 −
θ)γ < 1/2.

For all h ∈ (0, h0) and ψh ∈ Xh, we have
∫ T

0

‖Q̃hB
∗
hetA∗

hψh‖
2
Udt =

∫ T

0

‖B∗S(t)∗P̃hψh‖
2
Udt

+

∫ T

0

(
‖Q̃hB

∗
hetA∗

hψh‖
2
U − ‖B∗S(t)∗P̃hψh‖

2
U

)
dt.

(47)

Since the control system ẏ = Ay + Bu is exactly
null controllable in time T , there exists a positive
real number c > 0 such that

∫ T

0

‖B∗S(t)∗P̃hψh‖
2
Udt ≥ c‖S(T )∗P̃hψh‖

2
X .

(48)
Using (21), (26), (13), and the estimate (43),

‖S(T )∗P̃hψh − P̃heTA∗

hψh‖X

≤ ‖(I − P̃hPh)S(T )∗P̃hψh‖X

+ ‖P̃h(PhS(T )∗P̃hψh − eTA∗

hψh)‖X

≤ C4h
s‖A∗S(T )∗P̃hψh‖X

+ ‖PhS(T )∗P̃hψh − eTA∗

hψh‖Xh

≤ C11h
s‖ψh‖Xh

,

where C11 is a positive constant, independent on
h. Hence, using (13) and (32), we get
∣∣∣‖S(T )∗P̃hψh‖

2
X − ‖eTA∗

hψh‖
2
Xh

∣∣∣

≤ ‖S(T )∗P̃hψh − P̃heTA∗

hψh‖X

∗
(
‖S(T )∗P̃hψh‖X + ‖eTA∗

hψh‖Xh

)

≤ C12h
s‖ψh‖

2
Xh
,

where C12 > 0 is independent on h. Therefore,

‖S(T )∗P̃hψh‖
2
X ≥ ‖eTA∗

hψh‖
2
Xh

− C12h
s‖ψh‖

2
Xh
.

(49)
For the second term of the right-hand side of

(47), one has, using (45), (44), (19) and (14),
∣∣∣‖Q̃hB

∗
hetA∗

hψh‖
2
U − ‖B∗S(t)∗P̃hψh‖

2
U

∣∣∣

≤ ‖Q̃hB
∗
hetA∗

hψh −B∗S(t)∗P̃hψh‖U

∗
(
‖Q̃hB

∗
hetA∗

hψh‖U + ‖B∗S(t)∗P̃hψh‖U

)

≤ C13h
s(1−γ)θ 1

tθ+(1−θ)γ+γ
‖ψh‖

2
Xh
,

where C13 > 0 is independent on h. Since θ+(1−
θ)γ + γ < 1, we get, by integration,
∣∣∣∣∣

∫ T

0

(
‖Q̃hB

∗
hetA∗

hψh‖
2
U − ‖B∗S(t)∗P̃hψh‖

2
U

)
dt

∣∣∣∣∣

≤ C14h
s(1−γ)θ‖ψh‖

2
Xh
.

(50)

If we choose a real number β such that 0 < β <
s(1 − γ)θ, then the left-hand side of the inequal-
ity (35) (i.e., the uniform observability inequal-
ity) follows from (47), (48), (49), and (50), for
h ∈ (0, h1), where h1 > 0 is small enough. The
right-hand side of (35), that is, the uniform admis-
sibility inequality follows by integration of (44).

For h ∈ (0, h1), the functional Jh is strictly con-
vex, and, from (35), is coercive. Hence, it admits
a unique minimum at ϕh ∈ Xh so that

0 = ∇Jh(ϕh) = Mh(T )ϕh + hβϕh + eTAhPhy0,

where Mh(T ) =
∫ T

0
etAhBhB

∗
hetA∗

hdt is the
Gramian of the semidiscrete system. Then, the
solution yh(·) of (39) satisfies

yh(T ) = eTAhyh(0) +

∫ T

0

e(T−t)AhBhuh(t)dt

= eTAhPhy0 +Mh(T )ϕh = −hβϕh.
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Note that, since Jh(0) = 0, there must hold, at the
minimum, Jh(ϕh) ≤ 0. Hence, using the observ-
ability inequality (35) and the Cauchy-Schwarz in-
equality, one gets

c‖eTA∗

hϕh‖
2
Xh

≤

∫ T

0

‖B∗
hetA∗

hϕh‖
2
Uh
dt+ hβ‖ϕh‖

2
Xh

≤ 2‖eTA∗

hϕh‖Xh
‖Phy0‖Xh

,

and thus,

‖eTA∗

hϕh‖Xh
≤

2

c
‖Phy0‖Xh

. (51)

As a consequence,
∫ T

0
‖B∗

hetA∗

hϕh‖
2
Uh
dt ≤

4
c‖Phy0‖

2
Xh
, and hβ‖ϕh‖

2
Xh

≤ 4
c‖Phy0‖

2
Xh
, and

the estimates (41) follow.

In particular, the sequence (Q̃huh)0<h<h1
is

bounded in L2(0, T ;U), and thus, up to a subse-
quence, converges to a control u. Let y(·) denote
the solution of (38), associated with this control
u. According to (7), one has

y(t) = S(t)y0 +

∫ t

0

S(t− s)Bu(s)ds

= S(t)y0 + Ltu,

(52)

for every t ∈ [0, T ], and, with a similar notation,

yh(t) = etAhPhy0 +

∫ t

0

e(t−s)AhBhuh(s)ds

= etAhPhy0 + Lthuh,

(53)

for every h ∈ (0, h1). We next derive the following
lemma.

Lemma 4.2. For every t ∈ [0, T ], the sequence

of operators P̃hLthQh converges strongly to Lt in
the space L(L2(0, t;U), X).

Proof. For every v ∈ L2(0, t;U), using a dual ver-
sion of (45), the Cauchy-Schwarz inequality, and
the fact that θ + (1 − θ)γ < 1/2, one has

‖P̃hLthQhv − Ltv‖X

=
∥∥∥

∫ t

0

(
P̃he(t−s)AhBhQh − S(t− s)B

)
v(s)ds

∥∥∥
X

≤ C10h
s(1−γ)θ

∫ t

0

‖v(s)‖U

(t− s)θ+(1−θ)γ
ds

≤ Cste hs(1−γ)θ‖v‖L2(0,T ;U),

and the conclusion follows.

First, using a dual version of (46), and using
(21), and (13), one has

‖P̃hetAhPhy0 − S(t)y0‖X

≤ ‖P̃h(etAhPhy0 − PhS(t)y0)‖X

+ ‖(P̃hPh − I)S(t)y0‖X

≤ C10
hsθ

tθ
‖S(t)y0‖X + C4h

s‖S(t)y0‖X

≤ Cste
hsθ

tθ
‖y0‖X .

(54)

Second, for every h ∈ (0, h1), one gets, from a
dual version of (45),

‖P̃hLthuh − LtQ̃huh‖X

≤

∫ t

0

‖(P̃he(t−s)AhBh − S(t− s)BQ̃h)uh(s)ds‖X

≤ Cste hs(1−γ)θ‖uh‖
2
L2(0,T ;Uh)

≤ Cste hs(1−γ)θ‖y0‖
2
X .

(55)

Third, let us prove that LtQ̃huh converges
strongly to Ltu in X, for every t ∈ [0, T ]. The

operators P̃hLthQh are of finite rank, and, from
Lemma 4.2, converge strongly to Lt. Hence, Lt is
a compact operator, for every t ∈ [0, T ].

Now, writing

P̃hyh(t) − y(t) = (P̃hetAhPhy0 − S(t)y0)

+ (P̃hLthuh − LtQ̃huh) + Lt(Q̃huh − u),

it follows from (54), (55), from the weak conver-

gence of Q̃huh to u, and from the compactness of
Lt, that, on the one hand, for every t ∈ (0, T ],

the sequence (P̃hyh(t))0<h<h1
converges strongly

in X (up to subsequence) to y(t), and, on the

other hand, that the sequence (P̃hyh(·))0<h<h1

converges strongly in L2(0, T ;X) (up to a sub-
sequence) to y(·) on [0, T ],

In particular, since yh(T ) = −hβϕh → 0 as h
tends to 0, it follows that y(T ) = 0.

To prove the converse statement of Theorem
3.1, it suffices to notice that, if the uniform in-
equality (35) holds, then, the sequence (Q̃huh),
where uh is defined by (37), and where ϕh min-
imizes Jh, is bounded in L2, and thus, up to a
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subsequence, converges to a control u. As pre-
viously, one proves that the trajectory y(·), solu-
tion of (38), associated with the control u, satisfies
y(T ) = 0. Theorem 3.1 is proved.

4.2 Proof of Proposition 3.2

If the sequence (‖P̃hϕh‖X)0<h<h1
is bounded,

then, up to a subsequence, it converges weakly
to an element ϕ ∈ X. It follows from the esti-
mate (45) that u(t) = B∗S(T − t)∗ϕ, for every

t ∈ [0, T ]. Moreover, Q̃huh tends strongly to u in
L2(0, T ;U). Indeed, write, for every t ∈ [0, T ],

Q̃huh(t) − u(t)

=
(
Q̃hB

∗
he(T−t)A∗

h −B∗S(T − t)∗P̃h

)
ϕh

+B∗S(T − t)∗
(
P̃hϕh − ϕ

)
(56)

Using (45), it is clear that the first term of the
right-hand side of (56) tends to zero. For the sec-
ond term, one first notes that, using the estimate
(70) from the appendix, for every t ∈ [0, T ), the
operator B∗S(T−t)∗ is compact, as a strong limit

of finite rank operators. Since P̃hϕh − ϕ tends
weakly to zero, it follows that the second term of
the right-hand side of (56) tends to zero.

The control u is such that y(T ) = 0, hence the
vector ϕ must be solution of ∇J(ϕ) = 0, where
J is defined by (11) (see Remark 2.1). Since J is
strictly convex, ϕ is the minimum of J , that is, u
is the HUM control such that y(T ) = 0.

We next prove, by contradiction, that the
sufficient condition provided in the statement
of the proposition implies that the sequence
(‖ϕh‖Xh

)0<h<h1
is bounded. If it is not bounded,

then, up to subsequence, P̃h (ϕh/‖ϕh‖Xh
) con-

verges weakly to Φ ∈ X, as h tends to 0. For every
t ∈ [T − η, T + η], the control system is exactly
null controllable in time t, and thus, from (51), the
sequence 〈etA∗

hϕh, Phy0〉Xh
is bounded, uniformly

for h ∈ (0, h1). Thus, passing to the limit, one
gets 〈Φ, S(t)y0〉X = 0. This contradicts the fact
that the trajectory t 7→ S(t)y0, t ∈ [T − η, T + η],
is not contained in a hyperplane of X.

5 Numerical simulations for

the heat equation with

Neumann boundary con-

trol

In this section, we give an example of a situation
where Theorem 3.1 applies, provide some numer-
ical simulations, and comment on their practical
implementation.

Let d ≥ 1 be an integer, c a real number, Ω an
open bounded connected subset of R

d, and Γ =
∂Ω. Let Γ1 and Γ2 be subsets of Γ such that Γ =
Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. Consider the Neumann
boundary control system

∂y
∂t = 4y + cy in (0, T ) × Ω,

y(0, ·) = y0(·) in Ω,
∂y
∂n = u on [0, T ] × Γ1,
∂y
∂n = 0 on [0, T ] × Γ2,

(57)

where y0 ∈ L2(Ω) and u ∈ L2(0, T ;L2(Γ1)).

Set X = L2(Ω) and U = L2(Γ1). It is well
known (see [17, 22, 23, 24, 25]) that the con-
trol system (57) is exactly null controllable in X,
with controls u ∈ L2(0, T ;U). It can be written
in the form (38), where the selfadjoint operator
A : D(A) → X is defined by Ay = 4y + cy,
on D(A) = {y ∈ H2(Ω) | ∂y

∂n = 0 on Γ}, and
B = −AN ∈ L(U,D(A∗)′), where N is the Neu-
mann mapping, defined by

Nu = y ⇔





Ay = 0 in Ω,
∂y
∂n = u on Γ1,
∂y
∂n = 0 on Γ2.

Note that N : Hs(Γ1) −→ Hs+3/2(Γ1) is contin-
uous, for every s ∈ R. Here, we assume that −c
is not an eigenvalue of the Laplacian operator 4
on D(A). The adjoint B∗ ∈ L(D(A∗), U) of B
is given by B∗ψ = ψ|Γ1

, for every ψ ∈ D(A∗).
Morever, the degree of unboundedness of B is
γ = 1/4 + ε, for every ε > 0. Hence, assump-
tions (H1) and (H2) are satisfied. Note that
D((−A)1/2) = H1(Ω).
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5.1 Finite element semi-discrete

model

We next introduce a semi-discretized model of the
system (57), using finite elements of order one.
Consider a family of simplex meshes (Tn)n∈N in
R

d, with Tn = (Kk)k∈{1,...,Nn}, where, for every
k ∈ {1, ..., Nn}, Kk is an open d-simplex such
that, for every l ∈ {1, ..., Nn}\{k}, there holds

Kk ∩Kl = ∅ and
⋃Nn

k=1Kk = Ω. Let ∂In be the
set of indexes such that, for every k ∈ ∂In, there
holds Kk ∩ Γ1 6= ∅. Let Sn be the number of
distinct vertices (pk)k∈{1,...,Sn} of Tn, and let ∂Sn

be the set of indexes of the distinct vertices of
(Kk ∩ Γ1)k∈∂In

. Let hn = max
k∈{1,...,Nn}

diam(Kk),

where diam(Kk) denotes the diameter of Kk. As-
sume that (hn)n∈N is decreasing. For the sake of
clarity, the index n is replaced by h in the follow-
ing notations. Set

Xh = {y ∈ C0(Ω) | ∀k ∈ {1, ..., Nh}, y|Kk
linear},

Uh = {u ∈ C0(Γ1) | ∀k ∈ ∂Ih, y|Kk∩Γ1
linear}.

The spaces Xh and Uh are respectively generated
by Φh = (ϕk)k∈{1,...,Sh} and Υh = (υk)k∈∂Sh

,
with

∀k ∈ {1, ..., Sh}, ϕk(pk) = 1,

∀l ∈ {1, ..., Sh}\{k}, ϕk(pl) = 0,

∀k ∈ ∂Sh, υk(pk) = 1,

∀l ∈ ∂Sh\{k}, υk(pl) = 0.

Note that Xh ⊂ D((−A)1/2) = H1(Ω) and

Uh ⊂ U . Define P̃h (resp., Q̃h), as the canon-
ical injection from Xh into D((−A)1/2) (resp.,
from Uh into U). For all xh, yh ∈ Xh and
uh, vh ∈ Uh, set, according to (25), 〈xh, yh〉Xh

=

〈P̃hxh, P̃hyh〉X , and 〈uh, vh〉Uh
= 〈Q̃huh, Q̃hvh〉U .

For every y ∈ D((−A)1/2)′ = H1(Ω)′ (with re-
spect to the pivot space X = L2(Ω)), set Phy =

(M−1
h 〈y, P̃hΦh〉H1(Ω)′,H1(Ω)).Φh, and, for every

u ∈ U , set Qhu = (M−1
∂,h 〈u, Q̃hΥh〉U ).Υh, where

Mh = 〈Φh,Φ
T
h 〉Xh

, and M∂,h = 〈Υh,Υ
T
h 〉Uh

, are
mass matrices.

Assumptions (H3.1) and (H3.3) are obviously
satisfied; the assumption (H3.2), with s = 2, fol-
lows from the classical finite element theory (see

[5]), and the assumption (H3.4) follows from a
standard approximation property (see [27]).

The variational version of (57) is the following.
For u ∈ C1([0, T ], U), one has to determine y in
C1([0, T ], X) such that

〈yt, w〉X = −〈∇u,∇w〉X + c〈y, w〉X − 〈u,w|Γ1
〉U ,

for every w ∈ X. We next derive a simi-
lar formulation in the approximating spaces Xh

and Uh, and, more precisely, in their respec-
tive representations in R

Sh and R
#∂Sh . For

V ∈ C1([0, T ],R#∂Sh), one has to determine Y ∈
C1([0, T ],RSh) such that

〈Ẏ .Φh,W.Φh〉Xh
= −〈∇Y.Φh,∇W.Φh〉Xh

+ c〈Y.Φh,W.Φh〉Xh
− 〈U.Υh,W.Φh|Γ1

〉Uh
,

for every W ∈ R
Sh . Hence, the finite element

semi-discretization model of (57) writes

MhẎ (t) = AhY (t) +BhV (t), Y (0) = Y0, (58)

where Y0 ∈ R
Sh , V (t) ∈ R

#∂Sh , Y (t) ∈ R
Sh , and

Ah = −〈∇Φh,∇ΦT
h 〉Xh

+cMh, Bh = −〈Υh,Φ
T
h|Γ1

〉Uh
.

Remark 5.1. For implementation issues, this ap-
proximation model is not written in the abstract
spaces Xh and Uh, but rather in R

Sh and R
#∂Sh .

This does not alter the uniformity of the observ-
ability and admissibility inequality (35). Indeed,
the mappings

ιh : Xh −→ R
Sh

yh 7−→ M−1
h 〈yh,Φh〉X ,

ι∂,h : Uh −→ R
#∂Sh

uh 7−→ M−1
∂,h〈uh,Υh〉U ,

are isomorphisms, such that there exist m > 0
and M > 0 so that

m‖yh‖Xh
≤ ‖ιh(yh)‖

R
Sh ≤M‖yh‖Xh

,

m‖uh‖Uh
≤ ‖ι∂,h(uh)‖

R
#∂Sh ≤M‖uh‖Uh

,

for every yh ∈ Xh, and every uh ∈ Uh. This
follows from a standard property of the spectrum
of mass matrices (see [5]).

The uniform analyticity assumption (H4.1) fol-
lows from [3]. The assumption (H4.2) is satisfied
with s = 2 (see [5, 12, 27]). Hence, Theorem 3.1
applies, with β = 0.45 for instance.

11



5.2 Numerical simulations

The minimization procedure described in Theo-
rem 3.1 has been implemented for d = 1 and
d = 2, using a standard gradient type method,
that has the advantage not to require the compu-
tation of the gradient of the functional. Indeed,
this computation is expensive, since the gradient
is related to the Gramian matrix. In the following
numerical simulations, provided using Matlab, we
choose c = 1. Then, the operator A has a positive
eigenvalue, and the uncontrolled system (57) (i.e.,
u ≡ 0) is unstable.

5.2.1 The one-dimensional heat equation

Set Ω = (0, 1), Γ1 = {1}, Γ2 = {0}, c = 1, and
T = 1. With the previous notations, consider the
subdivision of Ω, pk = (k−1)h, for k ∈ {1, ..., Sh}
and h = 1/(Sh − 1). Numerical simulations are
carried out with a time discretization step equal
to 0.001, with the data of Table 1. The numerical
results are provided on Table 2. The notation
yu

h(T ) of this table stands for the extremity at
time T of the solution of (57), for uh ≡ 0.

The convergence of the method is slow. For
an exact time integration, the final state yh(T ) is
equal to −hβϕh. This is however in accordance
with the estimates (41) of Theorem 3.1. Indeed,
it follows from these estimates that yh(T ) con-
verges very slowly to zero (here, β/2 = 0.225).
These results illustrate the difficulty in using the
HUM method to compute controls. In our case,
to divide ‖yh(T )‖Xh

by 10, one has to divide h
by 30000. On the other part, three days of com-
putations are required, on a bi-processor (Xeon
2.40 GHz, 512 Mo RAM), to compute controls
for h = 10−3. Nevertheless, the convergence of
the gradient procedure is fast and does not seem
to depend on the size of the space discretization
(6 to 8 iterations, in our numerical simulations).
Hence, optimizing the computation of Jh may im-
prove the performance of the algorithm and de-
crease computation times.

5.2.2 The two-dimensional heat equation

Let Ω be the unit disk of R
2, let c = 1, and T = 1.

Numerical simulations are carried out with a time

discretization step equal to 0.001, with the data
of Table 3. The numerical results are provided on
Table 4. The bench disk 1 gives slightly better
results than the bench disk 2, due to the fact that
the control is located on one part of the bound-
ary only. The simulations provided here involve
55 and 104 cells (see Figure 1). As previously, the
times of computations are very long, and, to di-
vide ‖yh(T )‖Xh

by 10, one has to divide the cell
diameters by 30000, that is, one has to multiply
the number of cells by 9.108; this is clearly not
feasible on a standard machine, within reasonable
time, and indicates the limits of the method.

6 Conclusion and open prob-

lems

We have shown that, under standard assumptions
on the discretization process, for an exactly null
controllable linear control system, if the semi-
group of the approximating system is uniformly
analytic, and if the degree of unboundedness of
the control operator is lower than 1/2, then the
semidiscrete approximation models are uniformly
controllable, in a certain sense. This property
is weaker than the uniform exact null controlla-
bility (that does not hold in general). A mini-
mization procedure was provided to build the ap-
proximation controls, and moreover a uniform ob-
servability and admissibility type inequality was
proved, that implies a uniform conditioning of
the minimization problem, and thus, the number
of iterations of the gradient method is uniformly
bounded. This was implemented in the case of
the one- and two-dimensional heat equation with
Neumann boundary control.

No rates of convergence were given for the con-
vergence of controls of the semidiscrete models,
and this is an open problem.

The condition on the degree of unboundedness
γ of the control operator B is very stringent,
and an interesting open problem is to investigate
whether the results of this article still hold when-
ever γ ≥ 1/2. Note that, if γ < 1/2, then B is
automatically admissible; this does not hold nec-
essarily whenever γ ≥ 1/2, and may cause some
technical difficulties. However, there are many im-
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portant and relevant problems for which γ ≥ 1/2,
that are not covered by the results of this pa-
per, such as, for instance, the heat equation with
Dirichlet boundary control. Note that, in this
case, the finite difference semidiscrete models are
uniformly exactly null controllable in the one di-
mensional case (see [16]), but lose this property
in larger dimensions in general (see [33]). There
are some important physical examples in which
the semigroup is analytic and γ ≥ 1/2, such as
thermo-elastic plates coupling a parabolic dynam-
ics with an Euler-Bernoulli dynamics (see [10] and
[12, Chap. 3.11]).

Another open question is to remove the assump-
tion of uniform analyticity of the discretized semi-
group. The properties of analyticity of the semi-
group have been used in an essential way in the
proof of the results (see Remark 3.4). The sit-
uation is widely open for hyperbolic equations.
Note that, for the 1-D wave equation, a result
of uniform controllability was proved when us-
ing a mixed finite element discretization process
(see [4]); the extension to higher dimensions is not
clear (see [33]). However, a general result, stating
uniform stabilization properties, was derived in
[20] for general hyperbolic systems, and it would
be interesting to try to adapt the techniques of
proof used in this paper to the problem of exact
controllability. As mentioned in Remark 3.4, it
is possible to derive a result similar to Theorem
3.1, combining exact controllability with the con-
vergence of the numerical scheme; however this
argument does not lead a priori to a uniform ob-
servability type inequality, and thus, to a uniform
conditioning. Preliminary numerical simulations
in some hyperbolic situations indeed indicate that
the number of iterations of the gradient method
is not bounded, as h tends to zero.

Acknowledgement. We thank E. Zuazua for
many remarks and stimulating discussions.

7 Appendix: proof of Lemma

4.1

We first prove (43). Using (H1), there
holds, for every t > 0 (see [19]), S(t)∗ =
1

2iπ

∫
∂∆δ

eλtR(λ,A∗)dλ, and, similarly, etA∗

h =

1
2iπ

∫
∂∆δ

eλtR(λ,A∗
h)dλ. It follows that

etA∗

hPh − PhS(t)∗

=
1

2iπ

∫

∂∆δ

eλt (R(λ,A∗)Ph − PhR(λ,A∗
h)) dλ.

(59)

From the resolvent identity R(β1, A) =
R(β2, A) + (β2 − β1)R(β1, A)R(β2, A), one
gets R(λ,A∗

h)Ph = R(ω,A∗
h)Ph + (ω −

λ)R(λ,A∗
h)R(ω,A∗

h)Ph, and PhR(λ,A∗) =
PhR(ω,A∗) + (ω − λ)PhR(λ,A∗)R(ω,A∗). It
follows that

(R(λ,A∗
h)Ph − PhR(λ,A∗))(I − (λ− ω)Â∗−1))

= (I + (ω − λ)R(λ,A∗
h))(Â∗−1

h )Ph − PhÂ
∗−1).

(60)

Note that I−(λ−ω)Â∗−1 = (Â∗−(λ−ω)I)Â∗−1,
and thus, (I − (λ−ω)Â∗−1)−1 = −ÂR(λ−ω, Â).
Using (17), one gets

‖(I − (λ− ω)Â∗−1)−1‖L(X) ≤ C2, (61)

for every λ ∈ ∆δ. On the other hand, from (33),

‖(ω − λ)R(λ,A∗
h)‖L(Xh) ≤ C8. (62)

We deduce from (60), (61), and (62), that there
exists a constant C15 such that

‖R(λ,A∗
h)Ph − PhR(λ,A∗)‖L(X,Xh)

≤ C15‖Â
∗−1
h Ph − PhÂ

−1‖L(X,Xh),
(63)

for every λ ∈ ∆δ. The estimate (43) follows from
(59), (63), and from (34). We next prove (44).
For every ψ ∈ D(A∗), one has

‖Q̃hB
∗
hetA∗

hPhψ −B∗P̃hPhS(t)∗ψ‖U

≤ ‖Q̃hB
∗
hetA∗

hPhψ‖U + ‖B∗P̃hPhS(t)∗ψ‖U .

(64)

We estimate each term of the right-hand side of
(64). From (31), B∗

h = QhB
∗P̃h, and thus, using

(26), (27), (30), and (32), one gets

‖Q̃hB
∗
hetA∗

hPhψ‖U ≤ C5‖B
∗P̃hetA∗

hPhψ‖U

≤ C5C6h
−γs‖etA∗

hPhψ‖Xh

≤ C2
5C6C7h

−γseωt‖ψ‖X .

(65)
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On the other hand, from (30), (27), and (13),

‖B∗P̃hPhS(t)∗ψ‖U ≤ C6h
−γs‖PhS(t)∗ψ‖Xh

≤ C5C6h
−γs‖S(t)∗ψ‖X

≤ C1C5C6h
−γseωt‖ψ‖X .

(66)

Hence, using (64), (65), and (66), there exists
C16 > 0 such that

‖Q̃hB
∗
hetA∗

hPhψ −B∗P̃hPhS(t)∗ψ‖U

≤ C16h
−γs‖ψ‖X ,

(67)

for every ψ ∈ D(A∗), every t ∈ [0, T ], and every
h ∈ (0, h0). Let us get another estimate of this
term. Using successively (27), (30), (19), (24),
(43), (22), and (13), one gets

‖Q̃hB
∗
hetA∗

hPhψ −B∗P̃hPhS(t)∗ψ‖U

= ‖Q̃hQhB
∗P̃hetA∗

hPhψ −B∗P̃hPhS(t)∗ψ‖U

≤ ‖Q̃hQhB
∗P̃h(etA∗

hPhψ − PhS(t)∗ψ)‖U

+ ‖Q̃hQhB
∗(P̃hPh − I)S(t)∗ψ‖U

+ ‖(Q̃hQh − I)B∗S(t)∗ψ‖U

+ ‖B∗(I − P̃hPh)S(t)∗ψ‖U

≤ C5C6h
−γs‖etA∗

hPhψ − PhS(t)∗ψ‖Xh

+ C5C3‖(−Â)γ(P̃hPh − I)S(t)∗ψ‖X

+ C4h
s(1−γ)‖A∗S(t)∗ψ‖X

+ C3‖(−Â)γ(P̃hPh − I)S(t)∗ψ‖X

≤ C5C6C10
hs(1−γ)

t
‖ψ‖X

+ (C3(C5 + 1) + 1)C4h
s(1−γ)‖A∗S(t)∗ψ‖X

≤ C17
hs(1−γ)

t
‖ψ‖X ,

(68)

for every ψ ∈ D(A∗), every t ∈ [0, T ], and ev-
ery h ∈ (0, h0), where C17 > 0. Then, raising
(67) to the power 1− γ, (68) to the power γ, and
multiplying both resulting estimates, we obtain
‖Q̃hB

∗
hetA∗

hPhψ − B∗P̃hPhS(t)∗ψ‖U ≤ C18

tγ ‖ψ‖X ,
and hence,

‖Q̃hB
∗
hetA∗

hPhψ‖U

≤
C18

tγ
‖ψ‖X + ‖B∗P̃hPhS(t)∗ψ‖U .

(69)

From (19), (28), and (14), there holds

‖B∗P̃hPhS(t)∗ψ‖U

≤ ‖B∗(P̃hPh − I)S(t)∗ψ‖U + ‖B∗S(t)∗ψ‖U

≤ C3

(
‖(−Â)γ(P̃hPh − I)S(t)∗ψ‖X

+ ‖(−Â)γS(t)∗ψ‖X

)

≤ C3(C5 + 1)‖(−Â)γS(t)∗ψ‖X

≤ C3(C5 + 1)C1
eωt

tγ
‖ψ‖X ,

and thus, using (69), the estimate (44) follows by

setting ψ = P̃hψh and using (20).
Finally, we prove (45). On the one hand, rea-

soning as above for obtaining (68), we get

‖Q̃hB
∗
hetA∗

hPhψ−B
∗S(t)∗ψ‖U ≤ C19

hs(1−γ)

t
‖ψ‖X ,

(70)
for every ψ ∈ D(A∗), every t ∈ [0, T ], and every
h ∈ (0, h0), where C19 is a positive constant. On
the other hand, from (44), (19), and (14), setting

ψ = P̃hψh,

‖Q̃hB
∗
hetA∗

hPhψ −B∗S(t)∗ψ‖U

≤ ‖Q̃hB
∗
hetA∗

hPhψ‖U + ‖B∗S(t)∗ψ‖U

≤
C10

tγ
‖ψh‖Xh

+ C3‖(−Â
∗)γS(t)∗ψ‖X

≤
C20

tγ
‖ψh‖Xh

,

(71)

where C20 > 0. Raising (70) to the power θ, (71)
to the power 1−θ, and multiplying both resulting
estimates, we obtain (45). Lemma 4.1 is proved.
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name Sh h y0

1D 10 11 10−1 y0(x) = x
1D 100 101 10−2 y0(x) = x
1D 1000 1001 10−3 y0(x) = x
sin1D 10 11 10−1 y0(x) = sin2(πx)
sin1D 100 101 10−2 y0(x) = sin2(πx)
sin1D 1000 1001 10−3 y0(x) = sin2(πx)

Table 1: Data for the one-dimensional heat equation

name ‖ψh‖X hβ ‖hβψh + yh(T )‖X ‖yh(T )‖Xh
‖yu

h(T )‖Xh

1D 10 0.41380476 0.3720411 0.0030567 0.1567023 1.3577812
1D 100 0.53185422 0.1264632 0.0036999 0.0700055 1.3577812
1D 1000 0.70536645 0.0446885 0.0039907 0.0339719 1.3577812
sin1D 10 0.41383134 0.3720411 0.0030884 0.1567131 1.3577812
sin1D 100 0.53222526 0.1264632 0.0040701 0.0700721 1.3577812
sin1D 1000 0.70565021 0.0446885 0.0039909 0.0339841 1.3577812

Table 2: Numerical results for the one-dimensional equation

name Sh y0 Γ1 Γ2

disk 1 55 y0(x, y) = x+ y Γ ∅
104 y0(x, y) = x+ y Γ ∅

disk 2 55 y0(x, y) = x+ y {(x, y) ∈ Γ | x ≥ 0 and y ≥ 0} Γ\Γ1

104 y0(x, y) = x+ y {(x, y) ∈ Γ | x ≥ 0 and y ≥ 0} Γ\Γ1

Table 3: Data for the two-dimensional equation

name Sh ‖ψh‖X hβ ‖hβψh + yh(T )‖X ‖yh(T )‖Xh
‖yu

h(T )‖Xh

disk 1 55 0.1587292 0.6142423 0.0174738 0.0803068 0.1035126
104 0.2309178 0.4511246 0.0195391 0.0849494 0.1085287

disk 2 55 0.1649749 0.6142423 0.0116253 0.0962398 0.1035126
104 0.1751393 0.4511246 0.0106206 0.1025904 0.1086115

Table 4: Numerical results for the two-dimensional equation
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Figure 1: Meshes used for disk benches.
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