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Global steady-state stabilization and controllability of 1-D

semilinear wave equations

Jean-Michel Coron
∗
and Emmanuel Trélat

†

Abstract

This paper is concerned with the exact boundary controllability of semilinear wave equations

in one space dimension. We prove that it is possible to move from any steady-state to any other

one by means of a boundary control, provided that they are in the same connected component of

the set of steady-states. The proof is based on an expansion of the solution in a one-parameter

Riesz basis of generalized eigenvectors, and on an effective feedback stabilization procedure which

is implemented.

MSC classification. Primary: 93B05, 93C20; Secondary: 35B37.

Keywords: Wave equation, stabilization, Riesz basis, pole shifting, Lyapunov functional.

1 Introduction

Let L > 0 fixed and f : IR → IR be a function of class C2. We are concerned with the exact
controllability of the semilinear wave equation





∂2y

∂t2
=
∂2y

∂x2
+ f(y),

y(t, 0) = 0, yx(t, L) = u(t),

y(0, ·) = a0(·), yt(0, ·) = a1(·),

(1)

where the state is (y(t, ·), yt(t, ·)) : [0, L] → IR2 and the control is u(t) ∈ IR.
The question we investigate in this paper is the following. For T > 0 large enough, given initial

data (a0, a1) and final data (b0, b1) in a suitable Hilbert space, is it possible to construct a control
u steering the control system (1) from the initial state (y0, y1) to the target (z0, z1) within time T?
Moreover, is it possible to achieve this by an explicit and efficient numerical implementation?

If f is linear, the situation is well-known (see for instance [17, 21]). In the general semilinear case,
the main results as to the global controllability problem, using a variant of the Hilbert Uniqueness
Method and a fixed point argument, assert that if f is asymptotically linear (see [25]), and more
generally if f is globally Lipschitzian (see [26]), then the control system (1) is globally controllable
within time T > 2L, in the space H1

(0)(0, L) × L2(0, L), with controls in L2(0, T ). The situation

extends to slightly superlinear functions, or functions sharing a good sign growth condition, see [4,
16, 18, 25, 27]. Here, and throughout the paper, H1

(0)(0, L) denotes the Banach space

H1
(0)(0, L) := {y ∈ H1(0, L) | y(0) = 0},
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endowed with the norm

‖y‖H1
(0)

(0,L) =

∥∥∥∥
dy

dx

∥∥∥∥
L2(0,L)

.

When f is highly superlinear the situation is far more intricate, in particular because of possible
blowing up. It is proved in [27] that if there exists k large enough so that

∫ +∞

k

ds

|F (s)|1/2
< +∞,

where F (s) =
∫ s

0
f(t)dt, then the system (1) is not exactly controllable in any time T > 0. More

precisely, for every T > 0, there exist initial data (a0, a1) ∈ H1
(0)(0, L) × L2(0, L) for which the

solution of (1) so that y(0, ·) = a0(·) and yt(0, ·) = a1(·) blows up in time t < T , for every control
u ∈ C0([0, T ]). Hence there is no hope to get a general result on global controllability. The result of
this paper is intermediate.

Definition 1. A function y ∈ C2([0, L]) is a steady-state of the control system (1) if

d2y

dx2
(x) + f(y(x)) = 0, y(0) = 0.

Let S denote the set of steady-states, endowed with the C2 topology.

Introduce the Banach space

YT := C0([0, T ], H1
(0)(0, L)) ∩ C1([0, T ], L2(0, L)), (2)

endowed with the norm

‖y‖YT
= max

t∈[0,T ]

(
‖y‖H1

(0)
(0,L) +

∥∥∥∥
∂y

∂t

∥∥∥∥
L2(0,L)

)
.

Note that, for every u ∈ L2(0, T ), and for all initial data (a0, a1) ∈ H1
(0)(0, L) × L2(0, L), there exists

at most one solution of (1) in YT .
The main results of the paper are the following.

Theorem 1. Let y0 and y1 be two steady-states belonging to a same connected component of S. For
every δ > 0, there exists ε1 > 0 so that, for every ε ∈ (0, ε1], there exists a control u ∈ H2(0, 1/ε)
such that the solution y in Y1/ε of the Cauchy-Dirichlet problem





∂2y

∂t2
=
∂2y

∂x2
+ f(y),

y(t, 0) = 0, yx(t, L) = u(t),

y(0, x) = y0(x), yt(0, x) = 0,

(3)

satisfies
‖y(1/ε, ·) − y1(·)‖H1

(0)
(0,L) + ‖yt(1/ε)‖L2(0,L) ≤ δ.

Remark 1. The proof of this result, which represents the main part of the paper, relies on an explicit
construction of the control u in a feedback form, and of a Lyapunov functional. We stress that the
procedure is effective and consists actually in solving a stabilization problem in finite dimension.
Indeed in order to construct u, one only needs to compute a finite number of quantities related to a
one-parameter dependent Riesz expansion of the solution. The numerical procedure is implemented,
and simulations are presented in the last section of the paper.

Coupling Theorem 1 with a local controllability result yields the following corollary.
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Corollary 1. Let y0 and y1 be two steady-states belonging to a same connected component of S.
There exist a time T > 0 and a control function u ∈ L2(0, T ) such that the solution y(t, x) in YT of
the Cauchy-Dirichlet problem (3) satisfies y(T, ·) = y1(·), yt(T, ·) = 0.

Remark 2. The time T of controllability required in this result may be large. But on the other part,
due to the finite speed of propagation for the wave equation, the time T cannot be arbitrarily small.
The question of a minimal time to reach a given target, using for instance a priori estimates, is open.

Remark 3. Similar results have been obtained in [7] in the context of the heat equation. The idea
is to stabilize a finite dimensional part of the system using pole shifting. The problem investigated
here is however much more challenging, on the one part, because of conservation properties of the
wave equation, and on the other, because of the necessity of using Riesz basis expansions. This latter
point is the key technical development of this paper, and is investigated in Section 2.3. There is a
large body of literature dealing with Riesz basis analysis applied to the boundary controlled wave
equation (see for instance [1, 23] and references therein). However, the analysis of this article requires
a one-parameter Riesz expansion of the solution, so as to obtain a Riesz basis depending smoothly on
the parameter (Lemma 5). This reduction procedure constitutes the main contribution of this work.

Remark 4. As proved in [7], the set of steady-states S is connected if one of the following situations
occur:

• F (y) =
∫ y

0
f(s)ds −→

|y|→+∞
+∞;

• for every α > 0, the indefinite integral
∫

dy√
α− F (y)

(if it makes sense) diverges in −∞ and in +∞;

• the function f is odd, i.e. f(−y) = −f(y), for every y ∈ IR.

Remark 5. The result of Corollary 1 may be achieved directly by using repeatedly a local exact
controllability theorem (see [25, 27], and Section 2.6 of this paper), but contrarily to our strategy, the
control function is not constructed explicitly. Note also that our approach does not necessarily require
controllability of the linearized system around an equilibrium (see [6]).

Remark 6. In the case of the heat equation [7], it was proved that, if the steady-states y0 and y1
belong to distinct connected components of the set S of steady-states, then it is impossible, either to
move from y0 to y1, or the converse. Here, in the case of the wave equation, the question is open.

The idea of the proof of Theorem 1 is as follows. Linearizing the system (3) along a path of steady-
states joining y0 to y1, we obtain a system of the form wtt = wxx + cw, where c ∈ L∞(0, T ), with
boundary conditions w(t, 0) = 0 and wx(t, L) = v(t). At the first glance, if we suppose that c = 0,
then it is possible to choose a control v(·) stabilizing this equation; namely, if we set v(t) = −αwt(t, L),
with α > 0, the energy function

t 7→

∫ L

0

(wt(t, x)
2 + wx(t, x)2)dt

is exponentially decreasing (see for instance [13, 14] for some results in that direction). Moreover,
an obvious spectral computation shows that the eigenvalues of the corresponding operator have their
real part tending to −∞ as α tends to 1. This result only holds asymptotically if c 6= 0. Therefore,
in the general case, if α is close enough to 1, then only a finite number of eigenvalues may be posi-
tive. The system corresponding to these unstable modes can be written (using an expansion of the
solution in a one-parameter dependent Riesz basis of generalized eigenvectors), at the first order, as a
nonautonomous linear control system. It is then possible, by a pole shifting procedure together with
a time reparametrization, to stabilize this subsystem using a control in a feedback form.
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Remark 7. The method consisting in stabilizing a quasi-static deformation has already been used
in [7] in the context of nonlinear heat equations, in [22] for Navier-Stokes equations, in [6] for shallow
water equations, and in [3] for a Schrödinger equation. However, in both latter cases, the deformation
was naturally stable and a feedback procedure was not necessary.

2 Proof of the main results

2.1 Construction of a path of steady-states

The following lemma is obvious.

Lemma 1. Let φ0, φ1 ∈ S. Then φ0 and φ1 belong to the same connected component of S if and only
if, for every real number α between φ′

0(0) and φ′1(0), the maximal solution of

d2y

dx2
+ f(y) = 0, y(0) = 0, y′(0) = α,

denoted by yα(·), is defined on [0, L].

Let now y0 and y1 in the same connected component of S. Let us construct in S a C2 path
(ŷ(τ, ·), û(τ)), 0 ≤ τ ≤ 1, joining y0 to y1. For i = 0, 1, set αi := y′i(0). Then, with our previous
notations, one has yi(·) = yαi(·), i = 0, 1. Now set

ŷ(τ, x) := y(1−τ)α0+τα1(x) and û(τ) := ŷx(τ, L),

where τ ∈ [0, 1] and x ∈ [0, L], so that ŷ(τ, ·) satisfies





∂2ŷ

∂x2
(τ, x) + f(ŷ(τ, x)) = 0, x ∈ (0, L),

ŷ(τ, 0) = 0,
∂ŷ

∂x
(τ, 0) = (1 − τ)α0 + τα1,

for all τ ∈ [0, 1]. By construction we have

ŷ(0, ·) = y0(·) and ŷ(1, ·) = y1(·),

and thus (ŷ(τ, ·), û(τ)) is a C2 path in S connecting y0 to y1.

2.2 Reduction of the problem

Let ε > 0, and let y denote the solution of (3) in Y1/ε, associated to a control u ∈ H2(0, 1/ε). We set,
for all t ∈ [0, 1/ε] and x ∈ [0, L],

z(t, x) := y(t, x) − ŷ(εt, x),

u1(t) := u(t) − û(εt).
(4)

This time reparametrization will happen to be useful in order to perform a pole shifting procedure on
the linear finite dimensional system representing the unstable part of the equation.

From the definition of (ŷ, û) we infer that z satisfies the initial-boundary problem





ztt = zxx + f ′(ŷ)z + z2

∫ 1

0

(1 − s)f ′′(ŷ + sz)ds− ε2ŷττ ,

z(t, 0) = 0, zx(t, L) = u1(t),

z(0, x) = 0, zt(0, x) = −εŷτ (0, x).

(5)
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Notice that, if the nonlinearity f and the residual term r were equal to zero, then, as explained
previously, setting u1(t) = −αzt(t, L), the energy function

t 7→

∫ L

0

(zt(t, x)
2 + zx(t, x)2)dt

would be exponentially decreasing. This suggests to seek the control function u1(t) in the form

u1(t) = −αzt(t, L) + v(t),

where α > 0 will be chosen later. Set

w(t, x) := z(t, x) −
x(x− L)

L
v(t). (6)

This leads to the system





wtt = wxx + f ′(ŷ)w −
x(x− L)

L
v′′ +

(
x(x− L)

L
f ′(ŷ) +

2

L

)
v + r(ε, t, x),

w(t, 0) = 0, wx(t, L) = −αwt(t, L),

w(0, x) = −
x(x− L)

L
v(0), wt(0, x) = −εŷτ (0, x) −

x(x− L)

L
v′(0),

(7)

where

r(ε, t, x) =

(
w +

x(x− L)

L
v

)2 ∫ 1

0

(1 − s)f ′′

(
ŷ + s

(
w +

x(x− L)

L
v

))
ds− ε2ŷττ . (8)

The aim is to prove that, given a neighborhood V of (0, 0, 0, 0) in IR × IR × H1
(0)(0,L) × L2(0,L), for

ε > 0 small enough, there exists a pair (v, w) solution of (7), satisfying v(0) = v′(0) = 0, such that

(v(1/ε), v′(1/ε), w(1/ε, ·), wt(1/ε, ·)) ∈ V.

To achieve this, we shall construct an appropriate control function and a Lyapunov functional which
stabilizes system (7) to 0.

Remark 8. Let us set an upper bound to the residual term r. First, it is not difficult to check that
there exists a constant C1 such that, if |v(t)| + ‖w(t, .)‖L∞(0,L) ≤ 1, then the inequality

‖r(ε, t, ·)‖L∞(0,L) ≤ C1(ε
2 + v(t)2 + ‖w(t, ·)‖2

L∞(0,L))

holds. Moreover, since w(t, 0) = 0, we can assert that there exists a constant C2 such that, if
|v(t)| + ‖w(t, ·)‖L∞(0,L) ≤ 1, then

‖r(ε, t, ·)‖L∞(0,L) ≤ C2(ε
2 + v(t)2 + ‖wx(t, ·)‖2

L2(0,L)). (9)

This a priori estimate shall be used later.

2.3 Asymptotic Riesz spectral analysis of the operator

The proof is based on a spectral analysis of the operator representing the system (7). In what follows,
we set

H :=

{(
w1

w2

)
∈ H1((0, L),C) × L2((0, L),C) | w1(0) = 0

}
. (10)
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Endowed with the scalar product

〈(
w1

w2

)
,

(
z1

z2

)〉

H

:=

∫ L

0

(w1
xz

1
x + w2z2)dx, (11)

where the overbar denotes the complex conjugate, H is a complex Hilbertian space.
It is relevant to write (7) in the form





w1
t = w2,

w2
t = w1

xx + f ′(ŷ)w1 −
x(x− L)

L
v′′ +

(
x(x− L)

L
f ′(ŷ) +

2

L

)
v + r(ε, t, x),

w1(t, 0) = 0, w1
x(t, L) = −αw2(t, L),

w1(0, x) = −
x

L
v(0), w2(0, x) = −εŷτ (0, x) −

x(x− L)

L
v′(0),

(12)

and to introduce the one-parameter family of linear operators

Ã(τ) :=

(
0 1

A(τ) 0

)
, (13)

where A(τ) := 4 + f ′(ŷ(τ, ·))Id, τ ∈ [0, 1], on the domain

D(Ã(τ)) :=

{(
w1

w2

)
∈ H | w1 ∈ H2((0, L),C), w2 ∈ H1((0, L),C),

w2(0) = 0, w1
x(L) = −αw2(L)

}
,

(14)

so that
Wt(t, x) = Ã(εt)W (t, x) + v(t)a(εt, x) + v′′(t)b(x) +R(ε, t, x), (15)

where

a(τ, x) :=

(
0

x(x−L)
L f ′(ŷ(τ, x)) + 2

L

)
=:

(
a1(τ, x)
a2(τ, x)

)
,

b(x) :=

(
0

−x(x−L)
L

)
=:

(
b1(x)
b2(x)

)
,

W (t, x) :=

(
w1(t, x)
w2(t, x)

)
, R(ε, t, x) :=

(
0

r(ε, t, x)

)
.

(16)

Recall that, by definition, the sequence (ψj)j∈Z is a Riesz basis of the Hilbert space H if and only
if there exists an equivalent scalar product on H for which (ψj)j∈Z is orthonormal (see [9]); this is
equivalent to the existence of positive constants A, B such that, for every sequence of complex scalars
(cj)j∈Z, there holds

A
∑

j∈Z

|cj |
2 ≤

∥∥∥
∑

j∈Z

cjψj

∥∥∥
2

H
≤ B

∑

j∈Z

|cj |
2. (17)

An operator A on H is said to have compact resolvent whenever there exists a real α in the
resolvent of A so that (αId −A)−1 is compact in H.

A nontrivial element v ∈ H is called a generalized eigenvector of A (resp., an eigenvector of A),
associated to the eigenvalue λ, if there exists a positive integer n so that (λId − A)nv = 0 (resp., if
(λId − A)v = 0). The algebraic multiplicity (resp., the geometric multiplicity) of λ is defined as the
number of linearly independent generalized eigenvectors (resp., eigenvectors) associated to λ.

Recall that the spectrum of operator A on H having compact resolvent consists of isolated eigen-
values only, and each eigenvalue has finite algebraic multiplicity.
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Lemma 2. For every τ ∈ [0, 1], the operator Ã(τ) in H has compact resolvent, and thus its spectrum
consists of isolated eigenvalues. There exists a Riesz basis (ẽk(τ, ·))k∈Z of H, consisting of generalized

eigenfunctions of Ã(τ), associated to the eigenvalues (λk(τ))k∈Z, such that:

(i) ẽk(τ, ·) ∈ D(Ã(τ)), and ‖ẽk(τ, ·)‖H = 1, for every k ∈ Z and every τ ∈ [0, 1];

(ii) each eigenvalue λk(τ) is geometrically simple;

(iii) there exists an integer n0 ≥ 0 so that, for every integer k satisfying |k| > n0, the eigenvalue
λk(τ) is algebraically simple, and satisfies

λk(τ) =
1

2L
ln
α− 1

α+ 1
+ i

kπ

L
+ O

(
1

|k|

)
, (18)

as |k| → +∞, uniformly for τ ∈ [0, 1];

(iv) if |k| > n0, then the generalized eigenfunction ẽk(τ, ·) is an eigenfunction of Ã(τ), associated to
the (algebraically simple) eigenvalue λk(τ), and the functions

[0, 1] → C

τ 7→ λk(τ),

and
[0, 1] → H

τ 7→ ẽk(τ, ·),

are of class C1.

(v) for every integer k > n0 and every τ ∈ [0, 1],

λk(τ) = λ−k(τ), and ẽk(τ, ·) = ẽ−k(τ, ·). (19)

Moreover, the Riesz basis (ẽk(τ, ·))k∈Z of H is uniform with respect to τ ∈ [0, 1], in the sense that
there exist positive real numbers A and B such that, for every sequence of complex scalars (cj)j∈Z,
there holds

A
∑

j∈Z

|cj |
2 ≤

∥∥∥
∑

j∈Z

cj ẽj(τ, ·)
∥∥∥

2

H
≤ B

∑

j∈Z

|cj |
2. (20)

Remark 9. Uniform Riesz property (20) would be obvious if all eigenfunctions ẽk were continuous
with respect to τ . However, the function τ 7→ ek(τ, ·) may fail to be continuous whenever |k| ≤ n0,
due to the fact that the eigenvalue λk(τ) is not necessarily algebraically simple.

Proof of Lemma 2. The fact that the operator Ã(τ) has compact resolvent on H is obvious. For

τ ∈ [0, 1], let

(
w1

w2

)
be an eigenfunction of Ã(τ) associated to the eigenvalue λ. Then,

w2 = λw1, A(τ)w1 = λw2,

w1(0) = w2(0) = 0, w1
x(L) = −αw2(L).

Therefore, w1 satisfies the boundary value problem
{
w1

xx + f ′(ŷ)w1 = λ2w1,

w1(0) = 0, w1
x(L) = −λαw1(L).

If we assume that |λ| tends to +∞, then it is not difficult to show that, for every x ∈ [0, L],

w1(x) = sinh
√
λ2 + O(1)x, and w1

x(x) =
√
λ2 + O(1) cosh

√
λ2 + O(1)x, (21)
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as |λ| → +∞, uniformly with respect to τ ∈ [0, 1] and x ∈ [0, L]. If we seek λ in the form λ = −θ+ iν,
with ν large enough, then easy computations show that there exists an integer k so that, as |k| → +∞,

ν =
kπ

L
+ O

(
1

|k|

)
, and

α− 1

α+ 1
e2θL = 1,

and thus,

λk(τ) =
1

2L
ln
α− 1

α+ 1
+ i

kπ

L
+ O

(
1

|k|

)
. (22)

Let us prove that each eigenvalue λk(τ) is geometrically simple. If not, let

(
w1

1

w2
1

)
and

(
w1

2

w2
2

)
be

two independent eigenfunctions associated to the eigenvalue λ. Let us first point out that w1
1(L) 6= 0.

Indeed, if w1
1(L) = 0, then w1

1 satisfies

{
w1

1xx + f ′(ŷ)w1
1 = λ2w1

1,

w1
1(L) = w1

1x(L) = 0,

and thus w1
1 ≡ 0. Since w2

1 = λw1
1, one gets (w1

1, w
2
1) ≡ (0, 0), which is a contradiction. If we set

w = w1
2(L)w1

1 − w1
1(L)w1

2, then w satisfies

{
wxx + f ′(ŷ)w = λ2w,

w(L) = wx(L) = 0,

and thus w ≡ 0, whence

(
w1

1

w2
1

)
and

(
w1

2

w2
2

)
are not linearly independent, which is a contradiction.

Hence, the item (ii) of the lemma follows.

Let (ẽk(τ, ·))k∈Z denote a complete set of generalized eigenfunctions of Ã(τ), associated to the eigen-
values (λk(τ))k∈Z, and such that the item (i) of the lemma holds. In order to prove that (ẽk(τ, ·))k∈Z is
a Riesz basis of H, we use Bari’s Theorem (see for instance [9, Theorem 2.3 p. 317], see also [10, Theo-
rem 6.3]). From this result, if we are able to exhibit a Riesz basis (φk)k∈Z of H which is quadratically
close to (ẽk(τ, ·))k∈Z, that is, ∑

k

‖φk(·) − ẽk(τ, ·)‖2
H <∞,

then the sequence (ẽk(τ, ·))k∈Z is a Riesz basis of H.
To this aim, we introduce in H the operator

Ã0 :=

(
0 1
4 0

)

on the same domain (14) than Ã(τ). Intuitively, this operator corresponds to a truncation of Ã(τ),
up to the compact part f ′(ŷ(τ, ·))Id. Bari’s theorem, and simple computations, all of them detailed
in [21, Section 4, p. 667] show that the operator Ã0 admits a Riesz basis of eigenfunctions (φk)k∈Z,
associated to the eigenvalues (µk)k∈Z, so that there holds, for every integer k,

µk =
1

2L
ln
α− 1

α+ 1
+ i

kπ

L
,

and

φk =

(
φ1

k

φ2
k

)
,

where

φ1
k(x) =

1

Ak
sinh µkx, φ

2
k(x) =

µk

Ak
cosh µkx,

8



with

Ak =
1

2L
√

−Re(µk)

√
(e−2Re(µk)L − e2Re(µk)L)(k2π2 + (Re(µk))2L2).

Moreover, the eigenvalues µk are algebraically simple as |k| → +∞. From expansions (18) and (21),
we get easily, in H,

ẽk(τ, ·) = φk(·) + O(1/k),

uniformly for τ ∈ [0, 1]. Hence, the family (φk)k∈Z is quadratically close to (ẽk(τ, ·))k∈Z, uniformly
for τ ∈ [0, 1]. The proof of Bari’s Theorem in [9, Theorem 2.3 p. 317] readily extends to our case, and
and the uniform Riesz property (20) follows. Moreover, the eigenvalues λk(τ) are algebraically simple
as |k| → +∞.

In particular, with the formula (22), the item (iii) follows.
Moreover, it is a standard fact that, if |k| > n0, then the eigenfunction ẽk(τ, ·) and the eigenvalue

λk(τ) are C1 functions of τ (see for instance [11, 20]). The item (iv) is proved.
Finally, note that it is possible to choose the eigenelements so that item (v) holds. Indeed, one

just has to show that the operator Ã(τ) admits (at least) a real eigenvalue. But this follows obviously
from an homotopy argument using the operator Ã0.

Let Ã(τ)∗ denote the adjoint operator of Ã(τ) on H. The following lemma is obvious.

Lemma 3. For every τ ∈ [0, 1], the domain of Ã(τ)∗ is given by

D(Ã(τ)∗) =

{ (
z1

z2

)
∈ H | z1 ∈ H2((0, L),C), z2 ∈ H1((0, L),C),

z2(0) = 0, z1
x(L) = αz2(L)

}
.

(23)

For every

(
z1

z2

)
∈ D(Ã(τ)∗), there holds

Ã(τ)∗
(
z1

z2

)
= −

(
z2 + g
z1
xx

)
, (24)

where the function g ∈ C2([0, L],C) is defined by
{
gxx = f ′(ŷ(τ, ·))z2,

g(0) = gx(L) = 0.

We next introduce the dual Riesz basis (f̃j(τ, ·))j∈Z of (ẽj(τ, ·))j∈Z. Recall that, by definition,
there holds

〈f̃j(τ, ·), ẽk(τ, ·)〉H = δkj =

{
1 if k = j,

0 otherwise,

and moreover (f̃j(τ, ·))j∈Z is a Riesz basis on H of generalized eigenvectors of Ã(τ)∗ with associated

eigenvalues (λj(τ))j∈Z.

Remark 10. Reasoning as in the proof of Lemma 2, we state that (f̃j(τ, ·))j∈Z is a uniform Riesz
basis on H, in the sense that there exist positive real numbers A′ and B′ such that, for every sequence
of complex scalars (cj)j∈Z, there holds

A′
∑

j∈Z

|cj |
2 ≤

∥∥∥
∑

j∈Z

cj f̃j(τ, ·)
∥∥∥

2

H
≤ B′

∑

j∈Z

|cj |
2.

In particular, the sequence of real numbers (‖f̃j(τ, ·)‖H)j∈Z is bounded, uniformly for τ ∈ [0, 1].
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In the sequel, we will need the following technical lemma.

Lemma 4. There exists a constant C > 0 so that

‖ẽkτ (τ, ·)‖H ≤
C

|k|
, and ‖f̃kτ (τ, ·)‖H ≤

C

|k|
, (25)

for every integer k satisfying |k| > n0, and every τ ∈ [0, 1].

Proof. Let k be an integer such that |k| > n0. From Lemma 2, the eigenfunction ẽk(τ, ·) is a C1

function of τ . We consider the expansion of ẽkτ (τ, ·) as series in the Riesz basis (ẽj(τ, ·))j∈Z, convergent
in H,

ẽkτ (τ, ·) =
∑

j∈Z

αk
j (τ)ẽj(τ, ·), (26)

where αk
j (τ) is defined by

αk
j (τ) := 〈f̃j(τ, ·), ẽkτ (τ, ·)〉H ,

for every τ ∈ [0, 1], and all j, k ∈ Z, with |k| > n0.
Let us estimate αk

j (τ), for large values of |j| and |k|. By definition of ẽk(τ, ·), and from Lemma 2,
we have, whenever |k| > n0,

Ã(τ)ẽk(τ, ·) = λk(τ)ẽk(τ, ·).

Since the domain of Ã(τ) does not depend on τ , it is clear that ẽkτ (τ, ·) ∈ D(Ã(τ)). Differentiating
with respect to τ , we get

Ã(τ)ẽkτ (τ, ·) = λ′k(τ)ẽk(τ, ·) + λk(τ)ẽkτ (τ, ·) − Ã′(τ)ẽk(τ, ·),

and thus, taking the scalar product with fj(τ, ·), j ∈ Z, we get

〈Ã(τ)∗f̃j(τ, ·), ẽkτ (τ, ·)〉H = 〈f̃j(τ, ·), Ã(τ)ẽkτ (τ, ·)〉H

= λ′k(τ)δkj + λk(τ)αk
j (τ) − 〈f̃j(τ, ·), Ã

′(τ)ẽk(τ, ·)〉H .
(27)

We distinguish between two cases.

First case. If |j| > n0, then Ã(τ)∗f̃j(τ, ·) = λj(τ)f̃j(τ, ·), and thus (27) yields, for j 6= k,

αk
j (τ)λj(τ) = λk(τ)αk

j (τ) − 〈f̃j(τ, ·), Ã
′(τ)ẽk(τ, ·)〉H ,

and for j = k,
λ′k(τ) = 〈f̃k(τ, ·), Ã′(τ)ẽk(τ, ·)〉H .

Since λj(τ) 6= λk(τ) whenever j 6= k, |j| > n0, |k| > n0, there holds

αk
j (τ) =

1

λk(τ) − λj(τ)
〈f̃j(τ, ·), Ã

′(τ)ẽk(τ, ·)〉H . (28)

Clearly,

Ã′(τ) =

(
0 0

f ′′(ŷ(τ, ·))ŷτ (τ, ·) 0

)
,

and thus, denoting

ẽk(τ, ·) =

(
ẽ1k(τ, ·)
ẽ2k(τ, ·)

)
, and f̃j(τ, ·) =

(
f̃1

j (τ, ·)

f̃2
j (τ, ·))

)
,

we get

〈f̃j(τ, ·), Ã
′(τ)ẽk(τ, ·)〉H =

∫ L

0

f ′′(ŷ(τ, x))ŷτ (τ, x)ẽ1k(τ, x)f̃2
j (τ, x)dx.
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Since ẽk(τ, ·) is an eigenfunction of Ã(τ), associated to the eigenvalue λk(τ), there holds ẽ2k(τ, ·) =
λk(τ)ẽ1k(τ, ·). Moreover, from the estimate (18), λk(τ) ∼ ikπ/L as k tends to +∞, uniformly for
τ ∈ [0, 1]. Hence, there exists a constant C1 so that, if j 6= k, |j| > n0, |k| > n0, then

|αk
j (τ)| ≤

C1

|k(j − k)|
, (29)

for every τ ∈ [0, 1].

Second case. If |j| ≤ n0, then it follows from Lemma 2 that

Ã(τ)∗f̃j(τ, ·) ∈ Span{f̃p(τ, ·) | − n0 ≤ p ≤ n0},

for every τ ∈ [0, 1]. Thus,

Ã(τ)∗f̃j(τ, ·) =

n0∑

p=−n0

βj
p(τ)f̃p(τ, ·),

where
βj

p(τ) = 〈Ã(τ)∗f̃j(τ, ·), ẽp(τ, ·)〉H = 〈f̃j(τ, ·), Ã(τ)ẽp(τ, ·)〉H .

It is not difficult to see that all coefficients βj
p(τ), with p, j ∈ {−n0, . . . , n0}, are bounded, uniformly

for τ ∈ [0, 1].
Then, (27) yields

n0∑

p=−n0

βj
p(τ)α

k
p(τ) = λk(τ)αk

j (τ) − 〈f̃j(τ, ·), Ã
′(τ)ẽk(τ, ·)〉H .

Setting

X(τ) :=



αk
−n0

(τ)
...

αk
n0

(τ)


 , and Y (τ) :=



〈f̃−n0

(τ, ·), Ã′(τ)ẽk(τ, ·)〉H
...

〈f̃n0
(τ, ·), Ã′(τ)ẽk(τ, ·)〉H


 ,

the latter equations can be written as

(λk(τ)I +M(τ))X(τ) = Y (τ),

where the matrix M(τ) is bounded, uniformly for τ ∈ [0, 1]. If |k| is large enough, then |λk(τ)| ∼
|k|π/L, thus the matrix (λk(τ)I +M(τ)) is invertible, and this yields readily the estimate

|αk
j (τ)| ≤

C2

k2
, (30)

for every τ ∈ [0, 1], and for all integers j, k so that |k| > n0 and |j| ≤ n0, where C2 is a constant.

Finally, let us estimate αk
k(τ), for |k| > n0. From Lemma 2, ‖ẽk(τ, ·)‖H = 1, and hence, if |k| > n0,

one gets, by differentiation with respect to τ ,

〈ẽkτ (τ, ·), ẽk(τ, ·)〉H = 0.

From (26), we infer that

αk
k(τ) = −

∑

j∈Z

j 6=k

αk
j (τ)〈ẽk(τ, ·), ẽj(τ, ·)〉H . (31)
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Therefore, there exist constants C3 and C4 such that

|αk
k(τ)| =

∣∣∣〈ẽk(τ, ·),
∑

j∈Z

j 6=k

αk
j (τ)ẽj(τ, ·)〉H

∣∣∣

≤
∥∥∥
∑

j∈Z

j 6=k

αk
j (τ)ẽj(τ, ·)

∥∥∥
H

≤ C3

(∑

j∈Z

j 6=k

|αk
j (τ)|2

)1/2

≤
C4

|k|
,

(32)

for every τ ∈ [0, 1].

It then follows from (26), and from the estimates (29), (30), and (32), that

‖ẽkτ (τ, ·)‖H =
∥∥∥
∑

j∈Z

αk
j (τ)ẽj(τ, ·)

∥∥∥
H

≤ C3

(∑

j∈Z

|αk
j (τ)|2

)1/2

≤
C

|k|
,

where C is a constant.
A similar reasoning is done for ‖f̃kτ (τ, ·)‖H . The lemma is proved.

Lemma 2 states the existence of a Riesz basis of H, consisting of generalized eigenfunctions
(ẽk(τ, ·))k∈Z of Ã(τ), associated to the eigenvalues (λk(τ))k∈Z. Note that, if |k| ≤ n0, then the
function

[0, 1] → H
τ 7→ ẽk(τ, ·)

may fail to be of class C1, since the corresponding eigenvalue λk(τ) is not necessarily algebraically
simple.

However, our proof of Theorem 1 requires the existence of a Riesz basis (ek(τ, ·))k∈Z, satisfying
the conclusions of Lemma 2, and such that, for every integer k, the function τ 7→ ek(τ, ·) is of class
C1.

Hence, we next modify the generalized eigenfunctions ẽk(τ, ·), for |k| ≤ n0, so as to obtain new
vectors ek(τ, ·), |k| ≤ n0, that are C1 functions of τ , but are not necessarily generalized eigenfunctions

of Ã(τ). The same is done for the dual Riesz basis (f̃k(τ, ·))k∈Z. More precisely, we prove the following
lemma.

Lemma 5. There exist a Riesz basis (ek(τ, ·))k∈Z of H, having a dual Riesz basis (fk(τ, ·))k∈Z, such
that:

(i) ek(τ, ·) ∈ D(Ã(τ)), and ‖ek(τ, ·)‖H = 1, for every k ∈ I and every τ ∈ [0, 1];

(ii) for every integer k, the functions τ 7→ ek(τ, ·) and τ 7→ fk(τ, ·) are of class C1 on [0, 1];

(iii) if |k| > n0, then ek(τ, ·) is an eigenfunction of Ã(τ), associated to the (algebraically simple)

eigenvalue λk(τ), and fk(τ, ·) is an eigenfunction of Ã(τ)∗, associated to the (algebraically sim-
ple) eigenvalue λk(τ);

(iv) for every integer k > n0 and every τ ∈ [0, 1], one has ek(τ, ·) = e−k(τ, ·) and fk(τ, ·) = f−k(τ, ·);

(v) for every integer k so that |k| ≤ n0, there holds

Ã(τ)ek(τ, ·) ∈ Span{ep(τ, ·) | |p| ≤ n0},

and
Ã(τ)∗fk(τ, ·) ∈ Span{fp(τ, ·) | |p| ≤ n0}.
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Proof. For every integer k so that |k| > n0, set

ek(τ, ·) := ẽk(τ, ·), and fk(τ, ·) := f̃k(τ, ·).

Then, items (i), (ii) and (iii) hold. Moreover, for |k| > n0, the functions τ 7→ ek(τ, ·) and τ 7→ fk(τ, ·)
are of class C1. We proceed with an induction argument. Assume that, for every τ ∈ [0, 1], the
subspace of H

E(τ) := Span{ek(τ, ·) | |k| > n0}

is of codimension 2n0 + 1. Let us construct en0
∈ C1([0, 1], H).

We first prove that there exists x ∈ C1([0, 1], H) such that x(τ) /∈ E(τ), for every τ ∈ [0, 1]. Since
there does not exist necessarily an element a ∈ H such that a /∈ E(τ) for every τ ∈ [0, 1], we deal
with a subdivision of [0, 1], and construct x using piecewise constant functions. By a compactness
argument, it is clear that there exists an integer m, and elements a1, . . . , am of H, such that ai /∈ E(τ),
for every τ ∈ [ i−1

m , i+1
m ], and every i ∈ {1, . . . ,m− 1}.

Assume that there exists t1 ∈ [0, 1] such that t1a1 + (1 − t1)a2 ∈ E
(

3
2m

)
. Clearly, 0 < t1 < 1.

Then, ta1 − (1− t)a2 /∈ E
(

3
2m

)
, for every t ∈ [0, 1]. Indeed, by contradiction, assume that there exists

t2 ∈ [0, 1] such that t2a1 − (1− t2)a2 ∈ E
(

3
2m

)
. Necessarily, 0 < t2 < 1. Then, the linear combination

1 − t2
1 − t1

(t1a1 + (1 − t1)a2) + t2a1 − (1 − t2)a2 =

(
t1

1 − t2
1 − t1

+ t2

)
a1

is an element of E
(

3
2m

)
. This yields a contradiction, since a1 /∈ E

(
3

2m

)
.

Finally, replacing if necessary a2 by −a2, we proved that

ta1 + (1 − t)a2 /∈ E

(
3

2m

)
,

for every t ∈ [0, 1].
Then, using an easy induction argument, we may assume that

tai + (1 − t)ai+1 /∈ E

(
2i+ 1

2m

)
, i = 1, . . . ,m− 2,

for every t ∈ [0, 1] (see Figure 1).

1
m

3
m

m−1
m

3
2m

5
2m

7
2m

a1 a3

a2

am−1

4
m

2
m

a4

2m−5
2m

2m−3
2m

m−3
m

am−2

0 1
m−2

m

Figure 1: Construction

Therefore, by continuity, there exists ε > 0 such that

tai + (1 − t)ai+1 /∈ E(τ),
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for every τ ∈
[
2i+1
2m − ε, 2i+1

2m + ε
]
, and every i ∈ {1, . . . ,m − 2}. As a consequence, the function y,

defined as a piecewise linear continuous function, by

y(τ) :=





a1 if 0 ≤ τ ≤
3

2m
− ε,

ai if
i− 1

m
+ ε ≤ τ ≤

i+ 1

m
− ε,

am−1 if
2m− 3

2m
+ ε ≤ τ ≤ 1,

ai+1 − ai

2ε
τ + ai −

ai+1 − ai

2ε

(
2i+ 1

2m
− ε

)
if

2i+ 1

2m
− ε ≤ τ ≤

2i+ 1

2m
+ ε,

satisfies y(τ) /∈ E(τ), for every τ ∈ [0, 1].
Using a convolution argument, we easily deduce the existence of x ∈ C1([0, 1], H) such that

x(τ) /∈ E(τ), for every τ ∈ [0, 1].
Define en0

: [0, 1] × [0, L] → H by

en0
(τ, ·) :=

x(τ) −
∑

|k|>n0

〈
fk(τ, ·), x(τ)

〉
H
ek(τ, ·)

∥∥x(τ) −
∑

|k|>n0

〈
fk(τ, ·), x(τ)

〉
H
ek(τ, ·)

∥∥
H

.

Using the estimate (25) of Lemma 4, the function τ 7→ en0
(τ, ·) is well defined, is of class C1, and, by

construction,
‖en0

(τ, ·)‖H = 1,

and
〈fk(τ, ·), en0

(τ, ·)〉H = 0,

for |k| > n0, and for every τ ∈ [0, 1].
Define fn0

: [0, 1] × [0, L] → H by

fn0
(τ, ·) := en0

(τ, ·) −
∑

|k|>n0

〈
en0

(τ, ·), ek(τ, ·)
〉

H
fk(τ, ·).

Using the estimate (25) of Lemma 4, the function τ 7→ fn0
(τ, ·) is well defined, is of class C1, and one

has
〈fn0

(τ, ·), en0
(τ, ·)〉H = 1,

and
〈fn0

(τ, ·), ek(τ, ·)〉H = 0,

for |k| > n0, and for every τ ∈ [0, 1].
For all integers k, l so that |k| ≤ n0 and |l| > n0, there holds, by construction,

〈fl(τ, ·), Ã(τ)ek(τ, ·)〉H = 〈Ã(τ)∗fl(τ, ·), ek(τ, ·)〉H = λl(τ)〈fl(τ, ·), ek(τ, ·)〉H = 0,

and the item (v) follows easily.

Remark 11. Denote ek(τ, ·) =

(
e1k(τ, ·)
e2k(τ, ·)

)
, for every integer k. If |k| > n0, then, from (iii) in Lemma

5, there holds
e2k(τ, ·) = λk(τ)e1k(τ, ·),
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and

e1kxx(τ, ·) + f ′(ŷ(τ, ·))e1k(τ, ·) = λk(τ)2e1k(τ, ·),

e1k(τ, 0) = 0, e1kx(τ, L) = −αλk(τ)e1k(τ, L).

Similarly, denote fj(τ, ·) =

(
f1

j (τ, ·)
f2

j (τ, ·))

)
, for every integer j. If |j| > n0, then




f2

j xx
(τ, ·) + f ′(ŷ(τ, ·))f2

j (τ, ·) = λj(τ)
2
f2

j (τ, ·),

f2
j (τ, 0) = 0, f2

j x
(τ, L) = −αλj(τ)f

2
j (τ, L),

(33)

and {
f1

j xx
(τ, ·) = −λj(τ)f

2
j (τ, ·),

f1
j (τ, 0) = 0, f1

j x
(τ, L) = αf2

j (τ, L),
(34)

for every τ ∈ [0, 1].

2.4 The finite dimensional unstable part of the system

Let α > 1 so that
1

2L
ln
α− 1

α+ 1
< −1.

Using (18), only a finite number of eigenvalues may have a nonnegative real part as τ ∈ [0, 1]. More
precisely, there exists an integer n so that

∀τ ∈ [0, 1], ∀k ∈ Z, (|k| > n) ⇒ (Re(λk(τ)) < −1). (35)

Without loss of generality, we suppose that n ≥ n0. Therefore, from Lemma 5, each eigenvalue λk(τ),
with |k| > n, is algebraically simple, and satisfies Re(λk(τ)) < −1.

Remark 12. Note that the integer n can be arbitrarily large. For example if f(y) = y3 and if
y′1(0) → +∞ then n→ +∞.

Every solution W (t, ·) ∈ D(Ã(τ)) of (15) can be expanded as series in the Riesz basis (ej(εt, ·))j∈Z

of H, convergent in H,

W (t, ·) =

(
w1(t, ·)
w2(t, ·)

)
=

∞∑

j=−∞

wj(t)ej(εt, ·). (36)

Note that, for integers k satisfying |k| ≤ n, the eigenvalue λk(τ) may be real, and/or non algebraically
simple. Since W (t, x) ∈ IR2, one has wj(t) = w−j(t), for every j > n, and hence

W (t, ·) = π1(εt)W (t, ·) + 2Re




+∞∑

j=n+1

wj(t)ej(εt, ·)


 ,

where π1(τ) denotes the projection from H onto Span{ep(τ, ·) | |p| ≤ n}, defined by

π1(τ)h =

n∑

j=−n

〈fj(τ, ·), h〉ej(τ, ·),

for every h ∈ H. By construction, it is quite clear that Ã(τ) and π1(τ) commute. In what follows,

Im π1(τ) is identified to IR2n+1, and we denote by Ã1(τ) the (2n + 1) × (2n + 1) matrix (with real

coefficients) representing the restriction of Ã(τ) on Im π1(τ).
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Lemma 6. The mapping
[0, 1] → L(H,H)

τ 7→ π1(τ)

is of class C1, and one has

π′
1(τ)h = −

∑

|j|>n

〈fjτ (τ, ·), h〉Hej(τ, ·) −
∑

|j|>n

〈fj(τ, ·), h〉Hejτ (τ, ·), (37)

for every h ∈ H.

Proof. For every h ∈ H, and every τ ∈ [0, 1], one has, using Lemma 5,

π1(τ)h = h−
∑

|j|>n

〈fj(τ, ·), h〉Hej(τ, ·).

For |j| > n ≥ n0, the eigenfunctions ej(τ, ·) and fj(τ, ·) are C1 functions of τ . Using the estimates 25
of Lemma 4, the sum

−
∑

|j|>n

〈fjτ (τ, ·), h〉Hej(τ, ·) −
∑

|j|>n

〈fj(τ, ·), h〉Hejτ (τ, ·)

converges normally, and the conclusion follows.

In the sequel, we are going to move, by means of an appropriate feedback control, the 2n + 1
eigenvalues λ0(τ), . . . , λn(τ), whose real part may be nonnegative, without moving the others, so
that all eigenvalues then have a negative real part. This pole-shifting process is the first part of the
stabilization procedure (see for instance [12, 15] for details on this standard theory).

Set W1(t) = π1(εt)W (t, ·). Then, from (15),

W ′
1(t) = Ã1(εt)W1(t) + v(t)a1(εt) + v′′(t)b1(εt) + r1(ε, t), (38)

where

a1(εt) = π1(τ)a(εt, ·), b1(εt) = π1(εt)b(·), r1(ε, t) = π1(εt)R(ε, t, ·) + επ′(εt)W (t, ·). (39)

Lemma 7. There exists a constant C3 such that, if |v(t)| + ‖w(t, ·)‖L∞(0,L) ≤ 1, then

‖r1(ε, t)‖H ≤ C3(ε
2 + v(t)2 + ‖W (t, ·)‖2

H), (40)

for every t ∈ [0, 1/ε].

Proof. The estimate follows from Lemma 6, from the definition (16) of R(ε, t, ·), and from the estimate
(9).

The system (38) is a differential system in IR2n+1 controlled by v, v′, v′′. Set

β(t) := v′(t), γ(t) := v′′(t), (41)

and consider now v(t) and β(t) as state coordinates, and γ(t) as a control. Notice that v(t), β(t) and
γ(t) are real numbers. Then, the former finite dimensional system may be rewritten as





v′(t) = β(t),

β′(t) = γ(t),

W ′
1(t) = Ã1(εt)W1(t) + a1(εt)v(t) + b1(εt)γ(t) + r1(ε, t).

(42)
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Introducing the matrix notations

X1(t) =




v(t)
β(t)
W1(t)


 , A1(τ) =




0 1 0
0 0 0

a1(τ) 0 Ã1(τ)


 , B1(τ) =




0
1

b1(τ)


 , R1(ε, t) =




0
0

r1(ε, t)


 ,

we obtain
X ′

1(t) = A1(εt)X1(t) +B1(εt)γ(t) +R1(ε, t). (43)

Lemma 8. For each τ ∈ [0, 1], the pair (A1(τ), B1(τ)) satisfies the Kalman condition, i.e.

det
(
B1(τ), A1(τ)B1(τ), . . . , A1(τ)

2n+2B1(τ)
)
6= 0. (44)

Proof of Lemma 8. Let τ ∈ [0, 1] be fixed. Consider the infinite dimensional linear control system




v′(t) = β(t),

β′(t) = γ(t),

wt(t, x) = Ã(τ)w(t, x) + v(t)a(τ, x) + γ(t)b(x),

(45)

where the state is (v(t), β(t), w(t, ·)) ∈ IR× IR×H, and the control is γ(t) ∈ IR. It is clear from Section
2.2 that this control system is equivalent to the boundary control system





ztt(t, x) = zxx(t, x) + f ′(ȳ(τ, x))z(t, x),

z(t, 0) = 0, zx(t, L) = −αzt(t, L) + v(t),

v′(t) = β(t), β′(t) = γ(t),

(46)

which is a classical linear wave equation. Let T > 2L. It is well known that the linear control system
(46), and hence the linear control system (45), is exactly controllable in time T (see [2]), namely, for
all (v0, β0, w0) and (v1, β1, w1) in IR× IR×H, there exists a control γ ∈ L2(0, T ) such that the solution
(v, β, w) of (45) associated to this control, starting from (v(0), β(0), w(0, ·)) = (v0, β0, w0), satisfies
(v(T ), β(T ), w(T, ·)) = (v1, β1, w1). This implies in particular that the finite dimension linear control
system

Ẋ1(t) = A1(τ)X1(t) +B1(τ)γ(t)

is controllable in time T . Hence, the Kalman condition (44) holds.

It is well known that, for an autonomous finite dimensional linear control system, the Kalman
condition, equivalent to the controllability of the system, implies the stabilizability of the system.
This is not longer true for nonautonomous linear systems; however, this holds provided that the
system is slowly time varying, whence the importance of the parameter ε. In these conditions, Lemma
8 implies the following result (see [12, Chap. 9.6]).

Corollary 2. There exists a C1 mapping τ 7→ K1(τ) on [0, 1], where K1(τ) is a 1 × (2n+ 1) matrix
with real coefficients, such that the matrix A1(τ) + B1(τ)K1(τ) admits −1 as an eigenvalue of order
2n+ 3, for every τ ∈ [0, 1].

Moreover, there exists a C1 mapping τ 7→ P (τ) on [0, 1], where P (τ) is a (2n + 3) × (2n + 3)
symmetric positive definite real matrix, such that the identity

P (τ) (A1(τ) +B1(τ)K1(τ)) + t(A1(τ) +B1(τ)K1(τ))P (τ) = −I (47)

holds, for every τ ∈ [0, 1].

The gain matrix K1(τ) permits to construct on [0, 1/ε] the feedback control function

γ(t) = K1(εt)X1(t), (48)

that stabilizes the finite dimensional control system (43). We next prove that this feedback actually
stabilizes the whole infinite dimensional system (15), provided ε > 0 is small enough.
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2.5 Construction of a Lyapunov functional

Let us first write the differential equation satisfied by each (complex) coordinate wj(t) = 〈fj(εt, ·),W (t, ·)〉H ,
with j > n. There holds

w′
j(t) = 〈fj(εt, ·),Wt(t, ·)〉H + ε〈fjτ (εt, ·),W (t, ·)〉H . (49)

Since
Ã(εt)W (t, ·) = π1(εt)W (t, ·) +

∑

|j|>n

λj(εt)wj(t)ej(εt, ·),

we get, using (15) and (16),

〈fj(εt, ·),Wt(t, ·)〉H = λj(εt)wj(t) + aj(εt)v(t) + bj(εt)v
′′(t) + 〈fj(εt, ·), R(ε, t, ·)〉H ,

where

aj(εt) := 〈fj(εt, ·), a(εt, ·)〉H =

∫ L

0

f2
j (εt, x)

(
x(x− L)

L
f ′(ŷ(εt, x)) +

2

L

)
dx,

bj(εt) := 〈fj(εt, ·), b(·)〉H = −

∫ L

0

f2
j (εt, x)

x(x− L)

L
dx.

(50)

Equation (49) thus yields, for every j > n,

w′
j(t) = λj(εt)wj(t) + aj(εt)v(t) + bj(εt)v

′′(t) + rj(ε, t), (51)

where
rj(ε, t) := 〈fj(εt, ·), R(ε, t, ·)〉H + ε〈fjτ (εt, ·),W (t, ·)〉H . (52)

The aim is now to construct a control Lyapunov functional in order to stabilize system (15), using

the feedback control (48). For every t ∈ [0, 1/ε], all v, β ∈ IR, and every W (·) =

(
w1(·)
w2(·)

)
∈ H, we set

E(t, v, β,W (·)) := tX1(t)P (εt)X1(t), (53)

where X1(t) denotes the matrix vector in C
2n+3

X1(t) :=




v
β

π1(εt)W (·)


 .

For every j ∈ Z, set
wj(t) := 〈fj(εt, ·),W (·)〉H ,

and define

N(t,W (·)) :=
1

2

∑

|j|>n

|wj(t)|
2, (54)

where | · | denotes the complex modulus. Finally, introduce

V (t, v, β,W (·)) := cE(t, v, β,W (·)) +N(t,W (·)), (55)

where c is a positive real number to be fixed later.
The rest of the section is devoted to prove that V is a Lyapunov functional for the system (15),

with the feedback control (48).
In what follows we will repeatedly use the equivalence of norms in finite dimension. The following

notation will thus happen to be useful.
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Notation. Let Λ be a set and ∆ = {(ε, t) | 0 < ε ≤ 1, 0 ≤ t ≤ 1/ε}. Let F1, F2 and F3 be real
functions defined on ∆×Λ, and let θ ∈ [0,+∞]. The notation F1 . F2 on F3 ≤ θ means that F2 ≥ 0
and that there exists a positive constant C such that

∀(ε, t) ∈ ∆ ∀λ ∈ Λ (F3(ε, t, λ) ≤ θ) ⇒ (|F1(ε, t, λ)| ≤ CF2(ε, t, λ)) .

We say that F1 ∼ F2 if both F1 . F2 and F2 . F1 hold on F3 ≤ θ.
For the sake of simplicity, when the set Λ is clear from the context it will not be given explicitly.

Let ‖ · ‖2 denote the Hermitian norm in C
2n+3. Since P (τ) is real symmetric positive definite, we

can write (with Λ = C
2n+3)

E(t, v, β,W (·)) = tX1(t)P (εt)X1(t) ∼ ‖X1(t)‖
2
2.

Since W (·) =
∑

j∈Z
wj(t)ej(εt, ·), by definition of a Riesz basis (see (17)), and using the uniform

property (20), we have

V (t, v, β,W (·)) ∼ v2 + β2 +
∑

j∈Z

|wj(t)|
2

∼ v2 + β2 + ‖W (t, ·)‖2
H

∼ v2 + β2 + ‖w1
x(·)‖2

L2(0,L) + ‖w2(·)‖2
L2(0,L).

(56)

Remark 13. The meaning of V is the following. Except the first eigenmodes, the term N is equivalent
to the classical energy of the wave equation, as explained in the introduction. As was shown previously,
there exists a finite number of unstable modes. The term E is used to stabilize this unstable finite
dimensional part of the system, and appears as a term of correction.

Let now (v(t), β(t),W (t, ·)) denote a solution of (15), in which we choose the control γ(t) in the
feedback form (48). Then,

Wt(t, ·) = Ã(εt)W (t, ·) + a(εt, ·)v(t) + b(·)K1(εt)X1(t) +R(ε, t, ·). (57)

Set

E1(t) := E(t, v(t), β(t),W (t, ·)),

N1(t) := N(t, w(t, ·)),

V1(t) := V (t,W (t, ·)) = cE1(t) +N1(t).

Let us compute V ′
1(t) and state a differential inequality satisfied by V1. First of all, from (43) and

(47), we get

E′
1(t) = tX ′

1(t)P (εt)X1(t) + tX1(t)P (εt)X ′
1(t) + εtX1(t)P

′(εt)X1(t)

= −‖X1(t)‖
2
2 + tR1(ε, t)P (εt)X1(t) + tX1(t)P (εt)R1(ε, t) + εtX1(t)P

′(εt)X1(t)
(58)

Using the a priori estimate (40), we infer that, if

|v(t)| + ‖w1(t, ·)‖L∞(0,L) ≤ 1, (59)

then
‖R1(ε, t)‖2 . ε2 + v(t)2 +N1(t).

Hence, if (59) holds, then
∣∣∣tR1(ε, t)P (εt)X1(t) + tX1(t)P (εt)R1(ε, t)

∣∣∣ . ‖X1(t)‖2

(
ε2 + v(t)2 +N1(t)

)

.
√
E1(t)

(
ε2 + E1(t) +N1(t)

)
.
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On the other part, from Corollary 2, the mapping τ 7→ P ′(τ) is bounded on [0, 1], hence
∣∣∣εtX1(t)P

′(εt)X1(t)
∣∣∣ . ε‖X1(t)‖

2
2 . εE1(t) . ε2 + E1(t)

2.

Therefore, using (58), there exists δ1 > 0 such that, if (59) holds, then

E′
1(t) + δ1E1(t) . ε2 + E1(t)

2 +
√
E1(t)

(
ε2 + E1(t) +N1(t)

)
. (60)

Hence, there exists ρ1 > 0 such that, for every ε ∈ (0, 1], and for every t ∈ [0, 1/ε] so that E1(t) +
N1(t) ≤ ρ1,

E′
1(t) +

δ1
2
E1(t) . ε2 +N1(t)

2. (61)

Let us now handle N1(t). From (51), we have

N ′
1(t) = Re

∑

|j|>n

wj(t)w
′
j(t)

=
∑

|j|>n

Re(λj(εt))|wj(t)|
2 + Re

∑

|j|>n

wj(t)(aj(εt)v(t) + bj(εt)K1(εt)X1(εt) + rj(ε, t)).
(62)

Clearly,
∣∣∣
∑

|j|>n

wj(t)(aj(εt)v(t) + bj(εt)K1(εt)X1(εt))
∣∣∣ .

√
N1(t) (|v(t)|‖a(εt, ·)‖H + ‖X1(t)‖2‖b(·)‖H)

.
√
N1(t)

√
E1(t).

(63)

The term
∑
wjrj is more difficult to handle. First, from (52), we have

∑

|j|>n

wj(t)rj(ε, t) =
∑

|j|>n

wj(t)〈fj(εt, ·), R(ε, t, ·)〉H + ε
∑

|j|>n

wj(t)〈fjτ (εt, ·),W (t, ·)〉H . (64)

Since (fj(εt, ·))j∈Z is a Riesz basis of H, the first term is easily estimated by
∣∣∣
∑

|j|>n

wj(t)〈fj(εt, ·), R(ε, t, ·)〉H

∣∣∣ .
√
N1(t)‖R(ε, t, ·)‖H ,

and using the a priori estimate (9), and (16), we infer that
∣∣∣
∑

|j|>n

wj(t)〈fj(εt, ·), R(ε, t, ·)〉H

∣∣∣ .
√
N1(t)(ε

2 + v(t)2 + ‖W (t, ·)‖2
H), (65)

provided |v(t)|+‖w1(t, ·)‖L∞(0,L) ≤ 1. Concerning the second term, we get from Lemma 4 the estimate

∣∣∣
∑

|j|>n

wj(t)〈fjτ (εt, ·),W (t, ·)〉H

∣∣∣ .
√
N1(t) ‖W (t, ·)‖H . (66)

It follows from (64), (65), and (66), that
∣∣∣
∑

|j|>n

wj(t)rj(ε, t)
∣∣∣ .

√
N1(t)

(
ε2 + v(t)2 + ‖W (t, ·)‖2

H

)
+ ε
√
N1(t) ‖W (t, ·)‖H . (67)

From (62), (63) and (67), we get, if (59) holds,

N ′
1(t) −

∑

|j|>n

Re(λj(εt))|wj(t)|
2 .

√
N1(t)

√
E1(t) + ε

√
N1(t) ‖W (t, ·)‖H

+
√
N1(t)

(
ε2 + v(t)2 + ‖W (t, ·)‖2

H

)
.

(68)
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Using the estimates

v(t)2 + ‖W (t, ·)‖2
H . E1(t) +N1(t),

W (t, ·)‖H .
√
E1(t) +

√
N1(t),

and the estimate (35) on the eigenvalues, namely, Re(λj(εt)) ≤ −1 for |j| > n, we get from (68),

N ′
1(t) +N1(t) .

√
E1(t)

√
N1(t) +

√
N1(t)

(
ε2 + E1(t) +N1(t)

)

+ ε
√
N1(t)

(√
E1(t) +

√
N1(t)

)
.

(69)

Note that, for every θ ∈ (0,+∞),

√
E1(t)

√
N1(t) ≤

θ

2
N1(t) +

1

2θ
E1(t),

ε2
√
N1(t) ≤

θ

2
N1(t) +

1

2θ
ε4,

√
N1(t)E1(t) ≤

θ

2
N1(t) +

1

2θ
E1(t)

2.

Hence, taking θ > 0 small enough, using (69), we can assert the existence of positive real numbers
ε0 > 0 and ρ2 > 0 such that, for every ε ∈ (0, ε0) and for every t ∈ [0, 1/ε] so that E1(t)+N1(t) ≤ ρ2,

N ′
1(t) +

1

2
N1(t) . E1(t) + ε2. (70)

Using (61), and setting ρ = min(ρ1, ρ2), there exists σ1 > 0 such that, for every ε ∈ (0, ε0) and for
every t ∈ [0, 1/ε] so that E1(t) +N1(t) ≤ ρ, there holds, for every c > 0,

cE′
1(t) +N ′

1(t) +
δ1c

2
E1(t) +

1

2
N1(t) ≤ σ1((1 + c)ε2 + E1(t) + cN1(t)

2),

Define the constant c by

c :=
2σ1

δ1
.

Then, the function V1(t) = cE1(t) + N1(t) satisfies the following estimate: there exists ρ′ > 0 such
that, for every ε ∈ (0, ε0), and for every t ∈ [0, 1/ε] so that V1(t) ≤ ρ′, there holds

V ′
1(t) ≤ σ1(1 + c)ε2.

Since v(0) = 0 and β(0) = 0, one has V1(0) . ε2 (see (12)), and thus there exist ε1 > 0 and σ2 > 0
such that, for every ε ∈ (0, ε1], and for every t ∈ [0, 1/ε],

V1(t) ≤ σ2ε.

In particular (see (4) and (6)),

‖y(1/ε, ·) − y1(·)‖H1(0,L) + ‖yt(1/ε, ·)‖L2(0,L) ≤ γε,

where γ > 0 is a real number not depending on ε ∈ (0, ε1]. This ends the proof of Theorem 1.

2.6 Proof of Corollary 1

The proof consists in solving a local exact controllability result. From the previous section, y(1/ε, ·)
belongs to an arbitrarily small neighborhood of y1(·) in H1-topology if ε is small enough, and our
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aim is now to construct a trajectory q(t, x) solution of the control system steering y(1/ε, ·) to y1(·) in
some time T > 0 (for instance T = 1), i.e.





qtt = qxx + f(q),

q(t, 0) = 0, qx(t, L) = u(t),

q(0, x) = y(1/ε, x), q(T, x) = y1(x).

Existence of such a solution q is given by [27]. Actually in [27] the function f is assumed to be globally
Lipschitzian, but the local result we need here readily follows from the proofs and the estimates
contained in this paper.

Indeed, let T > 0 and let f̃ be a globally Lipschitzian mapping such that

f̃(s) = f(s), ∀s ∈ [−‖y1‖L∞ − 1, ‖y1‖L∞ + 1]. (71)

From the proof of [27], we get the existence of µ > 0 such that there exists z ∈ YT satisfying





zt = zxx + f̃(z + y1) − f̃(y1),

z(t, 0) = 0,

z(0, x) = y(1/ε, x) − y1(x), z(T, x) = 0,

and the estimate
‖z‖YT

≤ µ ‖y(1/ε, ·) − y1(·)‖H1(0,L) , (72)

which leads, with q = z + ỹ1, to





qt = qxx + f̃(q),

q(t, 0) = 0,

q(0, x) = y(1/ε, x), q(T, x) = y1(x),

and
‖q − ỹ1‖YT

≤ µ ‖y(1/ε, ·) − y1(·)‖H1(0,L) , (73)

where ỹ1(t, x) := y1(x). From (72) and (73), we get

‖q − ỹ1‖L∞((0,T )×(0,L)) ≤ 1 (74)

for ‖y (1/ε, ·)− y1(·)‖H1(0,L) small enough. From (71) and (74), we infer that f̃(q) = f(q), which ends
the proof.

3 Numerical simulations

Numerical simulations are lead, using Matlab, with the function f(y) = y3, that is, we deal with the
boundary control system 




∂2y

∂t2
=
∂2y

∂x2
+ y3,

y(t, 0) = 0, yx(t, L) = u(t),

y(0, ·) = y0(·), yt(0, ·) = y1(·),

(75)

Fix L = 1. The set S of steady-states consists of all solutions y(·) of class C2 on [0, 1] such that

y′′(x) + y(x)3 = 0, y(0) = 0. (76)

Since f is odd, this set is connected (see Remark 4). For the numerical simulations, we choose two
steady-states y0 and y1, namely, y0 = 0, and y1 denotes the solution of (76) vanishing at 0, 1/2 and
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Figure 2: Definition of the steady-states y0 and y1.

1, and having no other zero on [0, 1] (see Fig. 2). Notice that all solutions of (76) can be explicitly
computed using elliptic functions.

For every τ ∈ [0, 1], define the function ȳ(τ, .) on [0, 1] as the solution of (76) such that

∂ȳ

∂x
(τ, 0) = τy′1(0),

and set ū(τ) = ȳ(τ, 1). The one-parameter family of linear operators (13) we have to deal with writes

Ã(τ) =

(
0 1

4 + 3ȳ(τ, .)2Id 0

)
,

on the domain D(Ã(τ)) given by (14). For τ = 0, there holds

Ã(0) =

(
0 1
4 0

)
,

and the eigenvalues and eigenvectors of Ã(0) are

λk(0) =
1

2L
ln
α− 1

α+ 1
+ i

kπ

L
,

ek(0, x) =
1

Ak
(sh λk(0)x, λk(0)sh λk(0)x),

where

Ak =
1

2L
√

−Re(λk(0))

√
(e−2Re(λk(0))L − e2Re(λk(0))L)(k2π2 + (Re(λk(0)))2L2).

The dual Riesz basis (fk(0, ·))k∈Z is given by

fk(0, x) =
Ak

Bk
(e1k(0, x),−e2k(0, x)),

where

Bk = 2
√

−Re(λk(0))
(Re(λk(0))L− ikπ)2√

(k2π2 + (Re(λk(0)))2L2)(e−2Re(λk(0))L − e2Re(λk(0))L)
.

Then, solving by continuation as τ ∈ [0, 1] boundary value problems, we compute numerically,
using a standard finite difference code implemented in Matlab, or a simple shooting method, the first
eigenvalues λk(τ).

On Fig. 3 are represented the eigenvalues λ−2(τ), λ−1(τ), λ0(τ), λ1(τ), λ2(τ), for τ ∈ [0, 1].
Numerically, we choose L = 1 and α = 1.1. Then, the eigenvalue λ0(τ) is real, passing from about
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−1.52 when τ = 0, to about 9.66 when τ = 1. The eigenvalues λ1(τ) and λ−1(τ) are complex and
conjugate, up to about τ0 = 0.31. For τ = τ0, the eigenvalue λ1(τ0) is double, and the corresponding
eigenspace is of dimension one. For τ > τ0 both eigenvalues are real, λ−1(τ) is negative, whereas
λ1(τ) becomes positive. Finally, if |k| ≥ 2, the eigenvalue λk(τ) is algebraically simple, complex, and
of negative real part.
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−4

−2

0
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4

6

8

λ2(τ) 

λ−2(τ)

λ1(τ) 

λ−1(τ) λ0(τ) 

Figure 3: First eigenvalues.

Hence, in this particular case, only the modes corresponding to λ0(τ) and λ1(τ) may become
unstable.

From the algorithmic point of view, in order to avoid technical difficulties related to the computa-
tion of a Jordan normal form for the matrix A1(τ) of the finite dimensional system (43), we compute
numerically, by continuation, and using a simple shooting method, a basis of the three dimensional
real vector space

ker(A1(τ) − λ1(τ)I)(A1(τ) − λ0(τ)I)(A1(τ) − λ−1(τ)I),

and a dual Riesz basis. Then, we implement a standard pole shifting procedure on this finite dimen-
sional system (see for instance [12]).

Results are drawn on Fig. 4, for ε = 0.0001. On the left figure is drawn y(t, ·), for t ∈ [0, 1/ε];
on the right figure is represented y(1/ε, ·) − ŷ(1/ε, ·). Notice that, if ε is not small enough, then the
solution blows up, as expected (for example, ε = 0.001).
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Figure 4: Numerical simulations for y(t, .), where t ∈ [0, 1/ε].
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