Global subanalytic solutions of Hamilton-Jacobi type equations - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2006

Global subanalytic solutions of Hamilton-Jacobi type equations

Résumé

In the 80's, Crandall and Lions introduced the concept of viscosity solution, in order to get existence and/or uniqueness results for Hamilton-Jacobi equations. In this work, we first investigate the Dirichlet and Cauchy-Dirichlet problems for such equations, where the Hamiltonian is associated to a problem of calculus of variations, and prove that, if the data are analytic, then the viscosity solution is moreover subanalytic. We then extend this result to Hamilton-Jacobi equations stemming from optimal control problems, in particular from sub-Riemannian geometry, which are generalized eikonal equations. As a consequence, the set of singularities of the viscosity solutions of such Hamilton-Jacobi equations is a subanalytic stratified manifold of codimension greater than or equal to one.
Fichier principal
Vignette du fichier
HJB.pdf (246.17 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00086360 , version 1 (18-07-2006)

Identifiants

  • HAL Id : hal-00086360 , version 1

Citer

Emmanuel Trélat. Global subanalytic solutions of Hamilton-Jacobi type equations. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2006, 23 (3), pp.363--387. ⟨hal-00086360⟩
95 Consultations
150 Téléchargements

Partager

More