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E. Trélat*

SINGULAR TRAJECTORIES AND
SUBANALYTICITY IN OPTIMAL CONTROL AND
HAMILTON-JACOBI THEORY

Abstract. This survey paper presents several works of the author
in optimal control theory, mainly [20, 8, 22]. Under some general
assumptions on an analytic optimal control problem, and assuming
the absence of singular minimizing trajectories, the value function
associated to this problem happens to be subanalytic. In the case
of multi-inputs control-affine systems, generically there does not ex-
ist any singular minimizer. An application to the Hamilton-Jacobi
theory is then presented, where the Hamiltonian is associated to an
optimal control problem; namely, if the data are analytic then the
unique viscosity solution is subanalytic.

1. Introduction

Consider a control-affine system in R”

(1) -Z'u( ) fO xu +Zuz fz -'L'u
where fo, ..., fm are smooth vector fields in R?, together with a cost of the form
(2) C(T,u) = / Zu, V2dt + g(zu(T)),

0

where 7" > 0, and g : R® — R is smooth. Denote by Ur the set of admissible
controls on [0,T7], i.e. the set of controls such that the associated trajectory
7,(.) is well-defined on [0, T]. It is an open subset of L?([0,T], R™).

All definitions given next hold for general optimal control problems. How-
ever in this paper we restrict to control-affine systems (1) with a cost of the form

(2).
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2 E. Trélat

DEFINITION 1. For all zg € R", the mapping Eyo 1 : u — z,(T) defined
on Uy, where x,(.) denotes the solution of (1) associated to the control u € Ur
and starting from xo at time t = 0, is called the end-point mapping.

The end-point mapping is clearly smooth on Uz .

DEFINITION 2. A trajectory ,(.) is said to be singular on [0,T] if u is a
singular point of the end-point mapping E,, T, where xo = ,(0). It is said of
corank one if the codimension of the range of dEg, r(u) is equal to one.

Let now M; be a submanifold of R™, and consider the optimal control
problem of determining, among all trajectories solutions of system (1) joining
Zo to My, a trajectory minimizing the cost function C'(¢,u). If a control u,
associated to a trajectory z,(.), is optimal on [0, T'], then there exists a nontrivial
Lagrange multiplier (,1°) € R® x R such that

Y.dE, 1(u) = —2¢%,

where zg = #,(0). Moreover ¢ — ¢¥°Vg(z,(T)) L T, ryM;. This is a first-
order necessary condition for optimality. The well-known Pontryagin Mazimum
Principle (see [17]) parametrizes this condition, and asserts that the trajectory
x4 (.) corresponding to this control is the projection of an extremal, i.e. a 4-tuple
(zu(+), pu(:), p°(-), u(-)) solution of the Hamiltonian system

) . _ _O0H OH
Ly = Tp(muapuapgau)a Du = _a_m(xu’pUJpg’u)’ %(xu,pu,pg,u) = 0’

where

H(z,p,p’ u) = (p, fo(x)) + Z ui(p, fi(z)) + p° Z u?

is the Hamiltonian of the system, p,(.) : [0,7] — R" is an absolutely continuous
mapping called adjoint vector, and p? is a real nonpositive number. Moreover
there holds at the final time, up to a multiplying scalar,

(pu(T),p0) = (,97).
If p? # 0 the extremal is said to be normal, otherwise it is said to be abnormal.

REMARK 1. Since we did not set any constraint on the control, any sin-
gular trajectory is the projection of an abnormal extremal, and conversely. The
version of the maximum principle provided here is the weak form of a more
general statement, where the control is constrained, and the condition % =0

E]
is replaced by a maximum condition, see [17].

REMARK 2. As a consequence of the Maximum Principle, if a control u
is singular on [0, T] then it is singular on [0, ], for all ¢ €]0,T].
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A trajectory is said to be strictly singular if it does not admit any normal
extremal lift.

REMARK 3. A singular trajectory is of corank one if and only if it admits
a unique abnormal extremal lift. It is strict and of corank one if and only if it
admits a unique extremal lift which is abnormal.

The paper surveys several results obtained in [20, 8, 22]. Consider an
analytic control-affine system of the form (1), together with a cost (2); if there
is no singular minimizing trajectory, then the value function associated to this
problem is subanalytic (Theorem 1). This situation happens to hold generically
provided m > 2 (Corollary 2). As a consequence, we obtain that, for certain
Hamilton-Jacobi equations, if the data are analytic then the unique viscosity
solution, which happens to be the value function associated to an optimal control
problem of the latter form, is subanalytic (Theorem 3).

2. Subanalyticity of the value function

2.1. Subanalytic functions
Let us first define subanalytic sets, see [12], [13].

DEFINITION 3. Let M be a real analytic finite dimensional manifold. A
subset A of M 1is said to be semi-analytic if and only if, for any x € M, there
exists o neighborhood U of x in M and 2pq analytic functions gi;,hi; (1 <i<p
and 1 < j <gq), such that

p
ANU =|J{y €U | gij(y) =0 and hy(y) >0, j=1...q}.

i=1
Let SEM(M ) denote the set of semi-analytic subsets of M.

The image of a semi-analytic subset by a proper analytic mapping is not
in general semi-analytic, and thus this class has to be enlarged.

DEFINITION 4. A subset A of M is said to be subanalytic if and only if,
for any x € M, there exists a neighborhood U of x in M and 2p couples (@;5, A;-S)
(1<i<petd=1,2), where A> € SEM (M), and for real analytic manifolds
Mi‘s, the mappings @f : Mf — M are proper analytic, such that

AnU = |J (@ (4h\23(42).

=1

Let SUB(M ) denote the set of subanalytic subsets of M.
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The subanalytic class is closed by union, intersection, complementary,
inverse image by an analytic mapping, image by a proper analytic mapping. In
brief, the subanalytic class is o-minimal (see [10]). Moreover subanalytic sets
are stratifiable in the following sense.

DEFINITION 5. Let M be a differentiable manifold. A stratum in M
is a locally closed sub-manifold of M. A locally finite partition S of M is a
stratification of M if any S € S is a stratum such that

VI'eS TNFrS#0=TCFrSanddim T < dim S.

Finally, a mapping f : M — N between two analytic manifolds is said to
be subanalytic if its graph is a subanalytic subset of M x N.

A basic property of subanalytic functions, which makes them very useful
in calculus of variations, and more generally in optimal control theory, is the
following, see [19].

ProrosSITION 1. Let M and N be real analytic finite dimensional man-
ifolds, A be a subset of N, and ® : N — M and f : N — R be subanalytic
mappings. We define, for any x € M

¥(z) =inf{f(y) |y € 2 '(z) N A}.

If ®| 1 is proper then 1 is subanalytic.

2.2. Subanalyticity of the value function for control-affine systems

Consider a control-affine system of the form (1), where fy, ..., f;, are analytic
vector fields in R™, together with a cost of the form (2), where g is proper
analytic in R™.

DEFINITION 6. Let zo € R" and T > 0; the value function S(T,xzq,") :
R — Rt U {+o0} is defined as

S(T, zo,z) =inf{C(T,u) | u € E;O{T(a:)},

with the agreement that S(z) = 400 if there is no trajectory steering xq to  in
time T'.

For all T > 0 and r > 0, we denote M,(zo,T) = {x € R* | S(T, zo,z) =
r}, and M<,(zo,T) = {x € R" | S(T,z0,z) <r}.
The following result has been proved in [20].

THEOREM 1. Let r,T > 0 small enough, and let K be a subanalytic
compact subset of M<,(xo,T). If there exists no singular minimizing trajectory

steering zo to any point of K, then S(T,xq,-) is continuous and subanalytic on
K.
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REMARK 4. The real numbers r and T are assumed to be small enough
in order to ensure that any trajectory having a cost less than r is well-defined
on [0,T].

REMARK 5. This result is a generalization of results of [1] in sub-Riemannian
geometry (see also [2, 3, 15]). It may be further extended to more general opti-
mal control problems, see [21].

REMARK 6. If there exist singular minimizing trajectories, the value func-
tion may fail to be continuous and/or subanalytic, see [20, 6].

The main idea underlying the proof of this result is to prove the com-
pactness of the set of Lagrange multipliers associated to normal extremals, and
then to apply Proposition 1.

On the other part, the main assumption being the absence of singular
minimizers, it is natural to study singular trajectories for control-affine systems,
as done in the following section, to investigate how to compute them, at least
in a generic context, and to ask under which assumptions one can assert that
there does not exist any singular minimizing trajectory.

3. Singular trajectories of control-affine systems

Results of this section are contained in [7, 8]. Consider the control-affine system
(1), where (fo, ..., fm) is an (m+ 1)-tuple of smooth vector fields on M and the
set of admissible controls u = (uy, ..., un) is an open subset of L*([0, T], R™).

Recall that a singular trajectory x(.) is the projection of an abnormal
extremal (z(-),p(-),0,u(-)). We define, for ¢t € [0,T] and i,j € {0,...,m},

hi(t) = (p(t), fi(2(8)), hij(t) = (p(2), [fi; fi](2(2))),

where [, ] denotes the Lie bracket of vector fields. From the Maximum Principle,
we have, along an abnormal extremal,

3) ho(t) = constant, h;(t) =0, i=1,...,m,
for all ¢ € [0,T]. Differentiating (3), one gets for i € {0,...,m},

(4) hio(t) + i hij(t)u;(t) =0.
=1

DEFINITION 7. Along an abnormal extremal (x(-),p(:),0,u(:)) of the sys-

tem (1), the Goh matrix G(t) (resp. the augmented Goh matriz G(t)) at time
t € [0,T] is the m x m skew-symmetric matriz given by

(5) G(t) = (i (t))1§z’,j5m

(resp. G(t) = (hij(t))ogi,jgm)'
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_If moreover m is odd, the determinant of G(t) is the square of a polyno-
mial P(t) in the h;;(t) with degree (m + 1)/2, called the Pfaffian. Along the
extremal, P(t) = 0, and, after differentiation, one gets

(6) {P,ho}(t) + Y uj(){P, h;}(t) = 0.
i=1

Define the (m + 2) x (m + 1) matrix G(t) as G(t) augmented with the row
({P;hj}(E))o<j<m:

If m is even and the Goh matrix G(t) at time ¢ is invertible (resp. if m
is odd and G(t) is of rank m), then we can deduce from equations (4) and (6)
the singular control u(t). Let us then set the following definition.

DEFINITION 8. Ifm is even (resp. odd), a singular trajectory is said to be
of minimal order if it admits an abnormal extremal lift along which rank G(t) =

m (resp. rank G(t) = m) almost everywhere on [0,T).

On the opposite, for arbitrary m, a singular trajectory is said to be a Goh
trajectory if it admits an abnormal extremal lift along which the Goh matrix is
identically equal to 0.

THEOREM 2. Let m be a positive integer with 1 < m <n and F,, be the
set of (m+1)-tuples of linearly independent smooth vector fields on M, endowed
with the C*° Whitney topology. There exists an open set O,, dense in F,, so
that, for all (m + 1)-tuple (fo,...,fm) of Om, every singular trajectory of the
associated control-affine system

() = fo(a(t) + Y uilt) filx(?)),
i=1
is of minimal order and of corank one. In addition, the complementary of O,
in Fpm 48 of infinite codimension.

COROLLARY 1. With the notations of Theorem 2 and if m > 2, there
ezists an open set Oy, dense in F,, so that every control-affine system defined
with an (m + 1)-tuple of O, does not admit Goh singular trajectories.

Let us now consider the optimal control problem (1), (2).

PROPOSITION 2. Let m be a positive integer with m < n. Then, there
erists an open set O, dense in F,, so that every nontrivial singular trajectory
of a control-affine system defined by an (m + 1)-tuple of O, is strict.

Corollary 1 together with Proposition 2 yield the next corollary.
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COROLLARY 2. Let m be a positive integer with 2 < m < n. There exists
an open set O, dense in F,, so that every control-affine system defined with an
(m + 1)-tuple of O,, does not admit minimizing singular trajectories.

If in addition the vector fields of the (m + 1)-tuple in O, are analytic,
then the associated value function is continuous and subanalytic on its domain
of definition.

4. Application to Hamilton-Jacobi type equations

Results of this section are contained in [22].

4.1. Introduction: viscosity solutions

In the 80’s Crandall and Lions [9] introduced the concept of viscosity solution in
order to ensure uniqueness of solutions of Hamilton-Jacobi equations. Existence
of viscosity solutions was also established under similar assumptions. A general
definition of a viscosity solution of a first-order Hamilton-Jacobi equation is the
following.

Let Q be an open set in R and H be a continuous function on 2 x Rx R",
called Hamiltonian, and g be a continuous function on 9. Consider the first-
order Hamilton-Jacobi equation on {2

(7) H(z,v(z), Vo(z)) = 0.
We first recall the notion of sub- and super-differential.

DEFINITION 9. Let v be a scalar function on 2. The super-differential at
a point x € ) is defined as

Dty(z) = {peR" | lir;jgp v(y) - U|?Z)__xi‘io’y —2) <0}.

Similarly, the sub-differential at x is

—v(z) = (p,y — x)
lly — <l

D v(z)={peR" | liirggf v(y) > 0}.

We can now define the concept of viscosity solution introduced in [9].

DEFINITION 10. Let v be a continuous function on Q). The function v is
a viscosity super-solution of equation (7) if

Ve Vpe DVw(z) H(z,v(z),p) <O0.
Similarly, v is a viscosity sub-solution of equation (7) si

VreQ Vpe D wv(z) H(zx,v(z),p)>0.
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Finally, v is a viscosity solution of equation (7) if it is both a sub-solution and
o super-solution.

This concept is adapted to get existence and uniqueness results, in par-
ticular for Dirichlet problems of the type

H(z,v(z),Vu(z)) =0 in 0,
Vg = 9,

so as for many other problems (Cauchy problems, second-order equations, ...),
see for instance [9, 16, 4, 5, 11]. Literature on this subject is immense.

In the case of analytic Hamilton-Jacobi equations one could however ex-
pect these solutions to be more regular. Of course because of possible shocks
one cannot expect to get global analytic solutions. For example in the case of
the eikonal equation

([Vo()||*> =1 in Q,
vjan =0,

on a bounded analytic open set 1 C R", one can easily see that the unique
viscosity solution is

v(z) = d(z,00).

Of course this function u is not analytic on 2, due to intersection of characteristic
curves (concerning the method of characteristics we refer the reader to the
previously cited references). Anyway the function v is, in a sense, ”analytic by
parts”. The right concept in order to describe such objects happens to be the
concept of subanalyticity.

4.2. Subanalytic regularity of viscosity solutions of certain Hamilton-
Jacobi equations

THEOREM 3. Let Q be a bounded subanalytic open subset of R", ¢ > 0 be
fixed, and fo,. .., fm be analytic vector fields on Q. For all x € Q2 and p € R
set

H(w,p) =~y fol@)) + 7 0 i) — .

Let ¥ = 0 and g be a subanalytic function on X. For all x € Q, consider the
optimal control problem of steering x to ¥ for the affine control system

®) Fu(t) = folzu(®) + Y uilt) filza (1)),
i=1
and the cost
(9) Cu) = / o (zmjui(s)2 + c) ds + g(zu(t(z,u)))
o ) b

i=1
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where t(z,u) is the infimum of times t such that the solution x,(.) of the control
system (8) associated to the control u steers the point x € Q to ¥ in time t. We
make the following assumptions.

o The boundary X is accessible from Q, i.e. for any x € §Q there exists

a time t and a control on [0,t] such that the solution of system

10
(10) (8) associated to this control and starting from x at time 0, joins
3 in time t.
(1) e There exists no singular minimizing trajectory of the control system

(8) for the cost (9), steering Q to X.

Let S(z) denote the value function associated to the optimal control problem
(8), (9). Namely, if S denotes the set of solutions (u(.),z(.)) of (8) defined
on various intervals [0,t1], such that x(0) € Q and z(t1) € X, one has, for all
z€Q,

(12) S(z) = inf {C(u) | (u(),zu()) €S, z(0) = z}.
For all 2,2 € 5 define
(13)

L(z,7) = inf { /01t (f;u,.(sf tc)ds | () €8, 2u(0) = 7, (1) = 2,

Vs € [0,t] =zu(s) € ﬁ},

and assume that g satisfies the compatibility condition
(14) Vz,z€ X g(x) —g(2) < L(z, 2).

Then S is well defined on €, is continuous and subanalytic on Q, and is a
viscosity solution of the Dirichlet problem

(15) H(z,VS(z))=0o0n Q, Sy =g.

REMARK 7. Denote by F,, the set of (m + 1)-tuples of linearly inde-
pendent vector fields (fo, ..., fm), endowed with the C°° Whitney topology. If
2 < m < n, there exists an open dense subset of F,,, such that any affine control
system associated to a (m+1)-tuple of this subset admits no singular minimizing
trajectory. This is indeed an obvious adaptation of Corollary 2.

REMARK 8. The compatibility condition (14) is a classical condition for
the existence of viscosity solutions. It is automatically satisfied if g = 0, that is
for Dirichlet problems.
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Concerning uniqueness and regularity of S on the whole Q, we have the
following results.

PROPOSITION 3. Under the assumptions of Theorem 3, if moreover
(16) VzeX Lie (fi(x),...,m(x) = R,

then S is continuous on Q. As a consequence S is the unique viscosity solution
of the Dirichlet problem (15).

For all z € R” set
A(z) = Span{f (x),...,fm(x)},
A%(z) = A(z) + Span{[fi, f;](x), 1 <i<j<m}.

The m-tuple (f1,..., fm) is said to be medium-fat at x if for any vector field
X € A(z) \ {0} there holds

R™ = A%(z) + Span{[X, [f,£]](x), 1 <i,j < m}.

PROPOSITION 4. Under the assumptions of Theorem 3, if the m-tuple of
vector fields (fi,..., fm) is moreover medium-fat at all points of X, and if the
compatibility inequality (14) is strict, then S is subanalytic on (.

ExAMPLE 1. Let Q be a subanalytic bounded open subset of R® and
¥ = 90. For all ¢ > 0 there exists a unique viscosity solution S of the Dirichlet
problem

Ov 1(61} 61;)2 1(61} Ov

"o 4 \om T "05;) Ti\om "o,

2
—c=0 in O =0
e B3 ) c in Q, vz ,

which is continuous and subanalytic on €. It is indeed an application of Theorem
3, Propositions 3 and 4, with the vector fields

0 0 0 0 0
fo—a—xl, f1_6—$1+$26—$37 fz_a_mg_‘”la_%'

We then investigate Cauchy-Dirichlet problems on a subset {2 of R™.

THEOREM 4. Let Q) be a bounded analytic open subset of R™. We consider
the Hamiltonian function on Q x R™ defined as

H(z,p) = (p, fo(@)) + Y_(p, fi(2))?,
i=1

where fo,..., fm are analytic vector fields on R™. Let ¥ = 0Q, T > 0 be fixed
and g be a subanalytic function on [0,T] x X. Consider the affine control system

m

(17) 2, (5) = fo(@u(s)) + D ui(s) fila(s))

i=1
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and the cost
(18) Cltu) = [ w(sds + glt.u(0)

and assume that for all t €]0,T]:

1. The boundary X is accessible from § in time t, i.e. for all time t €]0,T)
and all © € ) there exists a control u on [0,t] such that the associated
solution z,(.) of (17) satisfies x,(0) = z and z,(t) € X.

2. There exists no singular minimizing trajectory for the optimal control prob-
lem (17), (18), steering Q to X in time t.

For all t €]0,T] and x € Q, let S(t,z) be the value function associated to
the optimal control problem of determining a trajectory solution of the control
system (17) on [0,t], minimizing the cost (18), and such that x,(0) = = and
2, (t) € . Namely, if S denotes the set of couples (u(.),x,(.)) solutions of the
control system (17), one has

S(t,z) = inf{C(t,u) | (@a(),u() €S, 2.(0) =z, zu(t) € 2}.

For all s,t € [0,T] such that s <t and all z € &, y € Q, set

t m
S(t,z,s,y) = inf {/ Zui(T)2dT | (zu(.),u(.)) €S, zu(s) =y, zu(t) = :c},

and assume that g satisfies the compatibility condition
V(s,y) € ({0} x Q) U ([0, T[x00Q) V(t,z) €]s,T] x 9N
g(t,(ll’) - g(say) S S(ta z,s, y)

Then S is continuous and subanalytic on ]0,T] x Q, and is a viscosity solution
of the Cauchy-Dirichlet problem

(19)

oS oS .
E+H(x,%)—0 in ]0,T] x Q,
(20) S=g on]0,T] x 09,

%gr(l) S(t,z) = ¢g(0,z) in Q.
REMARK 9. Remark 7 on genericity holds again here.

PROPOSITION 5. Under the assumptions of Theorem 4, if there holds
moreover

(21) Lie (fi(x),..., fm(z)) = R"

for all z € Q, then S is continuous on [0,T] x Q. As a consequence, S is the
unique viscosity solution of the Cauchy-Dirichlet problem (20).
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PROPOSITION 6. Under the assumptions of Theorem 4, if the m-tuple of

vector fields (f1,..., fm) is moreover medium-fat on Q, then S is subanalytic on
[0,T] x Q.

REMARK 10. All previous results extend to more general situations. In-
deed, under some general conditions on the control system and on the cost, the
associated value function is subanalytic; the main assumption is the absence of
singular minimizing trajectories. On the other part, it is well-known that, under
some general assumptions, the previous value function is a viscosity solution of
the Hamilton-Jacobi equation

(22) —+H1(IL‘, %) =0,

where Hy(z,p) = max, H(z,p,u). Notice that all comments here also hold in
the Dirichlet case where the value function does not depend on ¢. Finally, in [14,
18], the authors prove that under general assumptions on the Hamiltonian Hj,
there exists an optimal control problem such that the associated value function
is exactly the viscosity solution of (22) (inverse optimal control problem). Their
proof can be quite readily extended to the subanalytic case.

Gathering these facts leads to a general statement ensuring that the unique
viscosity solution of an Hamilton-Jacobi equation is subanalytic, provided that
the associated optimal control problem do mot admit any singular minimizing
trajectory. However the proof of the inverse optimal control problem, mainly
based on Kakutani Fized Point Theorem, is not constructive. Hence in general
it may be difficult to check whether or not an underlying optimal control problem
admits some singular minimizing trajectories.
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