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Abstract. In this article, we investigate the problem of controlling Navier-
Stokes equations between two infinite rotating coaxial cylinders. We prove

that it is possible to move from a given Couette flow, that is a special station-
ary solution, to another one, by controlling the rotation velocity of the outer

cylinder.

1. Introduction. We focus on special stationary flows, called Couette flows, of
a fluid filling the domain between two infinite rotating coaxial cylinders. These
flows have been known for a long time, and correspond to steady-states of the in-
compressible Navier-Stokes equations with no-slip boundary conditions. They have
been studied in view of stability issues; the literature on this problem is immense (see
for instance [1, 13] and references therein), and many results concerning bifurcation
and/or symmetry breaking have been studied, experimentally and mathematically.

In this paper, our purpose is to control Couette flows, by acting on the rotation
of the outer cylinder. The problem is challenging because the control is scalar.
Moreover, from the physical point of view, such a control is convenient, because it
is easy to realize. However, we stress on the fact that the situation is particular:
the control is scalar, but on the other part, Couette flows are special flow regimes
of the Navier-Stokes equations. Actually, using uniqueness arguments, we prove
that the problem of controlling Couette flows reduces to the problem of controlling
a one-dimensional parabolic system with boundary control. This reduction is cru-
cial in our analysis, and explains why a scalar control is sufficient for establishing
controllability on Couette flows.
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2 MICHAEL SCHMIDT AND EMMANUEL TRÉLAT

Statement of the problem. We recall the formulation of the problem (see [1]).
Consider a viscous incompressible fluid filling the domain Ω between two concentric
rotating infinite cylinders. The flow is described by the Navier-Stokes equations

∂tv + (v.∇)v +
1

ρ
∇p = νv, (1a)

div v = 0, (1b)

where v ∈ R
3 is the velocity vector of fluid particles, ρ is the (constant) density,

p is the pressure, ν is the viscosity. Note that the gravity is incorporated in the
pressure term. In cylindrical coordinates, the horizontal cross section of Ω is defined
by R1 < r < R2, and if one writes v(t) = v(t; r, θ, z) and v = (vr, vθ, vz) in these
coordinates, then the no-slip boundary conditions are

vr(t;Rj , ·, ·) = vz(t;Rj , ·, ·) = 0, vθ(t;Rj , ·, ·) = RjΘj , j = 1, 2,

where Θ1 (resp. Θ2) is the angular velocity of the inner (resp., outer) cylinder, and
t denotes the time in some time interval [0, T ]. Throughout this paper, it is assumed
that Θ1 > 0 and that Θ2 = Θ2(t) can be freely chosen in R for every t ∈ [0, T ].
Under the assumption Θ1 > 0, it is possible to achieve a nondimensionalization
procedure. Introduce the dimensionless control

ω(t) =
Θ2(t)

Θ1
,

and the dimensionless parameters

η =
R1

R2
, R =

R1Θ1(R2 −R1)

ν
,

where R is called the Reynolds number. Then, the system (1) writes

∂tv = 4v −R (v · ∇)v −∇p, in Ω, (2a)

0 = div v, in Ω, (2b)

vr = vz = 0, vθ = 1, at r = r1, (2c)

vr = vz = 0, vθ = ω/η, at r = r2, (2d)

where r1 = η/(1 − η) and r2 = 1/(1 − η). The flow domain Ω and its boundary
∂Ω = ∂Ω1 ∪ ∂Ω2 are given in the new dimensionless cylindrical coordinates by

Ω = {(r, θ, z) ∈ R≥0 × T
1 × R : r1 < r < r2},

∂Ωi = {(r, θ, z) ∈ R≥0 × T
1 × R : r = ri}, i = 1, 2,

where T
1 denotes the torus R/2πZ.

Denoting the partial derivatives with respect to t, r, θ and z by ∂t, ∂r, ∂θ and
∂z, respectively, (2a) and (2b) read in cylindrical coordinates

∂tvr = 4vr −
2

r2
∂θvθ −

vr

r2
− ∂rp−R

[

vr∂rvr +
vθ

r
∂θvr + vz∂zvr −

v2
θ

r

]

,

∂tvθ = 4vθ −
2

r2
∂θvr −

vθ

r2
− 1

r
∂θp−R

[

vr∂rvθ +
vθ

r
∂θvθ + vz∂zvθ −

vrvθ

r

]

,

∂tvz = 4vz − ∂zp−R
[

vr∂rvz +
vθ

r
∂θvz + vz∂zvz

]

,

0 =
1

r
vr + ∂rvr +

1

r
∂θvθ +

1

r
∂zvz,

with 4 = 1
r∂r(r∂r) + 1

r2 ∂
2
θ + ∂2

z .
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Definition 1. For every α ∈ R, we define the Couette flow (v̄α, p̄α) : Ω → R
3 × R

by

v̄α(r, ·, ·) = (0, v̄α
θ (r), 0)T , p̄α(r, ·, ·) = R

∫ r

r1

(v̄α
θ (s))2

s
ds,

with

v̄α
θ (r) = A(α)r +B(α)

1

r
,

and

A(α) =
α− η2

η(1 + η)
, B(α) =

η(1 − α)

(1 − η)(1 − η2)
.

It is easy to verify that, for every fixed α ∈ R, the Couette flow (v̄α, p̄α) is a
steady-state solution of (2) for the constant control ω(t) ≡ α. Moreover, one can
show that, for R sufficiently small with respect to α, (v̄α, p̄α) is the unique steady-
state solution, whereas, for R sufficiently large, there are steady-state solutions
which are axi-symmetric and periodic in z and which differ from (v̄α, p̄α) (see e.g. [1]
or [13, p. 232]), such as Taylor vortex flow, wavy vortex flow, etc.

In the present paper, we prove that it is possible to steer the system (2) from
any Couette flow (v̄α, p̄α) to any other one by rotating the outer cylinder. Since
the proof is based on a stability property of the flow, the control has to be applied
over a sufficiently large time interval.

2. Controllability results.

2.1. Periodic function spaces. Since the domain Ω is unbounded, we assume
that the velocity v and the pressure p are periodic in z with some period h > 0 (see
e.g. [1] or [13, Ch.II.4]). Then, Ω is identified to

Ωh = {(r, θ, z) ∈ Ω : −h/2 ≤ z ≤ h/2}.

Let L2(Ωh) be the usual Lebesgue space of square-integrable functions, endowed
with the scalar product

(φ.ψ)L2(Ωh) =

∫ r2

r1

∫ 2π

0

∫ h/2

−h/2

r φ(r, θ, z)ψ(r, θ, z)dz dθ dr.

Define L2
h(Ω) as the closure of the set of continuous, h-periodic in z, functions on

Ω with respect to the norm induced by the scalar product

(φ.ψ)L2

h
(Ω) = (φ|Ωh

.ψ|Ωh
)L2(Ωh).

Furthermore, introduce

Hh(Ω) = {v ∈ [L2
h(Ω)]3 : div v = 0, v.ν|∂Ω = 0},

endowed with the scalar product of [L2
h(Ω)]3 (see [13] for the precise meaning of the

divergence and the trace with respect to the outer normal vector ν). The subindices
of scalar products will be frequently omitted.
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2.2. Perturbation with respect to a path of Couette flows. Let (v̄a, p̄a)
and (v̄b, p̄b) be two (possibly equal) Couette flows, and a, b be real numbers. For
τ ∈ [0, 1], define the path of Couette flows

ω̄(τ) = a+ τ(b− a), v̄(τ) = v̄ω̄(τ), p̄(τ) = p̄ω̄(τ).

For ε > 0, we introduce perturbation coordinates along the path,

u(t) = v(t) − v̄(εt), q(t) = p(t) − p̄(εt), γ(t) = ω(t) − ω̄(εt),

for t ∈ [0, 1/ε]. The reason for introducing a small parameter ε > 0 will appear to
be clear later. Note that

4v̄(εt) −R(v̄(εt).∇)v̄(εt) −∇p̄(εt) = 0,

for every t ∈ [0, 1/ε]. Hence, in the new coordinates, the system (2) writes

∂tu(t) = 4u(t) −R[(u(t).∇)v̄(εt) + (v̄(εt).∇)u(t)]

−R(u(t).∇)u(t) −∇q − ε∂τ v̄(εt) in [0, 1/ε] × Ω, (4a)

0 = div u(t) in [0, 1/ε] × Ω, (4b)

u(t) = 0 on [0, 1/ε] × ∂Ω1, (4c)

u(t) = (0, γ(t)/η, 0)T on [0, 1/ε] × ∂Ω2, (4d)

(u(0), q(0)) = (u0, q0) = (v0 − v̄a, p0 − p̄a). (4e)

In the following, the initial conditions (u0, q0) are assumed to be compatible, in the
sense that

4q0 = div
(

4u0 −R[(u0.∇)v̄a + (v̄a.∇)u0 + (u0.∇)u0]
)

.

Note that

∂τ v̄(εt) = (b− a)g(r),

where g(r) = (0, gθ(r), 0)
T , and

gθ(r) =
r

η(1 + η)
− η

(1 − η)(1 − η2)r
.

2.3. Functional analytic framework. We next recall how equations (4) for the
perturbation of the path (v̄(εt), p̄(εt), ω̄(εt)) can be written, in Hh(Ω), as

∂tu(t) = L(εt)u(t) +N(u(t)) − ε(b− a)g,

whenever γ ≡ 0 (see [1, 13]).
The space Hh(Ω) is the orthogonal supplement, in [L2

h(Ω)]3, of the space {∇q :
q ∈ [H1

h(Ω)]3}, where

H1
h(Ω) = {v ∈ L2

h(Ω) : ∇v ∈ [L2
h(Ω)]3}.

Let Π0 denote the orthogonal projection from [L2
h(Ω)]3 onto Hh(Q). This projection

is used for eliminating the pressure term ∇q in (4) by incorporating the condition
div u = 0 and a part of the boundary conditions inHh(Q). Then, the linear operator
L(τ) and the quadratic operator N are defined by

L(τ)u = Π0(4u−R((u.∇)v̄(τ) + (v̄(τ).∇)u)),

N(u) = −RΠ0(u.∇)u,

for every τ ∈ [0, 1], and the domain of L(τ) is defined by

Dh = {u ∈ Hh(Ω) : u ∈ [H2
h(Ω)]3, u|∂Ω = 0},
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where H2
h(Q) is the space of functions belonging, up to their second derivative, to

L2
h(Ω). It is well known (see [1, 8, 9, 10, 11, 12, 13]) that the operator L(τ) depends

analytically on the parameter τ ∈ [0, 1], and on the parameters R, η, γ(t), that,
for every τ ∈ [0, 1], L(τ) is the generator of an analytic and compact semigroup
(S(τ, t))t≥0, and that the quadratic operator N is continuous from Dh to the space
Kh defined by

Kh = {v ∈ Hh(Ω) : v ∈ [H1
h(Ω)]3}.

From the Sobolev embedding theorem, there exists c1 > 0 such that

||N(u)||Kh
≤ c1||u||2Dh

, (5)

for every u ∈ Dh. On the other part, there exists c2 > 0 such that

||S(τ, t)||L(Kh,Dh) ≤
c2
t3/4

, (6)

for every τ ∈ [0, 1] and every t > 0 (see [1, 7]). Hence, the integral formulation of
the Cauchy problem (4) writes

u(t) = S(εt, t)u0 +

∫ t

0

S(εt, t− s)N(u(s)) ds− ε(b− a)

∫ t

0

S(εt, t− s)g ds. (7)

2.4. Approximate controllability of Couette flows. Our first main result is
the following.

Theorem 1. For all Couette flows (v̄α, p̄α) and (v̄β , p̄β), α, β ∈ R, there exist c > 0
and ε0 > 0, such that, for every ε ∈ (0, ε0), there exists a unique solution

v ∈ {v : v ∈ L2(0, 1/ε; [H3
h(Ω)]3), ∂tv ∈ L2(0, 1/ε; [H1

h(Ω)]3), div v = 0},
p ∈ L2(0, 1/ε;H2

h(Ω)),

of (2), associated with the control

ω(t) = α+ εt(β − α). (8)

Moreover, this solution is of the form

v(t; r, θ, z) = (0, vθ(t; r), 0)
T , p(t; r, θ, z) = p(t; r),

and satisfies

||v(1/ε) − v̄β ||[H2

h
(Ω)]3 + ||p(1/ε) − p̄β ||H2

h
(Ω) < c ε. (9)

Proof. The uniqueness property will be proved a posteriori, and thus, we assume,
in a first step, that uniqueness holds. Then, consider the solution (u(·), q(·)) of (4),
starting from (u(0), q(0)) = (0, 0). Since the system (4) is invariant with respect to
translations along the z-axis, reflections z → −z, and rotations about the z-axis,
it follows, by uniqueness, that the solution (u(·), q(·)) enjoys all previous symmetry
properties, i.e., is of the form

u(t; r, θ, z) = (ur(t; r), uθ(t; r), uz(t; r))
T , q(t) = q(t; r).
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In these conditions, the system (4) can be written, in cylindric coordinates,

∂tur = ∂2
rur +

1

r
∂rur −

ur

r2
− ∂rq −R

(

ur∂rur − 2
v̄θ

r
uθ −

u2
θ

r

)

, (10a)

∂tuθ = ∂2
ruθ +

1

r
∂ruθ −

uθ

r2

−R
(

ur∂rv̄θ − ur∂ruθ +
urv̄θ

r
+
uruθ

r

)

− ε(b− a)gθ, (10b)

∂tuz = ∂2
ruz +

1

r
∂ruz −Rur∂ruz, (10c)

the zero divergence condition (4b) reduces to

0 =
1

r
∂r(rur), (10d)

the boundary conditions are

u(t) = 0 on ∂Ω1, (10e)

u(t) = (0, γ(t)/η, 0)T on ∂Ω2, (10f)

and the initial condition is

(u(0), q(0)) = (0, 0). (10g)

From (10d) and (10e), one first gets ur ≡ 0, and hence, (10c) reduces to

∂tuz = ∂2
ruz +

1

r
∂ruz.

Since uz(0) = 0, and uz(t; r1) = uz(t; r1) = 0, this yields uz ≡ 0. Finally, the
system (10) reduces to the one dimensional parabolic system

∂tuθ(t; r) = ∂2
ruθ(t; r) +

1

r
∂ruθ(t; r) −

1

r2
uθ(t; r) − ε(b− a)gθ(r), (11a)

uθ(t; r1) = 0, uθ(t; r2) = γ(t)/η, (11b)

uθ(0; r) = 0. (11c)

Note that the pressure is reconstructed by solving

∂rq(t; r) = R
(

u2
θ(t; r)

r
+

2

r
uθ(t; r)v̄θ(t; r)

)

. (12)

We next prove the exponential stability of the system (11), for the control γ ≡ 0.
Let L2

θ(r1, r2) denote the space of measurable functions φ : [r1, r2] → R such that
∫ r2

r1

rφ(r)2dr <∞.

Endowed with the scalar product

(φ.ψ)L2

θ

=

∫ r2

r1

r φ(r)ψ(r) dr,

L2
θ(r1, r2) is a Hilbert space. The Sobolev spaces H1

θ (r1, r2) and H2
θ (r1, r2) are de-

fined similarly. Note that, for functions u of the form u = (0, uθ(r), 0)
T ∈ [L2(Ωh)]3,

||u||[L2

h
(Ω)]3 =

√
2πh||uθ||L2

θ
(r1,r2).
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The system (11) can be written as

∂tuθ(t) = Auθ(t) − ε(β − α)gθ, uθ(0) = 0,

where the operator A : D(A) → L2
θ(r1, r2) is defined by

A =
1

r
∂r(r∂r) −

1

r2
, (13)

on the domain

D(A) = {φ ∈ H2
θ (r1, r2) : φ(r1) = φ(r2) = 0}.

It is easy to verify that A is selfadjoint and negative. Moreover, A is an operator
of Sturm-Liouville type, and thus, has a compact resolvent (see e.g. [4, p. 180]).
Consequently, A is the infinitesimal generator of an analytic semigroup (Sθ(t))t≥0

of negative type. Hence, there exists λ > 0 such that, for every t ≥ 0

||Sθ(t)||L(H1

θ
(r1,r2),H2

θ
(r1,r2)) ≤

e−λt

√
t
,

(cf. [12]). Then the solution uθ of (11) satisfies

||uθ(1/ε)||H2

θ
(r1,r2) ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ε(β − α)

∫ 1/ε

0

Sθ(1/ε− s)gθ(r) ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H2

θ
(r1,r2)

≤ ε |β − α|||gθ||H1

θ
(r1,r2)

∫ 1/ε

0

e−λs

s
ds

≤ ε |β − α|||gθ||H1

θ
(r1,r2)(2 +

2

λ
).

Using (12), one estimates

|∂2
rq| ≤

2

r1
|uθ||∂ruθ| +

1

r21
|u2

θ| +
2

r21
|uθ||v̄θ| +

2

r1
|∂ruθ||v̄θ| +

2

r1
|uθ||∂rv̄θ|.

Applying the inequality |ab| ≤ (a2 + b2)/2, one obtains

||q(1/ε)||2H2

θ
(r1,r2)

≤ c3(||uθ(1/ε)||2L2

θ
(r1,r2)

+ ||uθ(1/ε)||2H1

θ
(r1,r2)

),

with some constant c3 > 0. Hence, the estimate (9) follows.
It remains to prove the uniqueness argument. To this aim, consider the general

integral formulation (7). Then, using (5) and (6), one has

||u(t)||Dh
≤ c1c2

∫ t

0

1

(t− s)3/4
||u(s)||2Dh

ds+ c2

∫ t

0

1

(t− s)3/4
ε|β − α|||g||Dh

ds

≤ c1c2

∫ t

0

1

(t− s)3/4
||u(s)||2Dh

ds+ 4εc2|β − α|t1/4||g||Dh
.

For T > 0, this inequality yields

||u||C(0,T ;Dh) ≤ 4c1c2T
1/4||u||2C(0,T ;Dh) + 4εc2|β − α|||g||Dh

T 1/4. (14)

If we assume that ||u||C(0,T ;Dh) ≤ δ, then the right-hand side of (14) is estimated by

M = 4c2T
1/4(c1δ

2 + ε|β − α|||g||Dh
).

To get the conclusion of the theorem, we have to impose that, if 0 < ε < ε0,
T = 1/ε, δ = cε3/4, then

M ≤ c ε3/4,

where ε0 > 0 and c > 0 have to be chosen.
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For T = 1/ε and δ = cε3/4, one has

M = 4c2(c1c
2ε1/2 + |β − α|||g||Dh

)ε3/4

≤ 4c2(c1c
2ε

1/2
0 + |β − α|||g||Dh

)ε3/4.

If we choose

c = 2c2|β − α|||g||Dh
,

and

ε0 =
1

(2c1c2c)2
,

then one has M ≤ c ε3/4. The uniqueness property then follows from a standard
fixed point argument in the space C(0, T ;Dh) (see [5, 11, 13]).

Remark 1. Note that the use of such a quasi-static deformation has already been
used in [2] for shallow-water controllability issues, and in [3] for 1-D heat equations
stabilization issues. In the latter reference, the system is not stable along the path,
and a stabilization procedure has been performed.

2.5. Exact controllability of Couette flows.

Corollary 1. Let (v̄α, p̄α) and (v̄β , p̄β), α, β ∈ R, be two Couette flows. There exist
a time T > 0 and a control ω ∈ L2(0, T ) such that the (unique) solution

v ∈ {v : v ∈ L2(0, T ; [H2
h(Ω)]3, ∂tv ∈ L2(0, T ; [L2

h(Ω)]3), div v = 0},
p ∈ L2(0, T ;H1

h(Ω)),

of (2), starting from (v(0), p(0)) = (v̄α, p̄α), satisfies

(v(T ), p(T )) = (v̄β , p̄β).

Remark 2. The time T of controllability is large. This requirement is necessary in
the proof (see the definition of ε0) in order to ensure the uniqueness of the solution.
On the other part, the uniqueness property is essential to reduce the problem of
controllability (2) to the problem of controllability of a one-dimensional parabolic
control system.

Proof. We first write the Navier-Stokes equations (2) in the neighborhood of (v̄β , p̄β).
Set

u(t) = v(t) − v̄β , q(t) = p(t) − p̄β , γ(t) = ω(t) − β.

Then,

∂tu(t) = 4u(t) −R[(u(t).∇)v̄(εt) + (v̄(εt).∇)u(t)]

−R(u(t).∇)u(t) −∇q in Ω, (15a)

0 = div u(t) in Ω, (15b)

u(t) = 0 on ∂Ω1, (15c)

u(t) = (0, γ(t)/η, 0)T on ∂Ω2, (15d)

and

(u(0), q(0)) = (v(1/ε) − v̄β , p(1/ε) − p̄β). (15e)

Actually, there holds moreover

ur(0) = uz(0) = 0.
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Hence, if the existence and uniqueness of the solution of (15) is ensured, then ur

and uz are identically equal to zero, and (15) reduces to

∂tuθ(t; r) = ∂2
ruθ(t; r) +

1

r
∂ruθ(t; r) −

1

r2
uθ(t; r),

uθ(t; r1) = 0, uθ(t; r2) = γ(t)/η,

uθ(0; r) = vθ(1/ε, r) − v̄β
θ (r).

Then, the conclusion follows from [6, Corollary 2.1, p. 897]. Indeed, from this result,
there exists a control γ ∈ L2(0, T ′) (where T ′ is a positive real number) such that
the solution uθ of (16), which belongs to

{y = y(t; r) : q ∈ L2(0, T ′;H2(r1, r2)), ∂ty ∈ L2((0, T ′) × (r1, r2))},
satisfies uθ(T

′) = 0.
Moreover, it follows from the proof of [6] that, if ε0 is small enough, then the

control γ can be chosen such that the norms of uθ and of γ remain small. Existence
and uniqueness for the complete problem (15) then follow from a standard argument
(see [5, 11, 13]).

Remark 3. The uniqueness of weak solutions of the nonstationary Navier-Stokes
equations for arbitrarily large data and on arbitrarily large time intervals is an
open problem (see e.g. [13]). Note that if this problem has a positive answer, then
one could steer system (2) from any (v̄α, p̄α) exactly to any (v̄β , p̄β) in arbitrarily
short time. In fact, system (4) with a = b = β and initial conditions (u0, q0) =
(v̄α − v̄β , p̄α − p̄β) would reduce to (11) independently of the choice of control and
time interval.

Note, however, that the controllability result in [6] is not constructive, since its
proof is based on a fixed point argument.

3. Numerical simulations. In this section, we present numerical simulations with
Matlab. Setting α = −10, β = 50, η = 0.5 and R = 1, we aim to steer (2) from
(v̄α, p̄α) to (v̄β , p̄β) by applying the control (8) with different choices of ε > 0.

Figure 1 shows the evolution of the velocity vθ(t, ·), of the pressure p(t, ·) and
of its respective perturbations uθ(t, ·) and q(t, ·) for ε = 1. Figure 2 shows the
corresponding results for ε = 0.1.

In each case, the initial states are represented by dashed-dotted lines, terminal
states at T = 1/ε by black solid lines, and intermediate states by gray solid lines.
The dotted lines indicate the desired terminal velocity profile v̄β(·) and pressure
profile p̄β(·), respectively.
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y a incompatibilité entre les conditions initiales et aux limites, C. R. Acad. Sci. Paris Sér. I.

Math., 271 (1970), 187–190.
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