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Morse-Sard type results in sub-Riemannian

geometry

L. Rifford∗, E. Trélat†

Abstract

Let (M, ∆, g) be a sub-Riemannian manifold and x0 ∈ M . Assum-
ing that Chow’s condition holds and that M endowed with the sub-
Riemannian distance is complete, we prove that there exists a dense subset
N1 of M such that for every point x of N1, there is a unique minimizing
path steering x0 to x, this trajectory admitting a normal extremal lift.
If the distribution ∆ is everywhere of corank one, we prove the existence
of a subset N2 of M of full Lebesgue measure such that for every point
x of N2, there exists a minimizing path steering x0 to x which admits a
normal extremal lift, is nonsingular, and the point x is not conjugate to
x0. In particular, the image of the sub-Riemannian exponential mapping
is dense in M , and in the case of corank one is of full Lebesgue measure
in M .

1 Introduction and main results

The following general definition of a sub-Riemannian distance (also called Carnot-
Carathéodory distance) is due to [3]. LetM be a connected smooth n-dimensional
manifold, m an integer such that 1 6 m 6 n, and f1, . . . , fm be smooth vector
fields on the manifold M . For all x ∈M and v ∈ TxM , set

g(x, v) := inf

{

m
∑

i=1

u2
i | u1, . . . , um ∈ IR,

m
∑

i=1

uifi(x) = v

}

.

Then g(x, ·) is a positive definite quadratic form on the subspace of TxM
spanned by f1(x), . . . , fm(x). Outside this subspace we set g(x, v) = +∞. The
form g is called sub-Riemannian metric associated to the m-tuple of vector fields
(f1, . . . , fm). Let AC([0, 1],M) denote the set of absolutely continuous paths in
M defined on [0, 1], we define the length of γ ∈ AC([0, 1],M) as

l(γ) :=

∫ 1

0

√

g(γ(t), γ̇(t)) dt.
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1 INTRODUCTION AND MAIN RESULTS 2

We say that Chow’s condition holds if the Lie algebra spanned by the vector
fields f1, . . . , fm, is equal to the tangent space TxM at every point x of M . It
is well-known that under this condition any two points of M can be joined by
an absolutely continuous path with finite length.
The sub-Riemannian distance associated to them-tuple of vector fields (f1, . . . , fm),
between two points x0, x1 in M , is defined as

dSR(x0, x1) := inf {l(γ) | γ ∈ AC([0, 1],M), γ(0) = x0, γ(1) = x1} .

The sub-Riemannian sphere SSR(x0, r) (resp. the sub-Riemannian ball BSR(x0, r))
centered at x0 with radius r as the set of points x ∈M such that dSR(x0, x) = r
(resp. dSR(x0, x) < r). A path γ ∈ AC([0, 1],M) is said to be minimizing if it
realizes the sub-Riemannian distance between its extremities.

Remark 1.1. If Chow’s condition holds, then:

• the topology defined by the sub-Riemannian distance dSR coincides with
the original topology of M ,

• sufficiently near points can be joined by a minimizing path,

• if the manifoldM is moreover a complete metric space for the sub-Riemannian
distance dSR, then any two points can be joined by a minimizing path.

Consider on the other part the differential system on the tangent bundle
TM of M

ẋ(t) =

m
∑

i=1

ui(t)fi(x(t)) a.e. on [0, 1], (1)

where the function u(·) = (u1(·), . . . , um(·)), called control function, belongs to
L2([0, 1], IRm). Let x0 ∈ IRn, and let U denote the (open) subset of L2([0, 1], IRm)
such that the solution of (1) starting at x0 and associated to a control u(·) ∈ U
is well-defined on [0, 1]. The mapping

Ex0
: U −→ IRn

u(·) 7−→ x(1),

which to a control u(·) associates the extremity x(1) of the corresponding so-
lution x(·) of (1) starting at x0, is called end-point mapping at the point x0;
it is a smooth mapping. The trajectory x(·) is said to be singular if the as-
sociated control u(·) is a singular point of the end-point mapping (i.e. if the
Fréchet derivative of Ex0

at u(·) is not onto); it is minimizing if it realizes the
sub-Riemannian distance between its extremities.

Remark 1.2. A sub-Riemannian manifold is often defined as a triple (M,∆, g),
where M is a n-dimensional manifold, ∆ is a distribution of rank m 6 n, and
g is a Riemannian metric on ∆. If the vector fields (f1, . . . , fm) are every-
where linearly independent, then controlled paths solutions of (1) coincide with
absolutely continuous paths tangent to the distribution ∆, where

∆(x) = Span {f1(x), . . . , fm(x)},
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for all x ∈M . These paths are said ∆-horizontal.
On the other part, for x0 ∈ M , let Ω(x0,∆) be the set of ∆-horizontal

paths starting from x0 whose derivative is square integrable for the metric g
(and hence for any Riemannian metric on ∆). Endowed with the H1-topology,
Ω(x0,∆) inherits of a Hilbert manifold structure, see [4]. For (x0, x1) ∈M×M ,
let Ω(x0, x1,∆) be the subset of paths x(·) ∈ Ω(x0,∆) such that x(1) = x1.
The set Ω(x0, x1,∆) is a submanifold of Ω(x0,∆) in a neighborhood of any
nonsingular path, but might fail to be a (global) manifold due to the possible
existence of singular paths.

Let x0 and x1 in M . The sub-Riemannian problem of determining a mini-
mizing trajectory steering x0 to x1 can be easily seen (up to reparametrization,
and using the Cauchy-Schwarz inequality) to be equivalent to the optimal con-

trol problem of finding a control u(·) ∈ U such that the solution of the control
system (1) steers x0 to x1 in time 1, and minimizes the cost function

C(u(·)) :=

∫ 1

0

m
∑

i=1

ui(t)
2 dt. (2)

If a control u(·) associated to a trajectory x(·) such that x(0) = x0 is optimal,
then there exists a nontrivial Lagrange multiplier (ψ,ψ0) ∈ T ∗

x(1)M × IR such
that

ψ.dEx0
(u(·)) = −ψ0dC(u(·)), (3)

where dEx0
(u(·)) (resp. dC(u(·))) denotes the Fréchet derivative of Ex0

(resp.
C) at the point u(·). The well-known Pontryagin maximum principle (see [8])
parametrizes this condition and asserts that the trajectory x(·) is the projection
of an extremal, that is a quadruple (x(·), p(·), p0, u(·)), solution of the constrained
Hamiltonian system

ẋ(t) =
∂H

∂p
(x(t), p(t), p0, u(t)), ṗ(t) = −

∂H

∂x
(x(t), p(t), p0, u(t)),

∂H

∂u
(x(t), p(t), p0, u(t)) = 0,

almost everywhere on [0, 1], where

H(x, p, p0, u) := 〈p,
m
∑

i=1

uifi(x)〉 + p0
m
∑

i=1

u2
i

is the Hamiltonian of the optimal control problem, p(·) (called adjoint vector)
is an absolutely continuous mapping on [0, 1] such that p(t) ∈ T ∗

x(t)M , and p0 is
a real nonpositive constant. Moreover there holds

(p(1), p0) = (ψ,ψ0), (4)

up to a multiplying scalar. If p0 < 0 then the extremal is said to be normal,
and in this case it is normalized to p0 = −1/2. If p0 = 0 then the extremal is
said to be abnormal.
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Remark 1.3. Any singular trajectory is the projection of an abnormal extremal,
and conversely.

Furthermore, a singular trajectory is said to be strict (or strictly singular)
if it does not admit a normal extremal lift; equivalently in that case we say that
its abnormal extremal lift is strictly abnormal.

The sub-Riemannian wave-front WSR(x0, r) centered at x0 and with radius
r is defined as the set of end-points x(1), where (x(·), p(·), p0, u(·)) is an extremal
such that x(0) = x0 and C(u(·)) = r2. Under Chow’s condition, it is clear from
Remark 1.1 that SSR(x0, r) is a subset of WSR(x0, r).

Using the previous normalization, controls associated to normal extremals
can be computed as

ui(t) = 〈p(t), fi(x(t)〉, i = 1, . . . ,m.

Hence normal extremals are solutions of the Hamiltonian system

ẋ(t) =
∂H1

∂p
(x(t), p(t)), ṗ(t) = −

∂H1

∂x
(x(t), p(t)), (5)

where

H1(x, p) =
1

2

m
∑

i=1

〈p, fi(x)〉
2.

Notice that H1(x(t), p(t)) is constant along each normal extremal and that the
length of the path x(·) equals (2H1(x(0), p(0)))

1/2. Actually, given a point x0

of M , the differential system (5) has a well-defined smooth solution on [0, 1]
such that x(0) = x0 and p(0) = p0, for p0 ∈ U , where U is a connected open
subset of T ∗

x0
M . In what follows, the point x0 is fixed.

Definition 1.1. The smooth mapping

expx0
: U −→ M
p0 7−→ x(1)

where (x(·), p(·)) is the solution of the system (5) such that x(0) = x0 and
p(0) = p0, is called exponential mapping at the point x0.

The exponential mapping parametrizes normal extremals. Notice that every
minimizing trajectory steering x0 to a point of M \ expx0

(U) is necessarily
strictly singular.

Remark 1.4. Using notations of Definition 1.1, it is easy to see by reparametriza-
tion that x(t) = expx0

(tp0), for all t ∈ [0, 1].

Remark 1.5. For all p0 ∈ U such that H1(x0, p0) = r2

2 , one has expx0
(p0) ∈

WSR(x0, r). The space of normal extremals with length r is parametrized by

the manifold Ur = U ∩H−1
1 ( r2

2 ), which is diffeomorphic to Sm−1 × IRn−m if the
distribution ∆ has rank m at x0.
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A point x ∈ expx0
(U) is said conjugate to x0 if it is a critical value of the

mapping expx0
, i.e. if there exists p0 ∈ U such that x = expx0

(p0) and the
differential d expx0

(p0) is not onto. The conjugate locus, denoted by C(x0), is
defined as the set of all points conjugate to x0.

Remark 1.6. By Sard Theorem applied to the mapping expx0
, it is clear that

the conjugate locus C(x0) has Lebesgue measure zero in M .

Remark 1.7. Let x ∈ expx0
(U), and p0 ∈ U such that x = expx0

(p0). We denote
by (x(·, p0), p(·, p0),−

1
2 , u(·, p0)) the associated normal extremal. Then we have

expx0
(p0) = Ex0

(u(·, p0)).

Therefore if x is not conjugate to x0 then the control u(·, p0) is nonsingular. In
particular, the set of endpoints of nonstrictly singular trajectories starting from
x0 has Lebesgue measure zero in M .

Remark 1.8. With notations of the previous remark, if x is not conjugate to x0

then the path x(·) := x(·, p0) associated to the control u(·) := u(·, p0) admits a
unique normal extremal lift. Indeed if it had two distinct normal extremals lifts
(x(·), p1(·),−

1
2 , u(·)) and (x(·), p2(·),−

1
2 , u(·)), then the extremal (x(·), p1(·) −

p2(·), 0, u(·)) would be an abnormal extremal lift of the path x(·), which is a
contradiction since u(·) is nonsingular.

In the present paper we prove the two following theorems.

Theorem 1.1. Suppose Chow’s condition holds, and that the manifold M is

complete for the sub-Riemannian distance dSR. There exists a dense subset N1

of M such that, for every point x ∈ N1, there is a unique minimizing path joining

x0 to x; moreover this trajectory admits a normal extremal lift. In particular

the image expx0
(U) of the exponential mapping is dense in M .

For all x ∈ M , let ∆(x) := Span {f1(x), · · · , fm(x)}, and let µ denote
the Lebesgue measure on M . Regarding the previous result, one can wonder
whether almost every point of M belongs to expx0

(U). The following result
gives a positive answer in the case of a corank-one distribution.

Theorem 1.2. Suppose Chow’s condition holds, and that the manifold M is

complete for the sub-Riemannian distance dSR. If the distribution ∆ is every-

where of corank one, then there exists a subset N2 of M of full Lebesgue measure

such that, for every point x ∈ N2, there exists a minimizing path joining x0 to

x and having a normal extremal lift. Moreover this trajectory is nonsingular,

and x is not conjugate to x0. In particular, the set expx0
(U) is of full measure

in M , i.e. µ(M \ expx0
(U)) = 0.

The next two sections are devoted to the proof of the latter results. In a last
section we discuss some consequences and open problems.
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2 Proof of Theorem 1.1

2.1 The proximal sub-differential

Let M be a smooth manifold of dimension n and Ω be an open subset of M .
Let f : Ω → IR be a continuous function on Ω; we call proximal sub-differential

of the function f at the point x ∈ Ω the subset of T ∗
xM defined by

∂P f(x) := {dφ(x) | φ ∈ C∞(M) and f − φ attains a local minimum at x} .

Note that since every local C∞ function can be extended to a C∞ function on
M , the proximal sub-differential of f at x depends only on the local behavior
of the function f near x. In addition, remark that ∂P f(x) is a convex subset
of T ∗

xM which may be empty; for instance the proximal sub-differential of the
real function t 7→ −|t| at t = 0 is empty.

Remark 2.1. Notice that when M = IRn, a vector ζ belongs to the proximal
sub-differential of f at a point x if and only if there exists σ and δ > 0 such
that

f(y) − f(x) + σ‖y − x‖2
> 〈ζ, y − x〉, ∀y ∈ x+ δB.

This is the usual definition of proximal sub-differentials in Hilbert spaces; we
refer the reader to [6] for further details on that subject.

In fact, an immediate application of the smooth variational principle of
Borwein-Preiss (see [5]) implies the following result.

Theorem 2.1. The proximal sub-differential of a continuous function f : Ω →
IR is nonempty on a dense subset of Ω.

The proximal sub-differential of f defines a multivalued mapping from Ω
into the cotangent bundle T ∗M . It is said to be locally bounded on Ω if for
each x ∈ Ω there exists a neighborhood V of x such that ∂P f(V) is relatively
compact in T ∗M . The following result is standard.

Proposition 2.2. The function f is Lipschitz continuous on Ω if and only if

the proximal sub-differentials of f are locally bounded on Ω.

Remark 2.2. Notice that the Fréchet (or viscosity) sub-differential of f at x,
defined by

D−f(x) :=
{

dφ(x) | φ ∈ C1(M) and f − φ attains a local minimum at x
}

,

is larger than the proximal sub-differential, but in fact both notions coincide
locally; we refer the reader to [6, Prop. 4.5 p. 138, Prop. 4.12 p. 142] for a
precise statement.

To conclude this preliminary section, we remark that there exists a complete
calculus of proximal sub-differentials, one that extends all the theorems of the
usual smooth calculus, see [6].
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2.2 Application to the proof of Theorem 1.1

In what follows we denote e(·) := dSR(x0, ·)
2.

Proposition 2.3. Let x ∈M such that ∂P e(x) 6= ∅. Then there exists a unique

minimizing path x(·) joining x0 to x. Moreover for every ζ ∈ ∂P e(x), the path

x(·) admits a normal extremal lift (x(·), p(·),− 1
2 , u(·)) such that p(1) = 1

2ζ.

Proof. We adopt the following notation: for every control u(·) ∈ U , we denote by
xu(·) the trajectory solution of (1) associated to the control u(·) and such that
xu(0) = x0. Let x ∈ M and ζ ∈ ∂P e(x). We first prove that every minimizing
path steering x0 to x admits a normal extremal lift such that p(1) = 1

2ζ. Let
u(·) ∈ U be an optimal control such that the associated trajectory xu(·) joins
x0 to x; there holds

e(x) =

∫ 1

0

m
∑

i=1

ui(t)
2dt.

On the other hand, since ζ ∈ ∂P e(x), there exists a function φ of class C∞ with
dφ(x) = ζ and such that e− φ attains a local minimum at x. Thus there exists
a neighborhood V of u(·), contained in U , such that

e(x) 6 e(xv(1)) − φ(xv(1)) + φ(x),

for every control v(·) ∈ V. Moreover it can be easily seen by definition of the
distance function, that

e(xv(1)) 6

∫ 1

0

m
∑

i=1

vi(t)
2dt.

Therefore we obtain

e(x) 6

∫ 1

0

m
∑

i=1

vi(t)
2dt− φ(xv(1)) + φ(x),

for every control v(·) ∈ V. In particular, this means that u(·) is a solution of
the minimization problem

min
v∈V

(

∫ 1

0

m
∑

i=1

vi(t)
2dt− φ(xv(1)) + φ(x)

)

.

Hence u(·) is a critical point of the function

v(·) ∈ V 7→ C(v(·)) − φ(Ex0
(v(·))) + φ(x),

and thus
dC(u(·)) − ζ.dEx0

(u(·)) = 0.

This leads to the existence of a normal extremal lift (xu(·), pu(·),− 1
2 , u(·)) such

that (xu(1), pu(1)) = (x, 1
2ζ). In particular, uniqueness of a minimizing path

joining x0 to x follows.

Th. 1.1 is a straightforward consequence of Prop. 2.3 together with Th. 2.1.
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3 Proof of Theorem 1.2

3.1 The limiting sub-differential

Let M be a smooth manifold of dimension n and Ω be an open subset of M .
Let f : Ω → IR be a continuous function on Ω; we call limiting sub-differential

of the function f at the point x ∈ Ω the subset of T ∗
xM defined by

∂Lf(x) := {lim ζn | ζn ∈ ∂P f(xn), xn → x} .

As the proximal sub-differential, the limiting sub-differential of f at x depends
only on the local behavior of f near x. Moreover by construction, ∂Lf(x) is a
closed subset of T ∗

xM which contains ∂P f(x), which is not necessarily convex
and which may be empty. In some situations, the limiting sub-differential of f
at x can be proven to be nonempty; the result is as follows.

Proposition 3.1. Let x ∈ Ω. If there exists a Lipschitz continuous φ defined in

a neighborhood of x such that f − φ attains a local minimum at x, then ∂Lf(x)
is nonempty.

Proof. Without loss of generality, we can assume to be in IRn. By assumption,
the function f − φ attains a local minimum at x; this implies that 0 ∈ ∂L(f −
φ)(x). By the sum rule on limiting sub-differentials (see [6, Proposition 10.1 p.
62]), the function −φ being Lipschitz continuous, there holds

∂L(f − φ)(x) ⊂ ∂Lf(x) + ∂L(−φ)(x),

and hence ∂Lf(x) is necessarily nonempty.

This proposition will be the key result to prove Th. 1.2. Notice that there
exist some continuous functions f : IRn → IR, n > 2, such that their limiting
sub-differential is empty on a subset of positive Lebesgue measure. However
if n = 1, it can be proven that the limiting sub-differential of any continuous
function f : IR → IR is nonempty almost everywhere. Our proof of Th. 1.2 for
corank-one distributions is in some way related to this latter result, but is not
a consequence of it.

3.2 Application to the proof of Theorem 1.2

In what follows, we denote e(·) := dSR(x0, ·)
2.

Proposition 3.2. Let x ∈ M such that ∂Le(x) 6= ∅ and let ζ ∈ ∂Le(x). Then

there exists a minimizing trajectory joining x0 to x which admits a normal

extremal lift (x(·), p(·),− 1
2 , u(·)) such that p(1) = 1

2ζ.

Proof. By definition of the limiting sub-differential, there exists a sequence
(xn)n∈IN of points in M converging to x and a sequence (ζn)n∈IN ∈ ∂P e(xn)
such that lim ζn = ζ. For each integer n, we denote by un(·) a minimizing
control joining x0 to xn, and by xun

(·) its associated trajectory. From Prop.
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2.3, for each integer n, we know that xun
(·) admits a normal extremal lift

(xun
(·), pun

(·),− 1
2 , un(·)) such that pun

(1) = 1
2ζn. Since the sub-Riemannian

distance is continuous, the sequence of controls (un(·))n∈IN is clearly bounded
in L2([0, 1], IRm), and then up to a subsequence, it converges towards an element
u(·) for the weak L2-topology. As a consequence, since the end-point mapping
Ex0

is continuous for the weak L2-topology (see [9] for a proof), we deduce,
passing to the limit, that Ex0

(u(·)) = x. Furthermore, up to a subsequence the
sequence (xun

(·))n∈IN converges uniformly towards a minimizimg path xu(.).
This implies that the sequence (pun

(·))n∈IN converges uniformly towards some
pu(·), where pu(·) is an adjoint vector associated to the trajectory xu(·), and
pu(1) = 1

2 limn→∞ ζn. Finally the quadruple (xu(·), pu(·),− 1
2 , u(·)) is a normal

extremal lift of xu(·).

Analogously to Th. 2.1, we have the following result.

Proposition 3.3. If the distribution is everywhere of corank one, then ∂Le(x) 6=
∅ for almost every x ∈M .

Proof. In what follows, our point of view being local, we can assume to work in
IRn. Denote by P the set of points x of M such that

lim inf
y→x

e(y) − e(x)

‖y − x‖
= −∞.

We have M = P ∪ P c, where P c denotes the complement of the set P in M .

Note that if x ∈ P c then there exists α ∈ IR such that lim infy→x
e(y)−e(x)
‖y−x‖ = α,

which means that there exists a neighborhood V of x such that

e(y) > e(x) + (α− 1)‖y − x‖, ∀y ∈ V.

We infer that the function e has a Lipschitz continuous support function at x
and hence from Prop. 3.1 that ∂Le(x) is nonempty. The rest of the proof is
devoted to show that the set ∂Le(x) is nonempty for almost every point x ∈ P .
We argue by contradiction: denote by A the subset of P where the limiting
sub-differential of f is empty, and suppose that µ(A) > 0.

For all x ∈M , let ν(x) denote a vector of TxM transverse to the distribution
∆(x). We may assume the vector field ν(·) to be smooth on M . Let us consider
integral curves of the differential system

ẏ(t) = ν(y(t)). (6)

From Fubini’s theorem, there exists an interval I ⊂ IR and an integral curve
(y(t))t∈I of (6) such that the set

T := {t ∈ I | y(t) ∈ A},

satisfies λ(T ) > 0, where λ denotes the Lebesgue measure on IR. We are going to
prove that some t̄ ∈ I is the limit of local minima of the function e(·) restricted
to the curve y(t). To this aim we need different lemmas.
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Lemma 3.4. For all x ∈ M , there exist a neighborhood Vx of x in M , a

neighborhood Ux of 0 in T ∗
xM , and a submanifold Dx of codimension 1 in M ,

such that

Vx ∩Dx ⊂ expx(Ux).

Proof. Clearly the mapping expx is smooth on its domain of definition, and its
differential at 0, denoted d expx(0), can be computed as

d expx(0) . δp0 = δx(1),

where (δx(·), δp(·)) is the solution of the linearized system of system (5) at the
equilibrium point (x, 0), such that δx(0) = 0 and δp(0) = δp0. This linearized
system writes

δẋ(t) =

n−1
∑

i=1

〈δp(t), fi(x)〉fi(x), δṗ(t) = 0,

and thus δp(t) is constant, equal to δp0, whence

δx(1) =
n−1
∑

i=1

〈δp0, fi(x)〉fi(x). (7)

Therefore the mapping expx has rank n− 1 at the point 0, and the conclusion
follows.

For each x ∈M , let (p∗i (x))i=1,...,n denote the dual basis in T ∗
xM of the basis

(f1(x), . . . , fn−1(x), ν(x)) in TxM . We define the mapping Φ : I × O → M ,
where O is a neighborhood of 0 in IRn−1, by the formula

Φ(t, α1, . . . , αn−1) := expy(t)

(

n−1
∑

i=1

αip
∗
i (y(t))

)

.

Using (7), it is quite easy to see that, for all t0 ∈ I, the mapping Φ is a local
diffeomorphism at (t0, 0). Thus the following lemma is straightforward.

Lemma 3.5. Let t0 ∈ T . There exist a neighborhood V of y(t0) in M and a

smooth function ρ : V −→ I such that for every z ∈ V, one has z ∈ Dy(ρ(z)),

and such that for every t ∈ T with y(t) ∈ V, there holds ρ(y(t)) = t. Moreover,

there exists a real number δ > 0 such that

|e(z) − e(y(ρ(z)))| 6 δ‖z − y(ρ(z))‖. (8)

for all z ∈ V.

Define the continuous function g : I → IR by g(t) := e(y(t)).

Lemma 3.6. There exists t̄ ∈ T and a sequence (tn)n∈IN of I converging towards

t̄, such that the function g attains a local minimum at tn, for every integer n.
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Proof. We argue by contradiction. If the conclusion of the lemma does not
hold, this means that for every t ∈ T , there exists a neighborhood Vt of t in I
on which g is monotonous. In particular g has bounded variations on Vt, and
hence g is differentiable almost everywhere in Vt. On the other hand, since the
set T has positive Lebesgue measure, there exists t ∈ T such that λ(V ∩ T ) > 0
for any neighborhood V of t in I. Hence, this proves that for such a t ∈ T , the
function g is differentiable almost everywhere in Vt which has positive measure.
Fix some s ∈ Vt where g is differentiable. As a consequence, there exists some
Lipschitz continuous function ψ : I → IR such that

ψ(s) = g(s), and ψ(s′) 6 g(s′), ∀s′ ∈ I.

On the other hand, by Lemma 3.5, there exists a neighborhood V of y(s) in M
and a smooth function ρ : V → I which satisfy the property given in the lemma.
By (8), we deduce that for any x ∈ V, there holds

e(x) > e(y(ρ(x))) − δ‖x− y(ρ(x))‖

> φs(ρ(x)) − δ‖x− y(ρ(x))‖.

Therefore if we define locally φ(x) := −δ‖x−y(ρ(x))‖, the function e−ψ ◦ρ−φ
attains a local minimum at y(s). Since ψ ◦ ρ and φ are Lipschitz continuous,
the sum rule on limiting sub-differentials (see [6, Prop. 10.1 p. 62]) implies that

0 ∈ ∂L(e− ψ ◦ ρ− φ)(y(s)) ⊂ ∂Le(y(s)) + ∂L(−ψ ◦ ρ− φ)(y(s)).

Hence there exists ζ ∈ ∂Le(y(s)) and ζ ′ ∈ ∂L(−ψ ◦ ρ − φ)(y(s)) such that
0 = ζ + ζ ′ Which proves that ∂Le(y(s)) is nonempty and which contradicts the
fact that y(s) ∈ A.

Lemma 3.7. There exists some constant K > 0 such that for every integer n,
the limiting sub-differential ∂Le(y(tn)) contains an element with norm less than

K.

Proof. By construction of the sequence (tn)n∈IN, for every integer n the function
g attains a minimum at tn. This means that there exists an interval (an, bn)
containing tn such that

∀t ∈ (an, bn) g(t) > g(tn).

On the other hand, by Lemma 3.5, there exists a neighborhood V of y(t̄) such
that for n large enough, any x close enough to y(tn) belongs to Dy(ρ(x)) where
ρ(x) ∈ (an, bn). By (8), we deduce that for x close enough to y(tn), there holds

e(x) > e(y(ρ(x))) − δ‖x− y(ρ(x))‖

> e(y(tn)) − δ‖x− y(ρ(x))‖.

Therefore as before, if we define locally φ(x) := −δ‖x − y(ρ(x))‖, the function
e − φ attains a local minimum at y(tn). Since φ is Lipschitz continuous, the
sum rule on limiting sub-differentials implies that

0 ∈ ∂L(e− φ)(y(tn)) ⊂ ∂Le(y(tn)) + ∂L(−φ)(y(tn)).
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Hence there exists ζ ∈ ∂Le(y(tn)) and ζ ′ ∈ ∂L(−φ)(y(tn)) such that 0 = ζ + ζ ′.
Finally ‖ζ‖ = ‖ζ ′‖ where ‖ζ ′‖ is less than the Lipschitz constant of the function
φ. This concludes the proof of the lemma.

Returning to the proof of Prop. 3.3, we infer easily that ∂Le(y(t̄)) is nonempty.
This yields a contradiction with the fact that y(t̄) ∈ A, and ends the proof of
the proposition.

Propositions 3.2 and 3.3 imply the existence of a subset N of full Lebesgue
measure in M such that, for every x ∈ N , there exists a minimizing trajectory
steering x0 to x and having a normal extremal lift. Let N2 := N \ C(x0). It
is the set of points x ∈ M which are not conjugate to x0, and such that there
exists a minimizing path x(·) joining x0 to x and having a normal extremal
lift. Remark 1.7 implies that the trajectory x(·) is moreover nonsingular. From
Remark 1.6 it is clear that N2 is of full Lebesgue measure in M . This ends the
proof of Th. 1.2.

4 Consequences and open questions

In what follows, we assume that Chow’s condition holds, and that the manifold
M is complete for the sub-Riemannian distance. Let x0 ∈M be fixed.

4.1 A formula for the sub-Riemannian distance

From Th. 1.1, there exists a dense subset N1 of M such that every point of
N1 can be joined from x0 by a unique minimizing trajectory, which moreover
admits a normal extremal lift. This yields the following result.

Corollary 4.1. For all point x ∈ N1 one has

dSR(x0, x) = inf
{

(2H1(x0, p))
1/2 | p ∈ U s.t. expx0

(p) = x
}

.

Remark 4.1. Actually Th. 1.1 implies that for every x ∈ N1 there exists a
unique p ∈ U such that the above infimum is attained.

As a consequence, we deduce that the function g : M → IR ∪ {∞} defined
by

g(x) := inf
{

(2H1(x0, p))
1/2 | p ∈ U s.t. expx0

(p) = x
}

,

for all x ∈ M , coincides with the mapping dSR(x0, ·) on a dense subset of the
manifold M . In particular, since g is continuous on M , there holds

dSR(x0, x) = inf {lim g(xn) | xn → x}

for all x ∈M .
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Remark 4.2. If the sub-Riemannian distance to x0 is Lipschitz continuous out-
side x0, then from Prop 2.2 the limiting sub-differentials of dSR(x0, ·) are always
nonempty; hence the set of points x of M such that every minimizing trajectory
joining x0 to x is strictly singular, is empty. The converse is false; a counterex-
ample is given by the so-called Martinet flat case, see [2]. To get a converse
statement, the assumption has to be strengthened as follows: if there does not
exist any nontrivial singular minimizing trajectory, then dSR(x0, ·) is Lipschitz
continuous outside x0, see [1].

4.2 On the sub-Riemannian wave-front and sphere

The following result is a direct consequence of Th. 1.1.

Corollary 4.2. The sub-Riemannian wave-front WSR(x0, r) is connected, for

all r > 0.

Proof. Using notations of Remark 1.5, and from Th. 1.1, we have the inclusions

expx0
(Ur) ⊂WSR(x0, r) ⊂ expx0

(Ur),

where Ur is diffeomorphic to Sm−1 × IRn−m, and thus is connected. The con-
clusion follows readily.

Proposition 4.3. If the distribution ∆ is everywhere of corank one, then the

sub-Riemannian wave-front WSR(x0, r), and thus the sub-Riemannian sphere

SSR(x0, r), has Lebesgue measure zero, for all r > 0.

Proof. It suffices to notice that the image by a locally lipschitzian mapping from
IRn to IRn of a set of zero measure has zero measure, and to apply Th. 1.2.

4.3 Sard type conjectures

Let A (resp. As) denote the set of points x of M such that every minimizing
trajectory joining x0 to x is singular (resp. strictly singular). Obviously As ⊂ A.
Th. 1.1 and 1.2 yield the following result.

Corollary 4.4. The subset As has an empty interior in M . In the case of a

corank-one distribution the subset A has Lebesgue measure zero in M .

Let now S (resp. Smin, resp. Sstrict
min ) denote the set of points x of M such

that there exists a singular trajectory (resp. a singular minimizing trajectory,
resp. a strictly singular minimizing trajectory) steering x0 to x. Notice that S
is the set of critical values of the end-point-mapping Ex0

.

Corollary 4.5. The set Sstrict
min has an empty interior in M .

Let N3 be the set of points x ∈M such that there exists a unique minimizing
path x(·) joining x0 to x, which moreover admits a normal extremal lift, and
such that x is not conjugate to x0. Notice that from Remark 1.7, the path x(·)
is nonsingular. The set N3 can be proven to be open in M ; we formulate the
following conjecture.
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Conjecture 4.6. The subsetN3 is of full Lebesgue measure inM . In particular,
the set Smin has Lebesgue measure zero in M .

We end the paper with the following open question.

Conjecture 4.7. The end-point mapping satisfies Sard’s property, i.e. the set
S has Lebesgue measure zero in M .

This conjecture has been formulated and discussed, among others, in [7]. Up
to now, it is still open, even in the case of a corank-one distribution.

Acknowledgement. The authors are very indebted to F. H. Clarke for useful
discussions.
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