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This article, continuation of previous works5,3, presents the applications of geometric
optimal control theory to the analysis of the Earth re-entry problem for a space shuttle
where the control is the angle of bank, the cost is the total amount of thermal flux, and
the system is subject to state constraints on the thermal flux, the normal acceleration

and the dynamic pressure. Our analysis is based on the evaluation of the reachable set
using the maximum principle and direct computations with the boundary conditions
according to the CNES research projecta. The optimal solution is approximated by a

concatenation of bang and boundary arcs, and is numerically computed with a multiple-

shooting method.
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1. Introduction

1.1. Presentation of the project

The project of atmospheric re-entry has been set out by the CNES (french space
agency), motivated by the increasing importance of aero-capture techniques in sev-
eral areas: guidance of aeroassisted orbital transfers; development of reprocessable
satellite launchers; problems of re-entry in the atmosphere.

aThe project is partially supported by the Centre National d’Etude Spatiales.
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In brief, the atmospheric phase consists in reducing the speed of the engine by
friction with the atmosphere, steering the spacecraft from a set of initial points to
a prescribed target, taking into account some state-constraints on the thermal flux,
on the normal acceleration and on the dynamic pressure. Moreover the aim is to
minimize the total thermal flux of the spacecraft. Notice that the main difficulty of
the problem is to handle these state constraints; more precisely, since the traversing
of the atmosphere is done at very high velocities, the constraint on the thermal flux
is predominant. The strategy that has been used by the CNES is due to Harpold
and Graves10, and consists in tracking boundary arcs, see Section 1.4.

More specifically, this project is part of the famous project Mars Sample Return
developped by the CNES. This article is the conclusion of the study by the authors of
the optimization problem. The stabilization part has been investigated by another
group8. In particular, specific data were imposed by the CNES: initial and final
conditions (see Table 1), constraints on the state, specific numerical data concerning
the shuttle, given in Appendix.

Our control is the aerodynamic configuration of the shuttle. It happens that, if
the altitude is between about 20 km and 120 km, the aerodynamic forces can be
employed in order to slow down the spacecraft, itself behaving like a glider, that is,
there is no thrust.

More precisely the model is as follows.

1.2. The model

Let 0 be the center of the planet, K = NS be the axis of rotation of the Earth and
−→Ω be the angular velocity oriented along K and with constant modulus Ω. We note
E = (e1, e2, e3), e3 = K an inertial frame centered at 0. The reference frame is the
quasi-inertial frame R1 = (I, J,K) with origin 0 rotating around K with angular
speed Ω, and I is chosen to intersect the Greenwich meridian. Let rT denote the
Earth radius and let G be the mass center of the shuttle. The spherical coordinates
of G are denoted (r, l, L), r being the distance OG, h = r − rT is the altitude, l
the longitude and L is the latitude. We denote R′1 = (er, el, eL) a moving frame
centered at G, where er is the local vertical direction, (el, eL) is the local horizontal
plane and eL is pointing to the north.

Let ξ : t 7→ (x(t), y(t), z(t)) be the trajectory of G measured in the quasi-inertial
frame attached to the planet and let −→v = ẋI + ẏJ + żK be the relative velocity. It
is convenient in our problem to parametrize v by the modulus and two angles: the
path inclination γ which is the angle of −→v with respect to the horizontal plane; the
azimuth angle χ which is the angle of the projection of −→v onto the horizontal plane
with respect to the axis eL. We denote (i, j, k) the orthonormal frame defined by
i = −→v /v, j is the unitary vector in the plane (i, er) perpendicular to i and oriented
by j.er > 0 and k = i ∧ j.

The system is written in the coordinates (r, v, γ, L, l, χ). The forces acting on
the vehicle are the gravitational force −→P = m−→g , and the aerodynamic force, which



October 20, 2004 16:25 WSPC/INSTRUCTION FILE BFT

Optimal control of the atmospheric arc of a space shuttle and numerical simulations with multiple-shooting method 3

consists of a drag force −→D =
(

1
2ρSCDv

2
)
i, opposite to −→v , and of a lift force −→L =(

1
2ρSCLv

2
)
(j cosµ + k sinµ), perpendicular to −→v , where µ is the angle of bank,

ρ = ρ(r) is the air density, S is the reference area and CD, CL are respectively
the lift and drag coefficients depending on the angle of attack α of the vehicle
and the Mach number. The coefficients CD and CL are tabulated and their values
are given in Section 4. Concerning the air density we take an exponential model
ρ(r) = ρ0 exp(−(r− rT )/hs). Due to the choice of a non inertial frame to represent
the system, the spacecraft is submitted to the Coriolis force 2m−→Ω ∧ q̇ and to the
centripetal force m−→Ω ∧(−→Ω ∧q), where q (resp. q̇) denotes the relative position (resp.
relative velocity) of the spacecraft.

During the atmospheric arc the shuttle behaves as a glider. The physical control
is the lift force −→L whose orientation is represented by the angle of bank µ(t) ∈ IR
which can be adjusted.

Remark 1.1. If we set u1 = cosµ and u2 = sinµ, then u1 is a direct control on
the flight path angle γ, and u2 is a control on the azimuth χ. Moreover the sign of
u2 allows the spacecraft to turn left or right7.

The model16,7 is a nonlinear control system in dimension 6, controlled by the
angle of bank µ. The equations of the system are

dr

dt
= v sin γ (1.1)

dv

dt
= −g sin γ − 1

2
ρ
SCD

m
v2 + Ω2r cosL(sin γ cosL− cos γ sinL cosχ) (1.2)

dγ

dt
= cos γ

(
−g
v

+
v

r

)
+

1
2
ρ
SCL

m
v cosµ (1.3)

+2Ω cosL sinχ+ Ω2 r

v
cosL(cos γ cosL+ sin γ sinL cosχ) (1.4)

dL

dt
=
v

r
cos γ cosχ (1.5)

dl

dt
=
v

r

cos γ sinχ
cosL

(1.6)

dχ

dt
=

1
2
ρ
SCL

m
sinµ

v

cos γ
+
v

r
cos γ tanL sinχ+ 2Ω(sinL− tan γ cosL cosχ)(1.7)

+Ω2 r

v

sinL cosL sinχ
cos γ

(1.8)

1.3. Optimal control problems

The problem is to steer the vehicle from an initial manifold M0 to a terminal
manifold M1, the transfer time tf is free and the boundary conditions are given in
Table 1 according to the CNES research project. Observe that we have two distinct
problems depending on whether the initial longitude is fixed or free. There are state
constraints of the form ci(q) ≤ 0 for i = 1, 2, 3, which consist of a constraint on
the thermal flux ϕ = Cq

√
ρv3 ≤ ϕmax, where Cq is a constant; a constraint on the
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Initial conditions Terminal conditions
altitude h 119.82 km 15 km
velocity v 7404.95 m.s−1 445 m.s−1

flight angle γ −1.84 deg free
latitude L 0 10.99 deg
longitude l free or fixed to 116.59 deg 166.48 deg
azimuth χ free free

Table 1. Boundary conditions

normal acceleration γn = γn0ρv
2 ≤ γmax

n , where γn0 is a constant; a constraint on
the dynamic pressure 1

2ρv
2 ≤ Pmax. They are represented on Fig. 1, in the flight

domain, in terms of the modulus of the drag force d = 1
2SCDρv

2, and the modulus
of the velocity.

v

d

Fig. 1. Constraints - Harpold and Graves strategy

The optimal control problem is to minimize the total amount of thermal flux
J(µ) =

∫ tf

0
Cq
√
ρv3dt. Notice that if we introduce the new time parameter ds = ϕdt,

our problem reduces to a time minimal problem.

1.4. Harpold and Graves strategy

If we approximate the system by v̇ = −d/m, the cost can be written as J(µ) =
K

∫ v0

vf

v2
√

d
dv, where K > 0, and the optimal policy consists in maximizing the drag

term d during the flight. This is the strategy used by 10, which reduces the problem
to find a trajectory of the system tracking the boundary of the domain in the
following order: thermal flux, normal acceleration, dynamic pressure, see Fig. 1.
However the trajectory obtained by this pioneering method is not optimal because
of the approximation.
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1.5. Properties and structure of the system

Reparametrizing by the flux, the problem is to minimize the time s for a system
of the form q′(s) = X(q(s)) + u1(s)Y1(q(s)) + u2(s)Y2(q(s)), where u1 = cosµ,
u2 = sinµ and q = (r, v, γ, L, l, χ). If we split the coordinates into q1 = (r, v, γ) and
q2 = (L, l, χ), the system can be decomposed into

q̇1 = f1(q1, u1) +O(Ω), q̇2 = f2(q, u2) +O(Ω).

If we neglect the rotation Ω of the planet, the first subsystem governing the longi-
tudinal motion is independent of q2 and is given by

dr

dt
= (v sin γ)ψ,

dv

dt
= −

(
g sin γ +

1
2
ρ
SCD

m
v2

)
ψ, (1.9)

dγ

dt
=

(
cos γ

(
−g
v

+
v

r

)
+

1
2
ρ
SCL

m
v cosµ

)
ψ, (1.10)

and the second system governing the lateral motion is

dL

dt
=

(v
r

cos γ cosχ
)
ψ,

dl

dt
=

(
v

r

cos γ sinχ
cosL

)
ψ, (1.11)

dχ

dt
=

(
1
2
ρ
SCL

m
sinµ

v

cos γ
+
v

r
cos γ tanL sinχ

)
ψ, (1.12)

where ψ = 1/ϕ. The flight duration is about 1000 seconds and the coupling of the
longitudinal motion with the lateral motion via Ω is small.

1.6. Kepler motion

If we neglect the aerodynamic force and if g = g0/r
2, then the motion is a Kepler

planar motion. In the inertial frame, the trajectories are conics and ellipses if the
energy E is strictly negative. In our coordinate system, the Kepler motion can be
seen by taking L = 0, χ = π/2 (this normalizes the plane of the motion to the
equatorial plane). The drag force is contained in the plane, and the same property
holds for the lift force if sinµ = 0, the effect of sinµ being to turn left or right and
change the inclination of the osculating plane. Also the Coriolis force is oriented
along −→Ω ∧ q̇ where −→Ω is perpendicular to the equator. Hence we introduce the
following controlled Kepler equations with dissipative force

dr

dt
= v sin γ,

dv

dt
= −g sin γ − 1

2
ρ
SCD

m
v2 + Ω2r sin γ, (1.13)

dγ

dt
= cos γ

(
−g
v

+
v

r

)
+

1
2
ρ
SCL

m
v cosµ+ 2Ω + Ω2 r

v
cos γ,

dl

dt
=
v

r
cos γ.(1.14)

If one does not take into account the state constraints, this system actually reduces
to a system in dimension 3, representing the longitudinal motion (r, v, γ) if the
longitude l is not controlled. If we take into account the state constraints, a control
to track the boundary is not of the form cosµ = ±1 and the latitude is modified.
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Notice also that the equatorial plane is fixed by the axis NS of rotation. But
if Ω = 0, the axis NS and the invariant plane can be chosen arbitrarily, where the
system reduces to (1.13) if cosµ = ±1. This geometric property can be expressed
in proper coordinates where the azimuth χ is replaced by the inclination of the
osculating plane with respect to a reference plane, e.g. the equatorial plane.

2. Reachable set and maximum principle

2.1. Optimal control without state constraint

We first analyze the problem without state constraint. Consider a system of the
form

q̇(t) = f(q(t), u(t)) (2.1)

where q(t) ∈ IRn, u(t) ∈ U ⊂ IRp, f is a smooth mapping and the cost to be
minimized is of the form C(u) =

∫ T

0
f0(q, u)dt, where f0 is a smooth mapping, and

the transfer time T is not fixed. The class of admissible controls is the set U of
measurable bounded mappings u : [0, T ] → U . We denote by q(t, q0, u) the solution
of (2.1) associated to u and defined on a subinterval of [0, T ]. The system (2.1) can
be extended in IRn+1 by

q̇ = f(q, u), q̇0 = f0(q, u), (2.2)

with q0(0) = 0, and q0(T ) represents the cost. We denote by q̃(t, q0, u) the corre-
sponding trajectory. If q0 is fixed, let us denote respectively R(q0, T ) and R̃(q0, T )
the reachable sets at time T corresponding to (2.1) and (2.2), and R(q0), R̃(q0)
the reachable sets. Fix q0, T , and consider the end-points mappings Eq0,T : u(.) 7→
q(T, q0, u), and Ẽq0,T : u(.) 7→ q̃(T, q0, u). Then the reachable sets at time T are the
images of the set U by the end-points mappings.

Maximum principle. Consider the optimal control problem with boundary con-
ditions q0 = q(0) ∈ M0, q1 = q(T ) ∈ M1, where M0, M1 are smooth sub-manifolds
in IRn and the transfer time T is not fixed. If u is optimal with response defined on
[0, T ], and shortly denoted q(t), then there exists p̃(t) = (p(t), p0(t)) ∈ (IRn×IR)\{0}
absolutely continuous on [0, T ] such that there holds a.e. on [0, T ]

q̇ =
∂H̃

∂p
, ṗ = −∂H̃

∂q
, and H̃(q, p, u) = max

v∈U
H̃(q, p, v) = 0,

where H̃ = 〈p, f(q, u)〉 + p0f0(q, u) is the Hamiltonian of the system, p0 is a non-
positive real number, and p satisfies the transversality conditions p(0) ⊥ Tq0M0,
and p(T ) ⊥ Tq1M1, where Tqi

Mi are the tangent spaces17.

Definition 2.1. A triple (q(·), p(·), u(·)) solution of the maximum principle is called
an extremal, and (p(·), p0) is called adjoint vector. An extremal is said normal if
p0 6= 0 and abnormal if p0 = 0.
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Computation of extremals. Reparametrizing by the flux, the problem reduces
to a time minimal control problem. The system is of the form q′(s) = f(q(s), µ(s)) =
X(q(s))+u1(s)Y1(q(s))+u2(s)Y2(q(s)), where q = (r, v, γ, L, l, χ) ∈ IR6, u1 = cosµ,
and u2 = sinµ. The Hamiltonian writes H = 〈p,X〉+u1〈p, Y1〉+u2〈p, Y2〉. Since µ ∈
IR, the maximization condition leads to ∂H/∂µ = − sinµ 〈p, Y1〉+ cosµ 〈p, Y2〉 = 0,
and moreover the solution has to satisfy the Legendre condition ∂2H/∂µ2 ≤ 0.
If the strong Legendre condition, namely ∂2H/∂u2 < 0, is satisfied, the extremal
controls can be computed locally as (q, p) 7→ û(q, p) using the implicit function
theorem and the extremals are smooth. This is a general method, but in our case
a simple parameterization is obtained from the maximum principle by maximizing
the Hamiltonian H over the circle u2

1 + u2
2 = 1, and hence

u1 = 〈p, Y1〉/
√
〈p, Y1〉2 + 〈p, Y2〉2, u2 = 〈p, Y2〉/

√
〈p, Y1〉2 + 〈p, Y2〉2, (2.3)

outside the set where 〈p, Y1〉 = 〈p, Y2〉 = 0. The problem is not convex because
the control domain is u2

1 + u2
2 = 1 and its relaxation is obtained by considering

the control domain u2
1 + u2

2 ≤ 1. This extends the set of extremals of our original
problem.

Definition 2.2. The surface Σ : 〈p, Y1〉 = 〈p, Y2〉 = 0, is called the switching
surface. The mapping Φ(t) = (Φ1(t),Φ2(t)), Φi = 〈p, Yi(q)〉 evaluated along an
extremal is called the switching mapping. Extremals not intersecting Σ are said of
order 0, and are smooth, the control being given by (2.3). Extremals of the relaxed
problem such that Φ ≡ 0 are said singular.

First- and second-order variation of the end-point mapping. If we endow
the set of controls with the L∞-topology, it is well-known that the end-point map-
ping is smooth and the successive derivatives can be computed as follows. Take a
reference control u ∈ L∞[0, T ] and assume that the corresponding trajectory, de-
noted q(t), is defined on the whole [0, T ]. Then the end-point mapping with q(0) = q0
is defined on a neighborhood V of u. Let q(t) + ξ(t) be the trajectory associated to
u+ v ∈ V . Since f is smooth,

f(q + ξ, u+ v) = f(q, u) +
∂f

∂q
(q, u)ξ +

∂f

∂u
(q, u)v

+
∂2f

∂q∂u
(q, u)(ξ, v) +

1
2
∂2f

∂q2
(q, u)(ξ, ξ) +

1
2
∂2f

∂u2
(q, u)(v, v) + . . .

Moreover q̇+ ξ̇ = f(q+ ξ, u+ v), and ξ can be written as δ1q+ δ2q+ . . ., where δ1q
is linear in v, δ2q is quadratic in v, etc, and by identification one gets

˙δ1q =
∂f

∂q
(q, u)δ1q +

∂f

∂u
(q, u)v, (2.4)

˙δ2q =
∂f

∂q
(q, u)δ2q+

∂2f

∂q∂u
(q, u)(δ1q, v)+

1
2
∂2f

∂q2
(q, u)(δ1q, δ1q)+

1
2
∂2f

∂u2
(q, u)(v, v),(2.5)

where δ1q(0) = δ2q(0) = 0. Hence δ1q and δ2q can be computed integrating linear
differential equations.
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Lemma 2.1. The Fréchet derivative E′q0,T of the end-point mapping is δ1q(T ).

Definition 2.3. A control u(t), 0 ≤ t ≤ T , with trajectory defined on [0, T ], is said
to be singular if the end-point mapping is singular at u, i.e. the Fréchet derivative of
the end-point mapping is not surjective at u. For each t ∈ (0, T ], the restriction of
u on [0, t] is singular. Denote K(t) the image of L∞(0, t) by the Fréchet derivative
of Eq0,t evaluated at u restricted to [0, t]. By construction K(t) is a vector space of
codimension k(t) ≥ 1, called codimension of the singularity.

The following result is standard.

Proposition 2.1. Let u(t), 0 ≤ t ≤ T , be a singular control and let q(t) be the
associated trajectory defined on [0, T ]. Then there exists p(t) ∈ IRn\{0}, such that
there holds a.e. on [0, T ]

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,
∂H

∂u
= 0, (2.6)

where H(q, p, u) = 〈p, f(q, u)〉. Moreover p(t) ⊥ K(t) for 0 < t ≤ T .

Definition 2.4. Let u be a singular control with response q(t) defined on [0, T ]. Let
N ⊂ L∞(0, T ) be the kernel of E′ evaluated at u and let p ∈ IRn\{0} be an adjoint
vector such that 〈p,E′

u(v)〉 = 0, ∀v ∈ L∞. The intrinsic second-order derivative
associated to (q, p, u) is the mapping E′′ : v ∈ N 7→ 〈p, δ2q〉, where δ2q is the second
variation defined by (2.5).

Remark 2.1. If the codimension of the singularity is one, p is unique up to a
scalar. In the general case1, along a singular trajectory we have a family of intrinsic
second-order derivatives parametrized by p.

Application to the space shuttle. Extremals of the (non convex) problem
project onto singular trajectories for the single input system q̇ = f(q, µ), where the
control is the angle of bank µ. Singular controls of the relaxed problem correspond
to singular trajectories of the bi-input system q̇ = X(q) + u1Y1(q) + u2Y2(q); they
can be computed5 using Lie brackets. Singular trajectories are feedback-invariant2

and for their computation we may replace Y1 = 1
2ρ

SCL

m v ∂
∂γ by the constant vector

field ∂/∂γ, and Y2 = 1
2ρ

SCL

m
v

cos γ
∂

∂χ by ∂/∂χ. Then there holds [Y1, Y2] = 0 and we
can consider γ and χ as direct controls. Singular trajectories are the singularities
of the corresponding end-point mapping.

Necessary and sufficient conditions of optimality for the L∞-topology in
the smooth case. The aim is to briefly recall recent works developed in 4 and 18

to get necessary and sufficient conditions of optimality in the L∞-topology and to
give an algorithm. This theory is based on the intrinsic second-order derivative and
on the concept of conjugate time.

Definition 2.5. Consider the time minimal control problem for the control system
q̇ = f(q, u) where u ∈ IR. Let u(t), t ∈ [0, T ], be a smooth extremal control with
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response defined on [0, T ]. The first conjugate time t1c is characterized by the fact
that u is locally optimal on [0, t] if t < t1c and no more optimal if t > t1c, for the
L∞-topology.

Let q(·) be a one-to-one reference trajectory, and let (q(·), p(·)) be an extremal
lift of the trajectory. We assume that (H1) the system is real analytic, (H2) the codi-
mension of the singularity is one, (H3) the strong Legendre condition ∂2H/∂u2 < 0
is satisfied, (H4) the reference extremal is normal. Using the implicit function the-
orem and (H3), the extremal control can be locally computed as a feedback û(q, p)
solving ∂H/∂u = 0. Let Ĥ(q, p) = H(q, p, û(q, p)). Then under the previous as-
sumptions our reference extremal is embedded into a family of extremals solutions
of the Hamiltonian differential equation associated to Ĥ.

Let q(t, q0, t0), p(t, q0, p0) denote such an extremal starting at time t = 0 from
(q0, p0). By homogeneity, we can assume that p0 belongs to Pn−1, the projective
space in Rn, and from (H4), Ĥ > 0. The exponential mapping expq0

: IR+×Pn−1 →
IRn is defined by expq0

(t, p0) = q(t, q0, p0).

Definition 2.6. Let z = (q, p). We call variational system associated to Ĥ along
the reference extremal the system δ̇z = ∂Ĥ

∂z (z(t))δz. A vertical Jacobi field J(t) =
(δq(t), δp(t)) on [0, T ] is a nontrivial solution of the variational system such that
δq(0) = 0.

Proposition 2.2. 18,4 Under the previous assumptions, the first conjugate time t1c

is the first t so that one of the following equivalent conditions holds:

(1) There exists a vertical Jacobi field J(·) = (δq(·), δp(·)) on [0, T ] satisfying
δq(t) = 0.

(2) The intrinsic second-order derivative E′′ has a nontrivial kernel at t.
(3) The exponential mapping expq0

is not submersive at (t, p0).

The algorithm. Conjugate times are computed along extremals of order 0 under
generic assumptions. Let us consider a reference extremal z(t) = (q(t), p(t)), t ∈
[0, T ], associated to the control µ and to the initial adjoint vector p0. We sup-
pose that assumptions (H1 − H4) are satisfied. Then the first conjugate time t1c

is the first t at which C(t) = det(δq1(t), . . . , δqn−1(t), f(q(t), µ(t))) vanishes, where
Ji = (δqi, δpi) is the vertical Jacobi field with initial condition δpi(0), and where
(δp1(0), . . . , δpn−1(0)) is a basis of the tangent space to Pn−1 at p0.

Remark 2.2. Here we consider an optimal control problem with fixed extremities
but the result can be straightforwardly extended to the case of initial and terminal
manifolds and leads to the concept of focal points, up to changing the boundary
conditions for the variational system.

Remark 2.3. Proposition 2.2 relates the computation of conjugate times to a
spectral property of the intrinsic second-order derivative and to a property of the
extremal flow. If the reference extremal is not smooth, conjugate times can be still
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computed in L1-topology using the extremal flow and the theory of envelopes20 for
broken extremals.

2.2. Optimal control with state constraints

Consider the time minimal control problem for a system of the form q̇ = f(q, u),
u ∈ U ⊂ IR, with a scalar state constraint of the form c(q) ≤ 0.

Definition 2.7. The generic order of the constraint is the first integer m such that
the control u appears explicitly in the m-order time derivative of t 7→ c(q(t)) where
q is a trajectory of the system. A boundary arc t 7→ qb(t) with boundary control ub

is an arc not reduced to a point and contained in c = 0. If the order of the constraint
is m, a boundary arc and the associated control can be generically computed by
differentiating m times the mapping t 7→ c(q(t)). A boundary arc is contained in
c = ċ = . . . = c(m−1) = 0; the constraint c = 0 is called primary and the constraints
ċ = . . . = c(m−1) = 0 are called secondary.

Maximum principle. A general maximum principle has been proved in the
constrained case, see for instance 12. We recall here a stronger version13,15. Let
q(·) be a piecewise smooth solution meeting the boundary of the domain with
order equal to the generic order of the constraint. Define the Hamiltonian as
H(q, p, u, η) = 〈p, f(q, u)〉 + ηc(q), where p is the adjoint vector and η is the La-
grange multiplier of the constraint. If q(·) is optimal then it satisfies the necessary
optimality conditions

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, and H(q, p, u, η) = max

v∈U
H(q, p, v, η), (2.7)

where t 7→ η(t) is continuous along the boundary arcs and satisfies η(t)c(q(t)) = 0.
At a contact or a junction time ti there holds H(ti+) = H(ti−), and p(ti+) =
p(ti−) + νi∂c/∂q,for νi ≥ 0. Moreover the transversality conditions still hold at the
extremities.

3. The space shuttle re-entry problem

The first part of this section is devoted to compute extremals of the system without
taking into account the state constraints; our algorithm to compute conjugate times
is applied along an extremal starting from our initial conditions. Then boundary
controls and boundary arcs are calculated for the constraints on the thermal flux
and on the normal acceleration, which happen to be the only active constraints
in our problem; the explicit computations are of course necessary for numerical
simulations but can be skipped by the reader. We then present the key point of this
section, namely the analysis of the longitudinal and lateral motion. It is applied to
compute an approximation of the optimal solutions.
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3.1. Extremal system for the problem without state constraint

The computations are quite intricate and were realized using formal computations
in Maple. For numerical reasons, the trajectories are not reparametrized using the
flux and the Hamiltonian is H̃ = 〈p,X+u1Y1+u2Y2〉+p0ϕ where p0 ≤ 0. According
to (2.3), an extremal control is given outside the switching surface, pγ = pχ = 0 by

u1 = cosµ =
cos γ pγ√

cos2 γ p2
γ + p2

χ

, u2 = sinµ =
pχ√

cos2 γ p2
γ + p2

χ

. (3.1)

The extremal system is the following.

dr

dt
= v sin γ

dv

dt
= −g0 sin γ

r2
− k ρ v2 + Ω2 r cosL (sin γ cosL− cos γ sinL cosχ)

dγ

dt
=

(
− g0
r2 v

+
v

r

)
cos γ + k′ ρ v cosµ+ 2 Ω cosL sinχ

+
Ω2 r

v
cosL (cos γ cosL+ sin γ sinL cosχ)

dL

dt
=
v

r
cos γ cosχ

dl

dt
=
v

r

cos γ sinχ
cosL

dχ

dt
=
k′ ρ v

cos γ
sinµ+

v

r
cos γ tanL sinχ+ 2 Ω (sinL− tan γ cosL cosχ)

+Ω2 r

v

sinL cosL sinχ
cos γ

dpr

dt
= −pv

(
2
g0 sin γ
r3

+
k ρ v2

hs
+ Ω2 cosL (sin γ cosL− cos γ sinL cosχ)

)
−pγ

((
2
g0
r3 v

− v

r2
)

cos γ − k′ ρ v

hs
cosµ+

Ω2

v
cosL (cos γ cosL+ sin γ sinL cosχ)

)
+pL

v

r2
cos γ cosχ+ pl

v

r2
cos γ sinχ

cosL

−pχ

(
− k′ ρ v

hs cos γ
sinµ− v

r2
cos γ tanL sinχ+

Ω2

v

sinL cosL sinχ
cos γ

)
+p0 Cq

√
ρ v3

2hs

dpv

dt
= −pr sin γ + 2 pv k ρ v − pγ

(( g0
r2 v2

+
1
r

)
cos γ + k′ ρ cosµ
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−Ω2 r

v2
cosL (cos γ cosL+ sin γ sinL cosχ)

)
− pL

cos γ cosχ
r

− pl
cos γ sinχ
r cosL

−pχ

( k′ ρ

cos γ
sinµ+

cos γ tanL sinχ
r

− Ω2 r

v2

sinL cosL sinχ
cos γ

)
−3 p0 Cq

√
ρ v2

dpγ

dt
= −pr v cos γ − pv

(
− g0
r2

cos γ + Ω2 r cosL (cos γ cosL+ sin γ sinL cosχ)
)

−pγ

(( g0
r2 v

− v

r

)
sin γ +

Ω2 r

v
cosL (− sin γ cosL+ cos γ sinL cosχ)

)
+pL

v

r
sin γ cosχ+ pl

v

r

sin γ sinχ
cosL

−pχ

(
k′ ρ v

sin γ
cos2 γ

sinµ− v

r
sin γ tanL sinχ− 2 Ω (1 + tan2 γ) cosL cosχ

+
Ω2 r

v

sinL cosL sinχ sin γ
cos2 γ

)
dpL

dt
= −pv

(
− Ω2 r sinL (sin γ cosL− cos γ sinL cosχ)

+Ω2 r cosL (− sin γ sinL− cos γ cosL cosχ)
)

−pγ

(
− 2 Ω sinL sinχ− Ω2 r

v
sinL (cos γ cosL+ sin γ sinL cosχ)

+
Ω2 r

v
cosL (− cos γ sinL+ sin γ cosL cosχ)

)
−pl

v

r

cos γ sinχ sinL
cos2 L

−pχ

(v
r

cos γ (1 + tan2 L) sinχ+ 2 Ω (cosL+ tan γ sinL cosχ)

+
Ω2 r

v

cos2 L sinχ
cos γ

− Ω2 r

v

sin2 L sinχ
cos γ

)
dpl

dt
= 0

dpχ

dt
= −pv Ω2 r cosL cos γ sinL sinχ− pγ

(
2 Ω cosL cosχ− Ω2 r

v
cosL sinL sin γ sinχ

)
+pL

v

r
cos γ sinχ− pl

v

r

cos γ cosχ
cosL

−pχ

(v
r

cos γ tanL cosχ+ 2 Ω tan γ cosL sinχ+
Ω2 r

v

sinL cosL cosχ
cos γ

)
For an extremal starting from q0 on the initial manifold (see Table 1), and

p0 = (0, 0,−3.10−8, 10−8, 0, 0), we can compute the first conjugate time using the
algorithm given previously. This leads to t1c = 392s.
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Remark 3.1. The analysis of the extremal flow5 is extremely complicated. In-
deed there are many singularities because the equations are meromorphic due to
the switching surface pγ = pχ = 0; moreover existence of optimal solutions is not
ensured in general because the problem is not convex and there exist singular ex-
tremals. This has a consequence on the classification of extremals9. Fortunately, in
our optimal problem, little is needed about the classification of extremals, because
of our boundary conditions and more precisely because χ(0), χ(tf ) and γ(tf ) are
free. Actually the transversality conditions yield the following results.

Lemma 3.1. If the initial or terminal longitude is free, then pl ≡ 0 and the problem
reduces to control a subsystem q̇ = f(q, µ), q = (r, v, γ, L, χ) ∈ IR5.

Lemma 3.2. If Ω = 0 and if the initial condition on (L, l, χ) is free then pχ ≡ pL ≡
pl ≡ 0 and the problem reduces to control the subsystem q̇1 = X(q1)+u1Y1(q1), with
q1 = (r, v, γ), describing the longitudinal motion.

This reduction is a key point of our analysis.

3.2. Constraints and boundary arcs

Constraints only concern the coordinates (r, v, γ), and are of generic order 2. We give
below the details of the computations for the thermal flux and normal acceleration
(actually the constraint on the dynamic pressure happens to be not active in our
problem, due to the boundary conditions).

The iso-flux phase. This phase of the flight, corresponding to a maximal thermal
flux, is characterized by the equations ϕ = ϕmax, ϕ̇ = 0. Derivating the latter
equality yields ϕ̈ = A + B cosµ + C sinµ = 0, where the coefficients A,B,C, may
be calculated using formal computations as

A =
1
4
Cq
√
ρv

h2
sr

4

(
v4r4 − 12hs

2Ω4r6 cos4 L cos2 γ cos2 χ− 4 v3hs r
4Ω cos γ cosL sinχ

+24h2
sg0 Ω2r3 sin γ cos γ sinL cosL cosχ+ 12 v2hs r

5Ω2 sin γ cos γ sinL cosL cosχ

−24 Ω2v2r4h2
s sin γ cos γ sinL cosL cosχ− 24hs

2Ω4r6 sin γ cos γ sinL cos3 L cosχ

−24 g0r2v hs
2Ω cos γ cosL sinχ+ 24 Ω3r5vhs

2 cos γ cosL sinχ+ 12h2
sΩ

4r6 cos4 L

−12 Ω2r4v2hs
2 cos2 γ cos2 L cos2 χ+ 12h2

sΩ
4r6 cos2 γ cos2 L cosχ− 14 v2hs r

5Ω2 cos2 L

+24 g0 hs
2Ω2r3 cos2 γ cos2 L− 12 Ω4r6h2

s cos2 γ cos4 L− 12 Ω2r4v2h2
s cos2 γ cos2 L

+12 v2Ω2r4h2
s cos2 L− 48hs

2g0 Ω2r3 cos2 L+ 12 v2hs r
5Ω2 cos2 γ cos2 L

−36 g0 h2
sv

2r cos2 γ − 12 v2hs r
2g0 cos2 γ + 12 v2Ω2r4hs

2 cos2 γ + 12 Ω4r6h2
s cos2 L

+26 v4hs r
4k ρ sin γ + 48h2

sk
2ρ2v4r4 − 72h2

sk ρ v
2r5Ω2 sin γ cos2 L

+72h2
sg0 k ρ v

2r2 sin γ + 72h2
sk ρ v

2r5Ω2 cos γ sinL cosL cosχ− v4r4 cos2 γ

−2 v4hs r
3 cos2 γ − 12 g02h2

s cos2 γ + 24 v2g0 rh
2
s + 24h2

sg0
2 + 14 v2hs r

2g0

)
,
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B = − 1
4

Cq
√

ρv

h2
sr4

(
2 v4hs r

4k′ ρ cos γ + 12 g0 h2
sk

′ ρ v2r2 cos γ − 12 Ω2r5h2
sk

′ ρ v2 cos γ cos2 L

−12 Ω2r5h2
sk

′ ρ v2 sin γ sinL cosL cosχ
)
,

C = 3Cq k
′ρ3/2v3Ω2r sinL cosL sinχ.

The term C is related to the Coriolis and centripetal effects and we notice nu-
merically that B < 0. In particular if Ω is neglected, C = 0 and we get
A+Bu1 = 0, u1 = cosµ. There is a solution |u1| ≤ 1 if B 6= 0 and |A/B| ≤ 1. If u1 is
not saturating to ±1, it corresponds to two distinct roots ±u2, with u2 = sinµ > 0.
The effect of u2 on the lateral motion is to increase or decrease χ̇ (±u2) with respect
to χ̇(0). More generally if Ω is not neglected and taking the bank angle in ]− π, π],
the control µ (if exists), is

µ = Arcsin −C/
√
B2 + C2 ±Arccos −A/

√
B2 + C2 [2π]. (3.2)

Actually the sign + is convenient for numerical reasons. Indeed the sign − would
lead L(t) to be decreasing; this would prevent the trajectory from reaching the
desired final point L(tf ). In fact we shall see that the latitude L(t) of the complete
optimal trajectory is an increasing function of time.

The iso-normal acceleration phase. As before a boundary arc is located on
γn = γmax

n , γ̇n = 0, and the boundary control is solution of γ̈n = D + E cosµ +
F sinµ = 0, where

D =
2ρ
h2

sr
4

(
h2

sg0
2 + v4r4 − v4 cos2 γ hs r

3 + 6h2
sk

2ρ2v4r4 + 5 v2hs r
2g0

+4 g0 v2rh2
s + 7 v4 sin γ hs r

4kρ+ 4 v2 sin γ hs r
5Ω2 cos γ sinL cosL cosχ

−4 v2 cos2 γ hs r
2g0 − 2 v3 cos γ hs r

4Ω cosL sinχ + 4 v2hs r
5Ω2 cos2 γ cos2 L

+8h2
sg0 kρ v

2r2 sin γ − 8h2
skρ v

2r5Ω2 sin γ cos2 L − 6 g0 h2
sv

2r cos2 γ

+8h2
skρ v

2r5Ω2 cos γ sinL cosL cosχ − 4 g0r2v h2
sΩ cos γ cosL sinχ

−4 Ω2v2r4hs
2 sin γ cos γ sinL cosL cosχ − 2 Ω2r4v2hs

2 cos2 γ cos2 L

−2 Ω2r4h2
s cos2 γ cos2 Lv2 cos2 χ − 5 v2hs r

5Ω2 cos2 L

−4hs
2g0 Ω2r3 cos2 L + 2 Ω2v2r4h2

s cos2 L − v4r4 cos2 γ

+2Ω2r4h2
sv

2 cos2 γ + 4 Ω3r5h2
sv cos γ sinχ cosL + 2 Ω4r6h2

s cos2 L
)
,

E = −ρ2k′ v2

r2hs

(
−2 Ω2r3 hs sin γ sinL cosL cosχ + v2r2 cos γ

−2 Ω2r3hs cos γ cos2 L + 2 g0hs cos γ
)
,

F = 2k′ρ2rv2Ω2 sinL cosL sinχ.
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3.3. Longitudinal motion

Notice that if the rotation Ω of the Earth may be neglected, the system governing
the longitudinal motion is of the form q̇ = X(q) + uY (q), where q = (r, v, γ) and
u = cosµ with |u| ≤ 1. The state constraints are of the form ci(q) ≤ 0 for i = 1, 2, 3.
The vectors fields X, Y defined by (1.9) are

X = (v sin γ)ψ
∂

∂r
−

(
g sin γ + kρv2

)
ψ
∂

∂v
+ cos γ

(
−g
v

+
v

r

)
ψ
∂

∂γ
, Y = k′ρvψ

∂

∂γ
,

where k = 1
2

SCD

m and k′ = 1
2

SCL

m . We now recall the results of 3 concerning the
longitudinal motion.

Lemma 3.3. In the flight domain where cos γ 6= 0, we have:

(1) X, Y, [X,Y ] are linearly independent.
(2) [Y, [X,Y ]] ∈ span{Y, [X,Y ]}.
(3) [X, [X,Y ]](q) = a(q)X(q) + b(q)Y (q) + c(q)[X,Y ](q), where a < 0.

Proposition 3.1.

(1) The small time reachable set R(q0) is homeomorphic to a closed convex cone
where the boundary is formed by the surfaces S1, S2, where S1 is the union of
trajectories of the form q−q+ representing an arc with control u = −1 followed
by an arc with control u = +1; S2 is the union of trajectories of the form q+q−.

(2) Each point in the interior of the cone is reached by an unique trajectory of
the form q−q+q− and q+q−q+, an arc q−q+q− being time minimal and an arc
q+q−q+ being time maximal.

(3) If T is small enough the set of points reached at minimal time T is homeomor-
phic to a closed disk in the plane, whose boundary is formed by extremities of
arcs q−q+ and q+q− and interior of arcs q−q+q−, where in the second case each
arc of the sequence is not empty.

In order to take into account the state constraints, we need some hypotheses.
Assumptions. The system is of the form q̇ = X(q) + uY (q) where u = cosµ and
each state constraint is of the form c(q) ≤ 0. If the constraints are of generic orderm,
the secondary constraints, ċ = . . . = c(m−1) = 0 write Y c = Y Xc = Y Xm−2c = 0,
and a boundary control is computed by solving c(m) = Xmc+uY Xm−1c = 0, where
a vector field Z acts on a function f by Lie derivative. Hence a boundary control
along a generic boundary arc qb writes ub = −Xmc|qb

/Y Xm−1c|qb
.

Let t 7→ qb(t), t ∈ [0, T ], be a boundary arc associated to the control ub. We
assume that (C1) Y Xm−1c|qb

6= 0, where m is the generic order, and (C2) |ub| <
1 on [0, T ], i.e. the boundary control is admissible and not saturating. From the
computations of Section 3.2, we have the following.

Lemma 3.4. The constraints on the thermal flux and on the normal acceleration
are of order 2 in the flight domain where cos γ 6= 0. Moreover assumption (C1) holds
along any boundary arc.
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Definition 3.1. The order of contact of arcs q−, q+ with the boundary arc in
c = ċ = 0 is greater than or equal to 2, and if assumption (C2) holds, the order is
2. In this case both arcs are denoted qT

−, q
T
+. A bridge between two constraints is

an arc q− or q+ tangent to both constraints with order 2, denoted qB
− or qB

+ .

Proposition 3.2. Assume (C2) holds along the boundary arc in the flight domain
of the space shuttle. Then a boundary arc is small time optimal, and a small time
optimal trajectory is of the form q−q

T
+qbq

T
+q−.

3.4. Remarks on bang-bang extremals (cos µ = ±1)

The cost extended system is of the form

q̇1 = f1(q1, cosµ) + ΩC(q,Ω), q̇2 = f2(q, sinµ) +O(Ω), l̇ = f3(q), q̇0 = f4(q1),

where q1 = (r, v, γ), q2 = (L, χ), q = (q1, q2) and f4(q1) = Cq
√
ρv3. We observe

that the control µ = kπ, k = 0 or 1, is singular, and the linearized system along the
corresponding trajectory writes

˙δ1q1 =
∂f1
∂q1

δ1q1 −
∂f1
∂u1

sinµ δµ+ Ω
∂C

∂q1
δ1q1 + Ω

∂C

∂q2
δ1q2,

˙δ1q2 =
∂f2
∂q

δ1q +
∂f2
∂u2

cosµ δµ+O(Ω), ˙δ1l =
∂f3
∂q

δq, ˙δ1q0 =
∂f4
∂q1

δq1,

where ∂C/∂q2 = 0 for L = 0 and χ = ±π/2. Moreover sinµ = 0 implies δ1q1 ≡ 0.
On the other part

˙δ1L = −v
r

cos γ sinχ δ1χ, ˙δ1l =
v

r
cos γ

(
cosχ
cosL

δ1χ+
sinχ sinL

cos2 L
δ1L

)
, (3.3)

˙δ1χ =
k′ρv

cos γ
cosµ δµ+

v

r
cos γ

(
tanL cosχ δ1χ+

sinχ
cos2 L

δ1L

)
+O(Ω). (3.4)

If Ω is neglected, the longitudinal motion is decoupled of the lateral motion. Let
K(t) denote the image of L∞ by the Fréchet derivative of the end-point mapping
for the extended system.

Lemma 3.5. If Ω = 0, the control µ = kπ is a constant extremal control
of order 0, and K(t) ⊂ span {∂/∂q2, ∂/∂l}. Let a = vcos γ sinχ sinL/r cos2 L,
b = −cotan χ/cosL. If χ 6= kπ and a 6= ḃ, the linearized system (3.3) is con-
trollable.

Proof. One has ∂/∂χ ∈ K(t), and the controllability of (3.3) is equivalent to the
controllability of the 2-dimensional system

˙δ1L = −v
r

cos γ sinχ δ1χ, ˙δ1l =
v

r
cos γ

(
cosχ
cosL

δ1χ+
sinχ sinL

cos2 L
δ1L

)
,

where δ1χ can be considered as a control. If sinχ 6= 0, up to the feedback
transformation u(t) = −v

r cos γ sinχ δ1χ, the system reduces to ˙δ1L = u(t),
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˙δ1l = a(t)δ1L + b(t)u(t) and can be written in the form ẋ = A(t)x + B(t)u. The
system is not controllable if and only if there exists p 6= 0 such that ṗ = −pA and
pB = 0. Differentiating we get p(−AB + Ḃ) = 0. This yields the sufficient condi-
tion a 6= ḃ. This condition, if satisfied for each t, is the regularity condition of 4 to
compute a normal form in the generic case.

3.5. Preliminary observation: a particular extremal

Here, there is no need to neglect Ω. We observe that trajectories such that χ(0) =
±π/2 and L(0) = 0 with control sinµ = 0 satisfy χ(t) = ±π/2 and L(t) = 0 for
each t. Moreover ∂C/∂q2 = 0 if χ = ±π/2 and L = 0 and hence δ1q1(t) = 0
if δ1q1(0) = 0. Finally from our previous computations K(t) = span{∂/∂q2} and
δ1l(t) = 0. Hence

Lemma 3.6. Even if the Earth rotation is not neglected, if χ(0) = ±π/2 and
L(0) = 0, then bank angles µ = kπ are constant extremal controls such that χ(t) =
±π/2, L(t) = 0 and K(t) = span{∂/∂q2}. Such trajectories are extremals of the
accessory problem of extremizing l(tf ) where the transfer time tf is fixed.

We next analyze the reachable set near the previous extremal. We assume χ(0) =
π/2, the case χ(0) = −π/2 being similar (and not needed).

Proposition 3.3. In the flight domain, trajectories with initial conditions χ(0) =
π/2, L(0) = 0 and corresponding to controls cosµ = ±1 are maximizing l(tf ), tf
fixed, for the L∞-topology on the set of controls.

Proof. Computing near χ(0) = π/2, L(0) = 0, one has

˙δ2l = v
r cos γ

(
δ1L2

2 − δ1χ2

2

)
, ˙δ1L = v

r cos γ(−δ1χ), (3.5)

˙δ1χ = k′ρv cos µ
cos γ δµ+ v

r cos γ δ1L+O(Ω) (3.6)

This system describes the projection on the space (L, l, χ) of the reachable set for
the L∞-topology near the reference trajectory so that cosµ = ±1 and sinµ = 0.
Introducing the parameterization dσ = v

r cos γdt the system (3.5) can be written as

d δ2l

dσ
=

1
2
(δ1L2 − δ1χ

2),
d δ1L

dσ
= −δ1χ,

d δ1χ

dσ
= α δ1L+ β δu,

where β is not vanishing. The quadratic form δ2l(σf ) =
∫ σf

0
1
2 (δ1L2 − δ1χ

2)dσ
together with the boundary conditions δ1L = δ1χ = 0 at times 0 and σf , represents
the intrinsic second-order derivative in the direction pl 6= 0, the other components
of p being 0. To conclude we need the following lemma.

Lemma 3.7. 4,21 The quadratic form δ2l(σf ) with ˙δ1L = −δ1χ, ˙δ1χ = v and the
boundary conditions δ1L(0) = δ1L(σf ) = 0 is negative up to a first conjugate time
t1c given by π =

∫ t1c

0
v
r cos γdt.
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A rough numerical estimate gives t1c > 2500s. The flight duration being less
than 1300s, the proposition follows.

Remark 3.2. Notice that in our evaluation of the conjugate time, the smoothness
of the reference extremal is not required. Hence our proposition still holds for a
concatenation of bang arcs q− and q+ corresponding to cosµ = ±1.

Our preliminary analysis permits to construct an approximation of the optimal
policy. The trajectory splits into two parts.

3.6. Joining the iso-flux phase, and Coriolis effect

The boundary values r(0), v(0), γ(0), L(0), r(tf ), v(tf ), L(tf ), l(tf ) are fixed, l(0)
is fixed or free and χ(0), γ(tf ), χ(tf ) are free, see Table 1.

Lemma 3.8. If Ω = 0, then for all control µ, the trajectory starting from
(r(0), v(0), γ(0)) corresponding to µ, violates the constraint on the thermal flux be-
fore reaching the desired terminal point.

Proof. Assume Ω = 0 and consider the longitudinal motion. According to propo-
sition 3.1, the small time reachable set is bounded by surfaces S1, S2 formed by
arcs q+q− and q−q+. Hence it is sufficient to check that all trajectories of type q+q−
and q−q+ starting from the initial point violate the constraint on the flux, which is
easy to check numerically.

As a consequence, at the beginning of the trajectory the rotation Ω of the
earth cannot be neglected . This can be easily understood if we consider in (1.1) the
equation γ̇ =

(
− g

v + v
r

)
cos γ + k′ρv cosµ + Fc + Fe, where Fc = 2Ω cosL sinχ is

the Coriolis component, and Fe = Ω2 r
v cosL(cos γ cosL + sin γ sinL cosχ) is the

centripetal component. At the entrance in the atmosphere, the lift force is small
and Fc has to be used to compensate the gravitational term −g/v. In particular, at
the beginning we must have Fc + Fe > 0. Concretely the Coriolis force helps to lift
up the nose of the shuttle so that it does not violate the constraint on the thermal
flux.

Lemma 3.9. At the beginning of the flight Fe = o(Fc), Fe + Fc ∼ Fc and Fc has
its maximal value for L = 0 and χ = π/2.

Since L(0) = 0, we are led to choose χ(0) near π/2. Actually one can check on
numerical simulations that trajectories which do not violate the constraint on the
thermal flux have indeed their initial azimuth χ(0) ≈ π/2.

Proposition 3.4. If we assume Ω = 0 and l(0) free, by modifying slightly the initial
data r(0), v(0) and γ(0) of Table 1, the optimal policy of the whole system is the
optimal policy of the projected 3-dimensional system controlled by u1 = cosµ and
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describing the longitudinal motion, L being increasing and L(tf ) is adjusted using
χ(0).

Proof. We choose q1(0) = (r(0), v(0), γ(0)) closed enough from the initial data
such that the Coriolis effect is not needed and the reachable set meet the con-
straint on the thermal flux where the boundary control is admissible. Consider
after reparemetrization by the flux, the associated optimal control problem. For the
longitudinal motion the terminal manifold M1 given by r(tf ), v(tf ) fixed, γ(tf )
free and let t∗f be the optimal time. Then the optimal time t∗∗f for the whole system
satisfies t∗∗f ≥ t∗f . Hence assume we can find χ(0) such that L(t∗f ) has the desired
value, then it is the optimal policy.

In our problem the boundary conditions on the latitude are L(0) = 0, L(tf ) =
10.99 deg and from our previous analysis χ(0) is near π/2. The control u1 = cosµ
is defined by the longitudinal motion and u2 = sinµ is chosen such that χ ∈ [0, π/2]
and hence L increases. This amounts to choose, along the constraint one of the two
boundary described in section 3.2. For instance, for the constraint on the thermal
flux we choose the root such that sinµ < 0 and χ decreases from χ(0) ≈ π/2.

3.7. The second part of the trajectory

Actually the assumption Ω 6= 0 is crucial only when tracking the constraint on the
thermal flux and we assume from now on that Ω = 0. Indeed it may be checked nu-
merically that, from this point, the Coriolis and centripetal forces may be neglected
with respect to friction and gravitational forces. We have two problems to analyze:
the initial longitude can be free or fixed. The first case is simpler and analyzed next.

Problem 1: the initial longitude is free. Since the variable l does not appear
in the dynamics, our problem reduces to a 5-dimensional system in the variables
(r, v, γ, L, χ). Knowing l(tf ), the convenient initial longitude l(0) is computed by
backward integration.

It can be checked numerically using the boundary conditions that both con-
straints on the thermal flux and on the normal acceleration are active but if one
saturates the constraint on the dynamic pressure, the desired final point is not
accessible. Hence this latter constraint is not active in our problem.

Proposition 3.5. 3 Consider the system q̇ = X + uY, q ∈ IR3, |u| ≤ 1, describing
the longitudinal motion with the two constraints ci(q) ≤ 0, i = 1, 2 on the thermal
flux and the normal acceleration. The small time optimal policy is of the form
q−q

T
+qfluxq

B
+qaccq

T
+q−, where qflux (resp. qacc) is a boundary arc corresponding to

the constraint on the thermal flux (resp. on the normal acceleration), and qB
+ is the

bridge between the constraints on the thermal flux and on the normal acceleration.

The previous proposition describes locally the optimal policy for the longitudinal
motion with fixed boundary conditions on (r, v, γ). In our problem the terminal path
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inclination γ is free, and a straightforward computation shows that the optimal pol-
icy is of the form q−q

T
+qfluxq

B
+qaccq

T
+, a switching being removed at the end because

pγ(tf ) = 0 (and thus the final arc q− is trivial). Using the remarks of the previous
section, this policy actually holds for the whole system, L(tf ) being adjusted with
χ(0). To make this result global (in the sense of the transfer time), we use numer-
ical simulations based on the following facts. Global optimal results are related to
the topological properties of the mapping E1 : q0 7→ q−q

T
+qfluxq

B
+qaccq

T
+(q0), which

describes the extremal flow along the reference trajectory. They can be investigated
either theoretically or numerically by checking that the above policy is the only
extremal policy.

Remark 3.3. We assume Ω = 0 in the second part of the trajectory. The approxi-
mation sinµ ≈ 0 outside the constraints can be checked by inspecting the extremal
flow, showing that pχ � pγ except on a short duration in the first part before
reaching the constraint and in the second part when starting from the constraint.
Numerical simulations are given on Fig. 2.

Fig. 2. The extremal flow.

The peaks of the ratio pχ/pγ observed on the figures are due to the vanishing of pγ ,
and in our approximation policy they correspond to switching times. Outside these
peaks the ratio |pχ/pγ | is uniformly very small, less than 10−3. Hence the following
proposition holds with a very good approximation.

Proposition 3.6. For the space shuttle re-entry problem where the initial longi-
tude is not fixed, the optimal policy corresponding to the boundary conditions is, in
approximation, of the form q−q

T
+qfluxq

B
+qaccq

T
+.

Problem 2: the initial longitude is fixed. We have the following result.

Proposition 3.7. For the space shuttle re-entry problem where the initial longitude
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is fixed, the optimal policy corresponding to the boundary conditions is, in approxi-
mation, of the form q−q

T
+qfluxq

T
+q−.

Proof. Our proof is related to numerical simulations. In the first problem where
the initial longitude is free, numerical simulations yield l(tf ) − l(0) ' 40 deg; in
the second problem the value imposed by the CNES is about 50 deg. Hence, in
the second problem, the strategy consists in increasing the final longitude. Notice
that l̇ = vcos γ sinχ/r cosL, where L is close to 0, and moreover numerically we
check that χ(t) ∈ (0, π/2] necessarily; hence l is an increasing function of t. In
particular, in the second part of the trajectory, we can reparametrize the system by
the longitude l, and if Ω is neglected the system writes

dr
dl = r tan γ cos L

sin χ , dv
dl = −kρ r v

cos γ
cos L
sin χ − gr cos L tan γ

v sin χ ,
dL
dl = cos L

tan χ ,
dχ
dl = k′ρ r

cos2 γ
cos L
sin χ sinµ+ sinL.

In particular, if sinµ = 0, we have tanχ tanLdL = dχ. Therefore our control
problem reduces to reach the desired value r(lf ), v(lf ) and L(lf ) where lf is fixed,
whereas χ(0) is used to adjust L(lf ). Hence a final arc qT

+q− is needed to reach
the terminal point. On the other hand, a numerical computation shows that in
order to increase the final longitude we must decrease the time along the boundary
of the domain and in particular we cannot saturate the constraint on the normal
acceleration.

As in problem 1, our result is only an approximation of the optimal policy.
Indeed, outside the constraints, the approximation pχ � pγ holds except during a
short duration and similarly to the previous problem it can be checked numerically
using the extremal flow.

On the other part, the global aspect of the policy is as previously a consequence
of the topological properties of the surface E2(q0) = q−q

T
+qfluxq

T
+q−(q0) with respect

to the terminal manifold where q0 belongs to the initial manifold defined by the
initial conditions.

4. Numerical simulations

Having reduced the problem to determine an approximation of the optimal pol-
icy among a concatenation of bang and boundary arcs, either q−qT

+qfluxq
B
+qaccq

T
+

or q−qT
+qfluxq

T
+q−, the switchings times are computed using a standard multiple-

shooting algorithm19,6,11. The algorithm is written in Fortran and simulations were
led using Matlabb.
Our reduction procedure avoids the implementation of the complete extremal sys-
tem. This is essential in order to improve the convergence of the algorithm. The
results are the following, we distinguish between both problems.

bhttp://www.m2.mathematik.tu-muenchen.de/Software/mumus
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Problem 1: initial longitude not fixed. Switching times and initial values of
longitude and azimuth have to be determined by the multiple-shooting method.
More precisely, the first switching time, from q− to q+, allows to adjust the entry in
the iso-flux phase, which is characterized by ϕ = ϕmax, ϕ̇ = 0; the third switching
time, from qflux to q+, is used to adjust the entry in the iso-normal acceleration
phase; the fifth switching time, from qacc to q+, permits to adjust the final velocity
v(tf ); the initial azimuth χ(0) is used to adjust the terminal latitude L(tf ). On the
other part the final time is determined by the final altitude. Results are drawn on
Fig. 3, Fig. 4 and Fig. 5.

Fig. 3. State coordinates in problem 1.

Problem 2: initial longitude fixed. Switching times and the initial value of
azimuth have to be determined by the multi-shooting method. More precisely, the
first switching time, from q− to q+, allows to adjust the entry in the iso-flux phase;
the third switching time, from qflux to q+, permits to adjust the final velocity v(tf );
the fourth switching time, from q+ to q−, is used to adjust the final longitude l(tf );
the initial azimuth χ(0) allows to adjust the terminal latitude L(tf ). Results are
drawn on Fig. 6, Fig. 7 and Fig. 8.

Appendix: numerical data

• Earth radius rT = 6378139 m;
gravity model: g(r) = g0

r2 , with g0 = 3.9800047.1014 m3.s−2;
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Fig. 4. Bank angle in problem 1.

Fig. 5. State constraints in problem 1.

Earth rotation velocity Ω = 7.292115853608596.10−5 rad.s−1.
• Atmospheric density ρ(r) = ρ0exp (−(r − rT )/hs), with ρ0 = 1.225 kg.m−3 and
hs = 7143 m.

• Sound velocity vson(r) =
∑5

i=0 air
i, where

a5 = −1.880235969632294.10−22, a4 = 6.074073670669046.10−15,

a3 = −7.848681398343154.10−8, a2 = 5.070751841994340.10−1,

a1 = −1.637974278710277.106, a0 = 2.116366606415128.1012.
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Fig. 6. State coordinates in problem 2.

Fig. 7. Bank angle in problem 2.

• Mach number Mach(v, r) = v/vson(r).
• Shuttle data: mass m = 7169.602 kg;

reference surface S = 15.05 m2;
drag coefficient k = SCD/2m;
lift coefficient k′ = SCL/2m;

• Aerodynamic coefficients:

Table of CD(Mach, incidence)
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Fig. 8. State constraints in problem 2.

0.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 deg
0.00 0.231 0.231 0.269 0.326 0.404 0.500 0.613 0.738 0.868 0.994 1.245
2.00 0.231 0.231 0.269 0.326 0.404 0.500 0.613 0.738 0.868 0.994 1.245
2.30 0.199 0.199 0.236 0.292 0.366 0.458 0.566 0.688 0.818 0.948 1.220
2.96 0.159 0.159 0.195 0.248 0.318 0.405 0.509 0.628 0.757 0.892 1.019
3.95 0.133 0.133 0.169 0.220 0.288 0.373 0.475 0.592 0.721 0.857 0.990
4.62 0.125 0.125 0.160 0.211 0.279 0.363 0.465 0.581 0.710 0.846 0.981

10.00 0.105 0.105 0.148 0.200 0.269 0.355 0.458 0.576 0.704 0.838 0.968
20.00 0.101 0.101 0.144 0.205 0.275 0.363 0.467 0.586 0.714 0.846 0.970
30.00 0.101 0.101 0.144 0.208 0.278 0.367 0.472 0.591 0.719 0.849 0.972
50.00 0.101 0.101 0.144 0.208 0.278 0.367 0.472 0.591 0.719 0.849 0.972
Mach

Table of CL(Mach, incidence)

0.00 0.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 deg
0.00 0.000 0.185 0.291 0.394 0.491 0.578 0.649 0.700 0.729 0.734 0.756
2.00 0.000 0.185 0.291 0.394 0.491 0.578 0.649 0.700 0.729 0.734 0.756
2.30 0.000 0.172 0.269 0.363 0.454 0.535 0.604 0.657 0.689 0.698 0.723
2.96 0.000 0.154 0.238 0.322 0.404 0.481 0.549 0.603 0.639 0.655 0.649
3.95 0.000 0.139 0.215 0.292 0.370 0.445 0.513 0.569 0.609 0.628 0.626
4.62 0.000 0.133 0.206 0.281 0.358 0.433 0.502 0.559 0.600 0.620 0.618

10.00 0.000 0.103 0.184 0.259 0.337 0.414 0.487 0.547 0.591 0.612 0.609
20.00 0.000 0.091 0.172 0.257 0.336 0.416 0.490 0.552 0.596 0.616 0.612
30.00 0.000 0.087 0.169 0.258 0.338 0.418 0.493 0.555 0.598 0.619 0.613
50.00 0.000 0.087 0.169 0.258 0.338 0.418 0.493 0.555 0.598 0.619 0.613
Mach

• Incidence profile imposed: if the Mach number is larger than 10 then the inci-
dence is set to 40. If the Mach number is between 2 and 10 then the incidence
is a linear function of the Mach number between the values 12 and 40. If the
Mach number is less than 2 then the incidence is set to 12 (see Fig. 9).

• State constraints:
Constraint on the thermal flux ϕ = Cq

√
ρv3 ≤ ϕmax, where Cq = 1.705.10−4

S.I. and ϕmax = 717300 W.m−2.
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Fig. 9. Incidence profile in function of the Mach number

Constraint on the normal acceleration γn = S
2m ρv2

√
C2

D + C2
L ≤ γmax

n , where
γmax

n = 29.34 m.s−2.
Constraint on the dynamic pressure P = ρv2/2 ≤ Pmax = 25000 kPa.

Appendix 2: numerical simulations without taking into account
the state constraints

In this appendix we give the numerical results for the problem of steering the
shuttle from the initial to the final set prescribed by Table 1, minimizing the total
thermal flux, but without taking into account the state constraints. In this case an
approximation of the optimal policy is a concatenation of bang arcs, namely q−q+
in the first problem (initial longitude not fixed) or q−q+q− in the second problem
(initial longitude fixed).

Problem 1: initial longitude not fixed. The switching time and initial values
of longitude and azimuth are determined by the multiple-shooting method. More
precisely the (unique) switching time permits to adjust the final velocity v(tf ), and
the initial azimuth χ(0) is used to adjust the terminal latitude L(tf ). Results are
drawn on Fig. 10, Fig. 11 and Fig. 12.

Problem 2: initial longitude fixed. The switching times and the initial value of
azimuth are determined by the multiple-shooting method. More precisely the first
(resp. second) switching time permits to adjust the final velocity v(tf ) (resp. the
final longitude l(tf )), and the initial azimuth χ(0) is used to adjust the terminal
latitude L(tf ). Results are drawn on Fig. 13, Fig. 14 and Fig. 15

In both cases, state constraints are indeed violated, as expected.
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