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GLOBAL STEADY-STATE CONTROLLABILITY OF 1-D
SEMILINEAR HEAT EQUATIONS

JEAN-MICHEL CORON AND EMMANUEL TRELAT*

Abstract. We investigate the problem of exact boundary controllability of semilinear one-
dimensional heat equations. We prove that it is possible to move from any steady-state to any other
one by means of a boundary control, provided that they are in the same connected component of
the set of steady-states. The proof is based on an effective feedback stabilization procedure which is
implemented.
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1. Introduction.

1.1. Statement of the main result. Let L > 0 fixed and f : R = IR be a
function of class C2. Let us consider the boundary control system

oy %y
a—@‘*'f(y),

y(t7 0) =0, y(taL) = u(t)a

where the state is y(¢,.) : [0, L] = IR and the control is u(t) € R.

Concerning the global controllability problem, one of the main results [5] asserts
that if f is globally lipschitzian then this control system is approximately globally
controllable, see also [11] for exact controllability. When f is superlinear the situation
is still widely open, in particular because of possible blowing up. Indeed it is well
known that if y f(y) > 0 as y # 0 then blow-up phenomena may occur for the Cauchy
problem

(1.1)

oy 9%y
a—@ﬂLf(y),
y(t,0) =0, y(t,L) =0,

y(0,z) = yo(z).

(1.2)

For example if f(y) = y® then for numerous initial data there exists T > 0 such that
the unique solution to the previous Cauchy problem is well defined on [0,T") x [0, L]
and satisfies

li t, )| p oo = ’
I ly (8, )l e o,y = +00

see for instance [1, 8, 2, 12, 14, 15, 18] and references therein.

One may ask if, acting on the boundary of [0, L], one could avoid the blow-up
phenomenon. Actually the answer to this question is negative in general, see [7]: for
some nonlinear functions f satisfying

|7 ()| ~ lyllog?(1 +Jy]) as [y| = +oo,

*Université Paris-Sud, Laboratoire ANEDP, Mathématique, UMR 8628, Bat. 425, 91405 Orsay
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2 J.M. CORON AND E. TRELAT

with p > 2, and for any time T > 0, there exist initial data which lead to blow-up
before time T', whatever the control function u is. Notice however that if

£@)] = o (Iyllog™* (L +yD)) s ly] = +oo,

then the blow-up (which could occur in the absence of control) can be avoided by
means of boundary control, see [7].

Nevertheless in the first case where the blow-up phenomenon cannot be compen-
sated by means of boundary control the situation is not completely desperate. In fact
as we shall see in this paper, we can move from any given steady-state to any other
one belonging to the same connected component of the set of steady-states. More
precisely let us define the notion of steady-state.

DEFINITION 1.1. A function y € C%(]0, L]) is a steady-state of the control system
(1.1) if

2
Ty 1) =0, y0) =0
We denote by S the set of steady-states, endowed with the C? topology.
Let us also introduce the Banach space

vr = {y(t.2), (t,2) € (0.7) x (0,L) / y € L*(0,T,W**(0, L))
(1.3)

Oy 2

and 22 € L7((0,T) (O,L))}

endowed with the norm

Oy

Wiy, = Iollzamwazo,n) + H -

L2((0,T)x(0,L)) ‘

Notice that Y7 is continuously imbedded in L ((0,T') x (0, L)).

The main result of the paper is the following.

THEOREM 1.2. Let yo and yy be two steady-states belonging to a same connected
component of S. There ezist a time T > 0 and a control function u € L*(0,T) such
that the solution y(t,z) in Yr of

oy 0%

e + f(y),

y(t,0) =0, y(t,L) = u(t),
y(O,a:) = IUO(QU);

satisfies y(T,.) = y1(.).

REMARK 1.3. In fact we prove the following result: for all neighborhood V of
y1 in H'-topology, there erists a positive real number gy such that for all € € (0,&0)
there exist a control function u € H'(0,1/¢) such that the solution y(t,z) in Yr of
the Cauchy-Dirichlet problem (1.4) satisfies y(1/e,.) € V.

In the proof of this result, which represents the main part of the paper, we give
an explicit construction of the control u in a feedback-type form, and of a Lyapunov
functional. We stress that the procedure is effective and consists actually in solving
a stabilization problem in finite dimension. Indeed in order to construct u we need
to compute only a finite number of quantities related to an Hilbertian expansion of
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the solution. The procedure has been implemented numerically, and simulations are
presented in the last section of the paper.

REMARK 1.4. For any T > 0 and u € L?(0,T) there is at most one solution of
(1.4) in the Banach space Yr.

REMARK 1.5. This is a (partial) global exact controllability result. The time
needed in our proof is large, but on the other hand there are indeed cases where the
time T of controllability cannot be taken arbitrarily small. For instance in the case
where f(y) = —y®, any solution of (1.4) starting from 0 satisfies the inequality

L
/ (L — z)*y(T, z)*dr < 8LT,
0

and hence if yo = 0 a minimal time is needed to reach a given y, # 0. This result is
due to Bamberger [10], see also [9, Lemma 2.1].

REMARK 1.6. In Section & we prove that if yo and y; belong to distinct connected
components of S, then it is actually impossible to move either from yg to y1 or from y;
to yo, whatever the time and the control are. In the same section we also investigate
the connectedness of the set S of steady-states.

REMARK 1.7. The result of Th. 1.2 may be achieved directly by using repeatedly a
local exact controllability theorem, see [9, Th. 4.4] or [11, Th. 3.3]. Here we present a
new controllability strategy, based on a feedback stabilization procedure, which is more
effective. It is clear also that this approach may be applied to other problems, without
requiring controllability of the linearized system around an equilibrium, see [3].

1.2. The idea of the proof. The method we shall use to prove Th. 1.2 is stem-
ming from classical Lyapunov stability theory together with quasi-static deformation
theory. For sake of simplicity we explain it in finite dimension. Let us consider in R"
a general control system of the form

y(t) = g(y(t), u(?)), (1.5)

where g : R"xR™ — R" is of class C', u(t) € U, and U denotes the set of measurable
essentially bounded admissible controls. Let yg,y1 € IR" be two equilibrium points of
system (1.5), that is

g(yz;uz) = 07 = 07 ]-5

for some ug,u; € R™. We assume that (yo,ug) and (y1,u;) belong to the same con-
nected component of the zero set of g in R" x R™. Our aim is to steer the system
from yp to y; in some (large) time 7" > 0. The method splits into four steps:

First step. Construct a Cl-path (y(7),a(7)), with 7 € [0,1], connecting (yo,uo) to
(y1,u1) and such that

vrel0,1] g(g(r),u(r)) = 0.

Of course this path is not in general solution of system (1.5), but if € > 0 is small
enough then the C'-path (y°,u®)

[0,1/e] - R"xR™
t o= (Y (), us (1) = (F(et), alet))
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is “almost” a solution of system (1.5). Indeed
l9° — g(y*, %)l = O(e).

Second step. This quasi-static trajectory is not in general stable, and thus has to
be stabilized. To this aim, introduce the following change of variable:

2(t) = y(t) —y= (1),
u(t) = u(t) — u(t),

where ¢t € [0,1/¢]. In the new variables z,v, the control system writes, at least if
[|z(®)]| + ||v(t)]| is small enough,

#(t) = A(et)z(t) + Bet)o(t) + O(l=(®)|1* + lo(@)I* + &),
where ¢ € [0,1/¢], and where

PN 09, , . _

A(r) = 5 (4(7),u(r)) and B(1) = 5 (y(7),u(7)),

with 7 = et € [0,1]. Therefore we have to stabilize near the origin a slowly-varying in
time linear control system; we refer to [13] for this classical theory.

Third step. Under mild controllability assumptions, namely
V7 €1]0,1] rank (B(T), A(r)B(7),- . ,A(T)n_lB(T)) =n

(Kalman condition) it is actually possible to stabilize the system by pole shifting and
to construct a quadratic Lyapunov function. Notice that this does not work in general
if the system is not slowly-varying. So if € is small enough then using this Lyapunov
function we infer that y(1/¢) belongs to some prescribed neighborhood of the target
y1- At this stage, a stabilization result is achieved.

Fourth step. If the system (1.5) is locally controllable near the point y;, we conclude
that it is possible to steer the system in finite time from the point y(1/¢) to the desired
target y;. Usually such a local controllability result is achieved by using an implicit
function argument, after proving that the linearized system is controllable.

REMARK 1.8. The use of quasi-static deformation for the controllability of a
nonlinear partial differential control system has already been used in [3]. But note
that in [3] the quasi-static trajectory (y°,u®) was stable so it was not necessary to
perform steps 2 and 3.

2. Proof of the main results. In order to prove Th. 1.2 we shall exactly follow
the steps described previously.

2.1. Construction of a path of steady-states. The following lemma is obvi-
ous.

LEMMA 2.1. Let ¢g,¢1 € S. Then ¢g and ¢1 belong to the same connected
component of S if and only if for any real number a between ¢p(0) and @} (0) the
mazximal solution of

d?y

CL 4 0) =0, 4(0) =0,4/(0) =,
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denoted by y*(.), is defined on [0, L].

Let now yo and y; in the same connected component of S. Let us construct in S
a C! path (g(7,.),u(7)), 0 < 7 < 1, joining yo to y;. For each i = 0,1 set

a; = y;(0).
Then with our previous notations: y;(.) = y*i(.),i = 0,1. Now set
y(r,z) =y 77t (z) and u(r) = y(, L),
where 7 € [0,1] and z € [0, L]. By construction we have
y(0,.) =9o(.), ¥(1,.) =91(.) and u(0) =u(l) =0,

and thus (3(r,.),@(7)) is a C* path in S connecting yo to y1.

2.2. Reduction of the problem. Let € > 0. We set, for any t € [0,1/e] and

any z € [0, L],
(2.1)

Then from the definition of (7, @) we infer that z satisfies the initial-boundary problem

1
2% = Zge + F1(§)2 + 22 / (1—8)f" (g + s2)ds — €i»,
0

2.2
z(t,0) =0, 2(t,L) = v(t), (22)
2(0,z) = 0.
Now, in order to deal rather with a Dirichlet-type problem, we set
w(t,z) = 2(t,z) — %v(t), (2.3)

and we suppose that the control v is derivable. This leads to the following equation:

W= weo + f @+ L @v = TV + (et 2),
w(t,0) = w(t,L) =0, (2.4)
w(0,2) = ~Zv(0),

where

r(e,t,x) = —ey, + (w + %0)2 /01(1 —s)f" (gj + s(w + %v)) ds, (2.5)

and the next step is to prove that there exist € small enough and a pair (v,w) so-
lution of (2.4) such that w(1/e,.) belongs to some arbitrary neighborhood of 0 in
Hl-topology. To achieve this we shall construct an appropriate control function and
a Lyapunov functional which stabilizes system (2.4) to 0.

In fact as we shall see the control will be chosen in H'(0,1/¢) and such that
v(0) = 0.
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2.3. Construction of a Lyapunov functional. This is the most technical part
of the work. In order to motivate what follows, let us first notice that if the residual
term r and the control v were equal to zero then Eq. (2.4) would reduce to

Wy = Wgy + fl(g)wa
w(t,0) = w(t, L) = 0.

This suggests to introduce the one-parameter family of linear operators
A(r) = A+ f'(g(r,)1d, 7 €[0,1], (2.6)

defined on H?(0,L) N H{(0,L). Let (e;(7,.))j>1 be an Hilbertian basis of L?(0, L) of
eigenfunctions of A(7), such that for each j > 1 and each 7 € [0, 1],

ej(7,.) € Hy(0,L) n C*([0, L)),

and let (A\;(7));>1 denote the corresponding eigenvalues. A standard application of
the minimax principle (see for instance [16]) shows that these eigenfunctions and
eigenvalues are C! functions of 7. Moreover for each 7 € [0, 1]

—00 < - < A7) <o < A1) and A,(r) — —o0.
n—-+00
From the continuity of the eigenvalues on [0,1], we can define n as the maximal

number of eigenvalues taking at least a nonnegative value as 7 € [0,1], i.e. there
exists n > 0 such that

Vte[0,1/e] VE>n M(et) < —n<O. (2.7

REMARK 2.2. Note that the integer n can be arbitrarily large. For example if
f(y) = y3 and if y|(0) = +o0 then n — +oo.
We also set, for any 7 € [0,1] and = € [0, L],

a(r,z) = %f’(ﬂ(T, z)) and b(z) = —%,
In these notations system (2.4) leads to

wy(t,.) = A(et)w(t,.) + a(et, . )v(t) + b()v'(t) + r(e,t,.). (2.8)

Any solution w(t,.) € H?(0,L) N H}(0,L) of (2.8) can be expanded as series in the
eigenfunctions e;(t,.), convergent in Hj (0, L),

oo

’U)(t, ) = Z w; (t)ej (Eta )

Jj=1

In fact the w;’s depend on € and should be called, for example, w$. For simplicity we
omit the index €, and we shall also omit the index e for other functions.

In what follows we are going to move, by means of an appropriate feedback control,
the n first eigenvalues of the operator A, without moving the others, in order to make
all eigenvalues negative. This pole shifting process is the first part of the stabilization
procedure, see [17, p. 711].
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For any 7 € [0,1] let 71 (7) denote the orthogonal projection onto the subspace of
L?(0, L) spanned by e;(7,.),...,en(T,.), and let

wl(t) = m(et)w(t,.) = iwj (t)ej(et,.). (2.9)

It is clear that for any 7 the operators 71 (7) and A(7) commute, and moreover for
any y € L?(0, L) we have

° Oe; ~ Oe;
O = D s Doy o) + D <y ) )
T L2(0,L)

i=1
Hence derivating Eq. (2.9) with respect to ¢ we get

n

3" wh(t)ej(et,.) = m (et)ywit +EZ< .. 66] (et, .)> ej(et,.).
L2(0,L)

=1

On the other part

A(etyw' (t) = i)\j (et)w;(t)e;(et, ),
and thus Eq. (2.8) yields
i wg- (t)ej(et,.) = i Aj(et)w;(t)e;(et,.) + mi(et)alet, )v(t) 2.10)

+ w1 (et)b( )V (t) + (e, t,.),

where

Tl(gjt, ) =7r1(6t)7“(€,t, )+EZ< w, % (Et )> €j(Et, ) (211)

L(0,L)

Let us set an upper bound to the residual term r!. First, it is not difficult to check
that there exists a constant C' such that if |v(t)| and ||w(Z,.)||L=(0,z) are less than 1
then the inequality

lIr(et, Mlpe=(o,zy < Cle +v(®)? + llw(t, ML (o,))
holds, where r is defined by (2.5). Therefore we get easily
I (e,t, lzeo 0,0y < Cule + (1) + w(t, N (o,z))-

Moreover since H1(0, L) is continuously imbedded in C°([0, L]), we can assert that
there exists a constant C such that if |v(t)| and ||w(t,.)||L=(o,z) are less than 1 then

I (e,t, Mzee(o,) < Cale +v(®)” + lwt, M o,r)- (2.12)
Now projecting Eq. (2.10) on each e;,i = 1...n, one comes to

wh(t) = Xi(et)w; (t) + ai(et)v(t) + bi(et)' (t) + 71 (e, t), i=1...n, (2.13)
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where

ri(e,t) = (r'(e,t,.), ei(et, SNETNAR

az-({-_‘t) = (a(at, .), ei(&?t, '))L2(0,L) = % /0 -'L'fl (g(&‘t, m))e, (Eta .Z')dl‘, (2_14)

1 L
bi(st) = (b(')aei(Eta '))Lz(O,L) = _z/ mei(st,m)dm.
0
The n equations (2.13) form a differential system controlled by v,v’. Set

a(t) =v'(t), (2.15)

and consider now v(t) as a state and «a(t) as a control. Then the former finite dimen-
sional system may be rewritten as

!
v = aq,

wi = Mw +ayv +bia +ri,

(2.16)
wh, = Apwn + anv + bpa + 1l
If we introduce the matrix notations
v(t) ) 0
Xu(t) = wy (1) Ruent) = ri (e, 1) |
walt) e )
0 0 0
A= | 0N o M
an-(T) 0 . )\n'(’l') by, (T)
then equations (2.16) yield the finite dimensional linear control system
X (t) = A1 (et) X1(t) + Bi(et)a(t) + Ri(e, t). (2.17)

Let us now prove the following lemma.
LEMMA 2.3. For each 7 € [0,1] the pair (A1(7), B1(7)) satisfies the Kalman
condition, i.e.

rank (B1(7), A1 (1)B1(7), ..., A1 (1)" ' Bi(7)) = n. (2.18)
Proof. Let 7 € [0,1] be fixed. We compute directly

det (By, Ay By, ..., AT By) = [ (a; + Ajb;) VAM(As, -, An), (2.19)
j=1
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where VAM()\y,...,\,) is a Van der Monde determinant, and thus is never equal to
zero since the \;(7),i = 1...n, are distinct, for any 7 € [0,1]. On the other part,
using the fact that each e;(r,.) is an eigenfunction of A(7) and belongs to Hi (0, L),
we compute

1 rE
a;j(r) + Aj(T)b; (1) = f/o z (f'(5(r, 2))e;(r, ) = Aj(1)e;j(r, 7)) do

1t 626‘]
=-7 /0 o (1, z)dx
Ok
= L
ox (7, L).
But this quantity is never equal to zero since e; (7, L) = 0 and e;(7, .) is a nontrivial so-
lution of a linear second-order scalar differential equation. Therefore the determinant
(2.19) is never equal to zero and we are done. O
It is a standard fact that the Kalman condition (2.18) implies a pole shifting
result, and we get the following corollary, see [13].
COROLLARY 2.4. For each T € [0,1] there exist scalars ko(7),...,kn(T) such
that, if we denote

Ki(1) = (ko(7), ..., kn(7)),

then the matriz Ay (1) + B1(7)K1(7) admits —1 as an eigenvalue with order n + 1.
Moreover there exists a C* application 7 — P(7) on [0,1], where P(7) is a (n +
1) x (n + 1) symmetric positive definite matriz, such that the identity

P(7) (A1 (1) + Bi(1) K1 (7)) + “(AL(7) + Bi(1) Ky (7)) P(1) = =T (2.20)

holds for any T € [0,1].

We are now able to construct a control Lyapunov functional in order to stabilize
system (2.8). Let ¢ > 0 to be chosen later. For any ¢t € [0,1/¢], v € R and w €
H?(0,L) N H§ (0, L) we set

1
V(t,v,w) = X1 (t)P(et) X1 (t) — 5(w,A(et)w),ﬁ(o,m, (2.21)
where X (t) denotes the matrix vector in R***
v
wi (t)
X]_ (t) = :
wy(t)

and

w,(t) = (U), ez’(ata '))L2(0aL)'

In particular we have

o0
V(t,v,w) = c?X,(t)P(et) X, (¢ Z (et)w;(t)2. (2.22)

l\DIb—l
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In what follows we will repeatedly use the equivalence of norms in finite dimension.
The following notation will thus happen to be useful.
Notation. Let A be a set and let A = {(e,t) /| 0<e <1, 0<t<1/e}. Let Fy, F>
be two real functions defined on A x A. The notation Fy < F> means that F» > 0 and
that there exists a positive constant C' such that

Fi(e,t,\) < CFy(e,t,A) V(g t) € A, VIeA.

We say that Fy ~ F» if both Fi < F> and Fo < Fi. Moreover, if F3 is a real function
defined on A x A, and if 8 € [0,+00), the notation Fy S Fy for F3 < 6 means that

~

F5 > 0 and that there exists a positive constant C' such that
Vie,t) EA VAEA (F3(e,t,A) <0) = (Fi(e,t,A) < CFy(g,t,N)).
For simplicity, when the set A is clear from the context it will not be given explicitly.

Let || ||2 denote the euclidian norm in R™*. Since P(r) is symmetric positive
definite, we can write (with A = R x (H?(0,L) N H}(0,L)))

X (OPE) X1 (t) ~ IX1 ()5 =v* + ng'(t)2-

From (2.7) we know that, except the n first ones, the eigenvalues of A are all negative,
less than —n < 0. By continuity the n first eigenvalues are bounded as 7 € [0,1] and
thus we can assert that if ¢ is large enough in the definition of V' then

Vit,o,w) ~ I X2(@)I3 — D Nilet)w;(t)?, (2.23)
j=n+1

where t € [0,1/¢]. In particular V (¢, .,.) is positive definite. Let us further prove the
following lemma.
LEMMA 2.5. The equivalence

Vit,0,0) ~ 0 + [0l 0.0 (2.24)

holds with A = {(v,w) / v € R,w € H?(0,L) N HY(0,L)}, where |lwllm0,) =
lwz|L20,)- Moreover

V(t,v,w) SIXi (O3 + |AwlZ20,1)- (2.25)

Proof. Any w € H?(0,L) N H}(0,L) can be expanded as series in the eigenfunc-
tions of A(et), convergent in Hy (0, L),

w(.) = Z wj(t)ei(et, ).
Hence

L
oliZs .y = 3 wi (O 1 / eia (ct, 2)e;, (ct, 7)da.
0

i,J
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Integrating by parts, and using the definition of e;, we compute

L
/ eiz(et, x)e;, (et, x)dx —/ ' (y(et, x))ei(et, x)e;(et, x)dx — A\;dij,
0
and thus
ol 0,0, = / £t ) d:c—Z)\ (etyw

Therefore, since f'(j) is bounded on [0,1/e] x [0, L], uniformly in e € (0, 1],

ol o,ny S lwllie@n = D Xiledwi()? S V(E,v,w).
j=n+1

Conversely, we have

= S A1) = 0l 0. - / Pt ) de + 3 Ag(etywg ()2
j=n+1 Jj=1

S ||w||H3(o,L) +[lwllZ2(0,1)

2
< ol 0.z

and we conclude easily using (2.23) that (2.24) holds.
On the other part, notice that

oo S S Pyl? +Zw
j=n+1

Therefore, using (2.7),

n

n o
||w||2Hé(0,L) S Zw? + Z )‘3“’]2 = Zw? + ||Aw||2L2(0,L);
j=1 j=1

=1

and hence the estimate (2.25) follows. O
Let now (v(t),w(t,.)) denote a solution of (2.8) in which we choose the control in
the feedback form suggested from Corollary 2.4, namely

a(t) = Ky(et) X1 (1),
such that v(0) =0 and w(0,.) =0, i.e. (v(¢),w(t,.)) satisfies

= Aw +av + bK1(et) X1(t) +r, v'(t) = Ki(et)X1(t), (2.26)
v(0) =0, w(0,z)=0. (2.27)

We set

Vi(t) = V(to(t),w(t,.)) = c X1 () P(et) Xa (t) — %(w(t, ), Alet)w(t, ) L2 (o,
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Let us compute V{(t) and state a differential inequality satisfied by V;. We have

Vi(t) = c("X{(&)P(et)X1(t) + ‘X1 (t)P(et) X; (1)) + ec ‘X1 () P'(et) X1 (t)

(it ), Aletywlt, N1 0.0) — 5wt ), Aletwe(t, )20,
- %s(w(t, ), A'(etyw(t, N izo.ny.  (2.28)

Notice the following facts:
e From (2.17) and (2.20) we infer

IXIPX; + X, PX| = —||X1]]2 + 'Ry PX; + X, PR;.
e The operator A is selfadjoint in L2, hence
<waAwt>L2(0,L) = <Awawt)L2(0,L)-
e Eq. (2.26) leads to

(Aw, ’wt)L2(0’L) = (Aw, Aw + av + bK; X1 + r)LQ(O,L)
= ||Aw||r2(0,1) + (Aw, a)12(0,1)v + (Aw, b) 12(0,1) K1 X1 + {(Aw, ) 12(0,1)-

e From the definition of A(7), we have
A'(r) = f"(y(r, ))g- (7, )1d,
and thus
(w(t,.), A'(et)w(t, )2 0,0) = (w(t, ), ' (F(et, ) (et, Jw(t, ) p2(o,1)-
Therefore, turning back to Eq. (2.28),
Vi = —cl|Xull3 = |Aw|32(0,1) — (Aw, a)r2(0,yv — (Aw,b) 12 (0,0 K1 X1

1
— (A’w,T’)Lz(O’L) + ec tX1P’X1 +c (tR1PX1 + tleRl) - ie(w, f”(:lj):l]TU))Lz(O,L).
(2.29)

Let us set an upper bound to the terms of second line of Eq. (2.29):
e From Corollary 2.4, the application 7 — P’(7) is bounded on [0, 1], hence

lec’X1 P' X1 | S el| Xull3 S eVa.
e Inequality (2.12) yields, for [v(t)| + [|lw(t, )|z (0,z) < 1,
IR1(e,t)llL=(0,2) S € +v(®)* + [lw(t, 0,1
and thus, still for for |v(t)| + [[w(Z,.)l|z=(0,z) < 1,
'R\ PX1 + X1 PRy < || X1 )2 (e o+ ||w||%{é(0’L))
SVVi e+ W) =eyVi + 12
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e Since f is of class C? we can assert

1

‘|2
(

<w7f”(g)g‘rw)L2(0,L) S EHWH%Z(O,L) S 6”w|l%{é(0,L) Sen.

e The term (Aw,r)r2(o,r) is the most difficult to handle. Using (2.5), write

(Aw,r)12(0,1) = <Aw, —ey, + (w + %0)2 /01(1 —s)f" (17 + s(w + %U)) ds>

= <Aw, (w+ %v)z/ol(l —s)f" (gj+s(w+ %’U)) ds>

—e(Aw, ¥r) 2(0,1)-

L2(0,L)
L2(0,L)

First, we clearly have
le(Aw, §-)r20,1)| < ellAwl|r2(o,1)-

Let us now deal with the integral term. First of all, using the continuous
embedding of H} in C°, we estimate

T 2 .
|(wtt.2)+ Fo00) S Nt ) e o ) + 00
L>(0,L)
< Mt g0,y + 11 ()13
< Vi)

since Vi ~ [l .1, + I X1[3- For [u(®)] + [[w(t, )z~ o,) < 1, one has
z \2 ! _ T
<Aw, (,w + Ev) ‘/0 (1 _ S)f” (y + S(U) + EU)) dS>L2(O . 5 ||Aw||L2(0,L)‘/17
and we arrive at the estimate
[(Aw, ) L2(0,1)| S ellAwl|L2(0,) + |Aw||L2(0,2) V4,

for [v(t)[ + [lw(t, )llLes(0,z) < 1.
Let us also estimate the terms of the principal part of Eq. (2.29). We clearly have

1
[(Aw, a) 2 (0,Lyv]| < Z||Aw||%2(o,L) + llallz2(o,z,) 1 X113,
and
1
|[(Aw, b} 2(0,) K1 X1 | < Z||Aw||%2(o,1:) + M| X113,

where

M = []bl|z2(0,1) max{ ki(7)*/7 € [0, 1]}-

n
=0
Hence, concerning the principal part of Eq. (2.29), we first get

— | Xall5 — ||Aw||i2(0,L) — (Aw,a)p2(0,Lyv — (Aw, b) 12(0,0) K1X1

1 .
< —allXll3 - §||Aw||i2(o,1:),
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where ¢; = ¢ — ||a||%2(0 ) — M. We choose ¢ so that ¢; > 0.
The previous estimates and Eq. (2.29) now yield, for |v(t)|+[|w(t,.)|| Lo (0,0) < 1,

Vi IX0B+ AwlZa 0.0y S eVVi+ V2 +ellAwllnaony + Vil Awllz2o,ny. (2.30)

Note that, for every 8 € (0, +00),
O Lo
<
% V1 20°¢

ellAwl|r2(0,z) < 5 ||A1U||L2(o nto, 29

VillAwl|z2(0,2) < §||A1U||%2(o,1:) + V1

260

Hence, taking § > 0 small enough, we get, using (2.25) and (2.30), the existence of
o > 0 and of p € (0,0] such that, for every £ € (0,1] and for every ¢ € [0,1/¢] such
that V1 (t) < p,

Vi(t) < og®.
Hence, since V1(0) = 0, we get, if € € (0, p/o], that
Vi(t) <oe, Vte|0,1/e],

and in particular

Coming back to definitions (2.1) and (2.3), we have proved

[ (G)-m0],, < (231

where y1(.) = ¢(1,.) is the final target and « is a positive constant which does not
depend on € € (0,p/o]. This concludes the third step, and thus the proof of the
stabilization part of Th. 1.2 (see Remark 1.3).

2.4. End of the proof. The last step consists in solving a local exact con-
trollability result: from the previous section y(%, .) belongs to an arbitrarily small
neighborhood of y;(.) in H!-topology if & is small enough, and our aim is now to
construct a trajectory q(t, z) solution of the control system steering y(%, ) toyi (L) in
some time T > 0 (for instance T = 1), i.e

Gt = Qe + f(C.I);
Q(ta 0) =0, Q(ta L) = U(t),

10.2) =y (3.2) , dT.0) = (o).

Existence of such a solution ¢ is given by [11, Th. 3.3]. Actually in [11] the
function f is assumed to be globally Lipschitzian, but the local result we need here
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readily follows from the proofs and the estimates contained in this paper. Indeed, let
T > 0 and let f be a globally Lipschitzian mapping such that

f(s) = f(s), Vse[~llyille — L, [lyallze +1]. (2.32)

From the proof of [11, Th. 3.3], we get the existence of p > 0 such that there exists
z € Yr satisfying

2t = Zzx +f(z+yl) _f(y1)7

and the estimate

1
et <uf () =m0 (233
€ HL(0,L)
which leads, with ¢ = 2 + 1, to
4t = Qzz + f(Q)v
q(t,0) =0,
1
10.2) =y (.2) , dT0) =0
and
. 1
llg=gillve <ply{ =) — () : (2.34)
€ H1(0,L)
where §1(t,z) := y1(z). From (2.33) and (2.34), we get
llg = F1llze=(0,1yx(0,L)) <1 (2.35)

for |ly (1/e,-) = y1(")lla1(0,z) small enough. From (2.32) and (2.35), we infer that
f(q) = f(q), which ends the proof.

3. Controllability versus connectedness. Let us first give some sufficient
conditions ensuring connectedness of S.
PROPOSITION 3.1. In each of the following cases the set of steady-states S is
connected:
e The function F' defined as

y
F) = [ fe)ds
0
satisfies the asymptotic condition

Fly) — +oo.
ly|—=+o0

e For any a > 0 the indefinite integral

| e

diverges in —oo and in +oo (if it makes sense).
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e The function f is odd, i.e. for any y € R
f(=y) =—f).

REMARK 3.2. Notice that, contrarily to the two first cases of the proposition, in
the third case blow-up phenomena may occur, nevertheless the set of steady-states is
connected.

On the other part we have the following result.

PROPOSITION 3.3. If yo and y; belong to distinct connected components of S,
then it is not possible to move either from yo to y1, or from yy to yo, whatever the
control u € L*(0,T) and the time T are.

REMARK 3.4. If yo and y, are both periodic then they are in the same connected
component.

In order to prove these two propositions, let us first notice some general facts
about the maximal solutions of the scalar differential equation

y"(z) + f(y(x)) =0, y(0) = 0. (3.1)

LeMMA 3.5.
o Any solution of (3.1) satisfies on its mazimal interval of definition the con-
servation law

y'(2)* +2F (y(z)) = y'(0). (3-2)

o Any solution of (3.1) such that y' vanishes at least at two distinct points is
actually periodic.
e The phase portrait in the plane (y,y') of the associated differential system

is symmetric with respect to the y-axis, and moreover all singular points of
the system are located on this axis.
The proof of these facts is obvious. Now the key lemma to prove Prop. 3.1 and
3.3 is the following.
LEMMA 3.6. Let yg and y; two steady-states, extended on their mazimal interval
of definition as solutions of (3.1), belonging to distinct connected components of S,
such that y(0) < y1(0). Then there exists I € (0,L] and § € C%([0,1)) solution of
(8.1) such that either

y(z) — +oo, (33)
g(x) — —oo. (3.4)

In the first case we have moreover, see Fig. 3.1,
1. yo(z) < g(x) for any x € [0,1),
2. y0(0) < 7'(0) <w1(0), ly1(0)] < [7'(0)], and F'(0) <O,
5. #w € 0,0) / y(@) = m(@)} = 1,
4. yo is not periodic, and y1(x) does not tend to —oo as x tends to b, where (a,b)
denotes the maximal interval of definition of ;.
In the second case we have the symmetric situation, see Fig. 3.1,
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1. yi(z) > y(z) for any z € [0,1),
2. y(0) < 7'(0) <1(0), lyo(0)] < [7'(0)], and 7'(0) > 0,
3. #{z €[0,1) / §(z) = yo(z)} =1,
4. y1 s not periodic, and yo(x) does not tend to +o0o as x tends to b, where (a,b)
denotes the mazximal interval of definition of yo.
Y )
Y1
]
Y1 I
0 A 0 % T
g
Yo
first case second case

F1G. 3.1. Ezistence of an explosive solution.

Proof. [Proof of Lemma 3.6] Clearly one of the two cases (3.3) and (3.4) occurs,
with moreover y(0) < §'(0) < y1(0). Assume we are in the first case, and let us first
prove the second of the four properties claimed in that case. To proceed we have to
distinguish between three possibilities:

e First case: y; is monotonic on [0,!]. In this case the conservation law (3.2)
immediately implies that |y} (0)| < |7'(0)].

e Second case: y; is not monotonic on [0,1], and is not periodic on its maximal
interval (a,b). That is, y; vanishes exactly once on (a,b). The only non
obvious case occurs when y;(0) > 0. But then, since the phase portrait is
symmetric with respect to the y-axis, either y; (z) tends to —oo as x tends to
a and b, or y;1(x) tends to a finite limit which corresponds to a singular point
on the phase portrait, see Fig. 3.2. In both cases it is clear on the phase
portrait that §(z) may tend to +oo as z tends to [ only if |y;(0)| < |§'(0)|.

y' y'

i
-

FiG. 3.2. Behavior of (y1(x),y}(z)) in the phase plane.

e Third case: y; is periodic (i.e. y; vanishes at least two times). Again in this

case the phase portrait implies immediately the desired inequality.
Before proving that §'(0) < 0, let us prove the third point. The only non obvious case
occurs when y; is periodic and § is not monotonic on [0,7). Notice that §’ vanishes
only once (if not § would be periodic), and thus it decreases on an interval [0, zo]
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and increases on [zg,!). Now on the one part the function y; cannot intersect § on
the interval [0, zo], for this would contradict the conservation law (3.2). On the other
part if y; would intersect § more than once on the interval [zg,[), then there would be
at least three intersections, and again this leads to a contradiction with (3.2). This
proves the third point.

Now the inequality ¢(0) < 0 is an obvious consequence of (3.2).

Let us now prove that yo < § on [0,1). The same reasoning as above shows that
g intersects yo at most once (notice that y{ cannot vanish more than once). But such
an intersection would contradict the fact that §(z) tends to +o00 as z tends to [.

Finally, the last point of the lemma is proved by observing the phase portrait. 0

Proof. [Proof of Prop. 3.3.] Prop. 3.3 follows from Lemma 3.6. Indeed, let us
assume for example that we are in the first case of the lemma. Then for any 7' > 0 and
u € L?([0,T)) the solution y of the control system (1.4) satisfies, as long as defined,
the inequality

y(t,x) < gy(x),

see [4] for this application of the classical maximum principle to similar control prob-
lems. In particular y(T,.) # y1(.). O

Finally let us prove Prop. 3.1. The only difficult case is to prove that if f is
odd then the set S is connected. In this case the conservation law (3.2) implies that
the phase portrait is symmetric with respect to the y-axis and the y'-axis. As a
consequence any solution of (3.1), such that y’' vanishes at least once, is necessarily
periodic.

Now from Lemma 3.6 we know that if yo and y; are not in the same connected
component, then there exists an explosive solution ¢ of (3.1), such that §' vanishes at
least once. Hence y must be periodic and we get a contradiction.

ExXAMPLE 3.7. An example where the situation of Prop. 3.3 and Lemma 3.6
occurs is given by

fW)=y—y* -4

The graph of yo,y1, and an explosive y, and the phase portrait are drawn on Fig. 3.3.

L L L L L
0 1 2 3 4 5 6

Fic. 3.3. An ezample.
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4. Numerical simulations. In this section we present numerical simulations
with Matlab for the nonlinear function f(y) = y®. Let L = 1 ; the set S of steady-
states consists of all solutions of class C? on [0, 1] such that

y"(z) +y(@)® =0, y(0) =0 (4.1)

It follows from Prop. 3.1 that this set is connected. Let yo be identically zero, and
let y; denote the solution of (4.1) vanishing at 0,1/2 and 1, and having no other zero
on [0, 1], see Fig. 4.1.

) o1 02 03 04 05 06 07 08 09 1

F1G. 4.1. Definition of the steady-states yo and yi.

For all 7 € [0, 1] we define the function §(7,.) on [0, 1] as the solution of (4.1) such
that

%

Ox

and we set 4(7) = g(7,1). We then introduce on H2(0,1)NH{ (0,1) the one-parameter
family of linear operators

(7,0) = 7y, (0),

A(T) = A+ 3g(r,.)Id, T €[0,1].
For 7 = 0 we have A(0) = A, and the eigenvalues and eigenvectors write
Ai(0) = —i%72, €;(0,2) = V2sin knz.

Then, solving by homotopy as 7 € [0, 1] boundary value problems, we compute nu-
merically, using a standard finite difference code implemented in Matlab, the first
eigenvalues and associated eigenvectors. In the present example numerical experi-
ments show that only the two first eigenvalues may take positive values as 7 € [0, 1].
In other words, with the notations of Section 2.3, one has n = 2. Then we achieve a
pole placement on the finite dimensional system (2.16) by applying a LQR algorithm,
see [13]. Notice that the finite dimensional system corresponding to these two first
modes is very unstable: numerically one has A\; (1) ~ 89.743 and A2(1) ~ 82.518.

Results are drawn on Fig. 4.2, for ¢ = 0.05 and € = 0.001. Notice that is € is too
large then the solution blows up.
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