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Abstract. We study the Earth re-entry problem of a space shuttle where the control
is the angle of bank, the cost is the total amount of thermal flux, and the system
is subject to state constraints on the thermal flux, the normal acceleration and the
dynamic pressure. The optimal solution is approximated by a concatenation of bang
and boundary arcs, and is numerically computed using a multiple-shooting code.

1. Introduction and presentation of the atmospheric arc problem.

1.1. General meaning. The aim is to present numerical simulations of the op-
timal trajectory of a space shuttle during its re-entry phase in the atmosphere.
This problem was studied and solved in [3, 4] in which a geometric framework was
introduced in order to solve this optimal control problem.

This project was set out by the CNES, and is motivated by the fact that it is
important to control these aero-capture techniques in order to apply them to:

e problems of guidance of aeroassisted orbital transfers,

e development of reprocessable satellite launchers (this is an important financial
stake),

e problems of re-entry in the atmosphere: this is the subject of the famous
project Mars Sample Return developped by the CNES.

Roughly speaking, the role of the atmospheric arc is:

e to reduce sufficiently the kinetic energy by friction with the atmosphere,

e to steer the spacecraft from a precise initial point (position and speed) to a
prescribed target,

e moreover we have to take into account some state-constraints on the thermal
flux, on the normal acceleration and on the dynamic pressure,

e finally we aim to minimize an optimization criterion: the total thermal flux
of the spacecraft.

Our control is the aerodynamic configuration of the shuttle, and we first examine
the following question: can the aerodynamic forces be employed in order to ade-
quately slow down the spacecraft ? Actually if the altitude is too large, more than
about 120 km, then it is physically impossible to generate aerodynamic forces suffi-
ciently intense to this task, because the air density is too small. At the contrary if
the altitude is too small, less than about 20 km, the air density is too large and this
would lead to violate the constraints on the thermal flux or the dynamic pressure.
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Indeed the traversing of the atmosphere is done at very high velocities. Anyway in
the range where the altitude is between 20 km and 120 km a compromise may be
achieved. So our goal is to analyse existing solutions of the problem, and to try to
improve them using optimal control theory.

In the atmospheric phase the shuttle behaves as a glider, that is, there is no
thrust. Hence it is only subject to the force of gravity and to the aerodynamic
force. Our control is the bank angle which represents, roughly speaking, the angle
between the wings and a plane containing the shuttle. Finally, the optimization
criterion we try to minimize is the total thermal flux of the spacecraft.

More precisely the model is as follows.

1.2. The model. Let 0 be the center of the planet, K = NS is the axis of rotation,
Q is the angular velocity. We denote by E = (ej,ea,e3) with e3 = K, an inertial
frame with center 0. The reference frame is the quasi-inertial frame Ry = (I, J, K)
with origin 0, rotating around K, with angular speed 2 and I is chosen to intersect
the Greenwich meridian. Let R be the radius of the planet, G the center of mass
of the shuttle. We note (r,l, L) the spherical coordinates of G, r > R being the
distance OG, h = r — R is the altitude, [ is the longitude and L is the latitude. We
note R}, a moving frame with center G, where e, is the local vertical,(e;, e,) is the
local horizontal plane and ey, is pointing to the north. The spherical coordinates
have a singularity at the poles.

Let & :t — (z(t),y(t), 2(t)) be the trajectory of G measured in the quasi-inertial
frame attached to the planet and let ¥ = &I + ¢J + 2K be the relative velocity.
The vector ¥ is represented by its modulus v and two angles:

e : path inclination which is the angle with respect to the horizontal plane,
e x: azimuth angle which is the angle of the projection of 7 in the horizontal
plane measured with respect to the axis er.

We denote by (i, j, k) the orthonormal frame defined by i = ¥ /v, j is the unitary
vector in the plane (i, e,.) perpendicular to ¢ and oriented by j.e, > 0and k=iAj.

The system is written in the coordinates ¢ = (r,v,7, L, 1, x). The forces acting on
the vehicle are the gravitational force f’) = m’¢ and the aerodynamic force which
decomposes into

e a drag force: D= (2pSCpv?) i opposite to 7,
e alift force: T, = (2pSCLv?) (j cos pu + ksin p) perpendicular to ¥,

where p is the angle of bank, p = p(r) is the air density, S is the reference area
and Cp, Cf are respectively the lift and drag coefficients depending on the angle
of attack a of the vehicle and the Mach number. The coefficients Cp and Cfp,
are tabulated and their values are given in Section 2. For the air density we take
an exponential model: p(r) = poexp(—(r — r7)/hs). Due to the choice of a non
inertial frame to represent the system, the spacecraft is submitted to the Coriolis
force 2m Q! A ¢ and to the centripetal force ma A (ﬁ Aq). The control is the angle
of bank u(t) € R.
From [18] and [9] the equations of the system are:

@ =wvsin
at -~ USRT
dU 1 SCD 2

%:—gsin'y—ip v + Q27 cos L(siny cos L — cosy sin L cos x)
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d 1 SC
o _ cos 7y (—g + E) + —p—LUcosu
dt vor 2" m

+2Q cos Lsiny + 02 T cos L(cos~ycos L + sin vy sin L cos x)
v

dL v

2 = cosycosx

dl  vcosysiny (1)
dt  r cosL

dx 1 SCg

= 3" P sin p + %cos*yta,aninx-i— 2Q(sin L — tan «y cos L cos x)

+ Q2isinLcosLsinX
v cosy
where p is the bank angle (it is our control), S is the reference area and C,, Cp are
respectively the lift and drag coefficients depending upon the angle of attack o and
the Mach number. They are tabuled by the CNES and their values are given in the
appendix. The air density is p and we take an exponential model: p(r) = poe™?.

1.3. Optimal control. The problem is to steer the vehicle from an initial manifold
My to a terminal manifold M;. The terminal time ¢y is free and the boundary
conditions are given in Table 1.

Initial conditions

Terminal conditions

altitude (h) 119.82 km 15 km
velocity (v) 7404.95 m/s 445 m/s
path inclination () | -1.84 deg free
latitude (L) 0 10.99 deg
longitude (1) free or fixed to 116.59 deg | 166.48 deg
azimuth (x) free free

TABLE 1. Boundary conditions

The state constraints are of the form ¢;(¢) <0, for i = 1,2,3 and are:

e constraint on the thermal flux:

o= Co/p* <™,
where Cj is a constant,
e constraint on the normal acceleration

mar

Y = Ynopv® < I

e constraint on the dynamic pressure
1 2 mazx
B pv° <P .

They are represented on Fig. 1 in the flight domain, in terms of the drag d =
%% pv? and v.

The optimal control problem is to minimize the total amount of the thermal flux:

100 = [ er/mar @
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FIGURE 1. Constraints, and Harpold/Graves strategy

1.4. Harpold and Graves strategy [12]. If we use the approximation ¢ ~ —d,
the cost can be written:

J [ k>0
= —dv, K >
) / -

and the optimal strategy is to maximize during the flight the drag d. This is the
policy described in [12], which reduces the problem to find a system trajectory
tracking the boundary of the domain in the following order: thermal flux — normal
acceleration — dynamic pressure, see Fig. 1.

The advantage of this method is that along the boundary arcs the control may
be expressed in a closed-loop form, i.e. it is a feedback control, in function of the
state. This form is well-adapted to a real-time system governing the movement of
the spacecraft.

Anyway this method is not optimal for our optimization criterion.

2. Results and numerical simulations.

2.1. Quasi-optimal strategy. We recall the following result, which was proved in
[4] by a careful geometric analysis of the extremals given by a maximum principle
with state constraints.

Proposition 1. We distinguish between two problems, see Table 1:

1. If the initial longitude is not fixed, the optimal strategy is approrimated by a
policy Y- Y4YfiuzV+YaceV+, where vy (resp. y_) is an arc corresponding to
the control p = 0 (resp. p = ), and Yfiuz (r€Sp. Yacc) denotes a boundary
arc corresponding to the constraint on the thermal fluz (resp. on the normal
acceleration).

2. If the initial longitude is fized, the optimal strategy is approximated by a policy

Y=Y+ fluz V+Y—-

2.2. Multiple shooting algorithm. This numerical algorithm is standard, and a
classical reference is [21]. We briefly recall a description of this method. Consider
a general optimal control problem, where the state z € R” may be subject to state
constraints. It is well known that the maximum principle reduces the problem to a
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boundary value problem of the following type:
F()(t,z(t)) if to<t<ty

2t) = F(2(t),0) =4 . 3)

Fy(t,2(t)) if t, <t <ts

where z = (g,p) € R*" (p is the adjoint vector) and ti,ts,...,ts € [to,ts] may be
switching times, junction times, i.e. times at which the trajectory joins a boundary
arc, or contact times, i.e. times at which the trajectory only touches the boundary.
Moreover at these points there hold continuity conditions on the state and costate
at switching points, or continuity conditions on the state, jump conditions on the
costate, and conditions on the constraint ¢, at junction and contact points, see
[15, 17, 7, 18, 3, 4]. We further have boundary conditions on the state, on the
costate, and on the Hamiltonian if the final time is not fixed.

Remark 1. A priori the final time ¢; is unknown. On the other part in the multi-
shooting method the number s of switchings has to be fized and must be deduced
from a geometric analysis of the problem.

The multi-shooting method consists in subdividing the interval [ty, ] in N subin-
tervals, where the value of z(t) at the beginning of each subinterval is unknown.
More precisely, let tg < 01 < --- < 0} < ty be a fized subdivision of the interval
[to,tf]. At each point o; the function z is continuous. We can consider o; as a fixed
switching point at which the following conditions hold:

2(of) = 2(07),
oj = a; fixed.

Now introduce the nodes :
{z1,...,2m} = {to,tf} U{o1,. .., ot U{ts,... s} (4)
We arrive at the following boundary value problem:
Fi(t,z(t)) ifo) <t<

FQ(t,Z(t)) if zo <t<zs
o i(t) = F(t,2(t) =

F;nfl(taz(t)) if 2y 1 <t <y
e Vje{2,....m—1} rj(;cj,z(a:;),z(a:j)) =0
o (T, 2(21),2(2)) =0

where z1 =t is fixed, x,,, = ty, and the r;’s represent boundary or interior condi-
tions as explained above.

Remark 2. The stability of the method can be improved by increasing the number
of nodes. Indeed the principle of the method is to overcome the unstability of a
simple shooting method where the influence of inaccurate initial data can grow
exponentially with the length ts-t9, see [21].

Set z;-r = z(xj), and let z(t,z;_1, z;-[l) denote the solution of the Cauchy prob-
lem:
4(t) = F(t,2(1), 2lajm) = 2 .
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We have:
=\ — +
z(z;) = 2(x; 71,27 _4)-
The interior and boundary conditions can be rewritten as:

Vie{2,...,m—1} rj(a:j,z(xj_,xj_l,szl),zf) =0, )
T (T, 215 2(Ty s T—1, 2 1)) = 0.
Now set:
Z = (2], &m, 25,00y, 28 1, am 1) € REnHD(M—L)
(where 2z € R?™). Then the previous conditions (6) hold if:
Tm(l‘m,zf,z(w;“z'm;h23;_1))
G(2) = raln 220,22 — o (7)

Tm-1 (.Z'm, z(m;z—la Tm—2, z;—2)a z:;—l)

The problem is now reduced to determine a zero of the function G which is defined
on a space vector whose dimension is proportional to the number of switching points
and points of the subdivision. The equation G = 0 can be solved iteratively using
a Newton type method. We refer to [8, 13] for more details on numerical methods.

Having reduced the problem to determine a quasi-optimal policy among a con-
catenation of bang and boundary arcs, either v_ 7T vs1ua 17— o V- Y Y 1ue V2 Yace VT 5
the length of the bang or boundary arcs are computed using the multiple-shooting
algorithm, see [21, 8, 13]. The algorithm is written in Fortran and simulations were
lead with Matlab?.

Our reduction procedure avoids implementing the complete extremal equations
with the adjoint vector and this is essential in order to improve the convergence of
the algorithm. The results are the following, we distinguish between both problems.

2.3. Problem 1: initial longitude not fixed. Switching times and initial values
of longitude and azimuth are computed using the multiple-shooting method. More
precisely:
e The first switching time, from vy_ to v, allows to adjust the entry in the
iso-flux phase, which is characterized by ¢ = ™% ¢ = 0.
e The third switching time, from yayx to 74, is used to adjust the entry in the
iso-normal acceleration phase.
e The fifth switching time, from 7,¢c to 74, permits to adjust the final velocity
v(ts).
o The initial azimuth x(0) is used to adjust the terminal latitude L(ts).
On the other part the final time is determined by the final altitude.
Results are drawn on Fig. 2, 3.

2.4. Problem 2: initial longitude fixed. Switching times and the initial value
of azimuth are computed by the multi-shooting method. More precisely:
e The first switching time, from vy_ to v, allows to adjust the entry in the
iso-flux phase.
e The third switching time, from vyaux to 74, permits to adjust the final velocity

’U(tf).

I The fortran code was developped for academic research by Pr. Hiltmann from Munchen Uni-
versity, and is available on his web page, at http://www-m2.ma.tum.de/Software/mumus.en.html
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FIGURE 3. Bank angle, and state constraints in problem 1.

seconds

e The fourth switching time, from v, to v_, is used to adjust the final longitude

l(ty).

¢ The initial azimuth x(0) allows to adjust the terminal latitude L(¢y).

Results are drawn on Fig. 4, 5.
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FIGURE 4. State coordinates in problem 2.

2.5. Appendix: numerical data.

e General data
Earth radius: r7 = 6378139 m.

Earth rotation velocity: Q = 7.292115853608596.107° rad.s~"'.
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FIGURE 5. Bank angle and state constraints in problem 2.

Gravity model: g(r) = f—g with go = 3.9800047.10"* m3.s~2.

1
e Atmospheric density model: p(r) = poexp( — h—(r —rr)) with pp = 1.225kg.m *
and h; = 7143 m. °

5
e Sound velocity model: vson(r) = Z a;rt, with
i=0

as = —1.880235969632294.10~ 22, a4 = 6.074073670669046.10 1%,
as = —7.848681398343154.1078, a, = 5.070751841994340.107 ",
a1 = —1.637974278710277.10°%, ay = 2.116366606415128.10"2.

e Mach number: Mach(v,r) = v/vson(r).
e Shuttle data
Mass: m = 7169.602 kg.
Reference surface: S = 15.05 m?.

Drag coeflicient: k = 22D
&,

Lift coefficient: k' = =2~
2 m

e Aerodynamic coefficients:

Table of C'p(Mach, incidence)

0.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 deg

0.00 | 0.231 0.231 0.269 0.326 0.404 0.500 0.613 0.738 0.868 0.994 1.245
2.00 | 0.231 0.231 0.269 0.326 0.404 0.500 0.613 0.738 0.868 0.994 1.245
2.30 0.199 0.199 0.236 0.292 0.366 0.458 0.566 0.688 0.818 0.948 1.220
2.96 | 0.159 0.159 0.195 0.248 0.318 0.405 0.509 0.628 0.757 0.892 1.019
3.95 | 0.133 0.133 0.169 0.220 0.288 0.373 0.475 0.592 0.721 0.857  0.990
4.62 | 0.125 0.125 0.160 0.211 0.279 0.363 0.465 0.581 0.710 0.846 0.981
10.00 | 0.105 0.105 0.148 0.200 0.269 0.355 0.458 0.576 0.704 0.838 0.968
20.00 0.101 0.101 0.144 0.205 0.275 0.363 0.467 0.586 0.714 0.846 0.970
30.00 0.101 0.101 0.144 0.208 0.278 0.367 0.472 0.591 0.719 0.849 0.972
50.00 0.101 0.101 0.144 0.208 0.278 0.367 0.472 0.591 0.719 0.849 0.972
Mach

Table of Cr(Mach,incidence)



0.

OPTIMAL CONTROL OF A SPACE SHUTTLE, AND NUMERICAL SIMULATIONS 9

00 | 0.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 deg

0.
2.
2.
2.

00 | 0.000 0.185 0.291 0.394 0.491 0.578 0.649 0.700 0.729 0.734 0.756
00 | 0.000 0.185 0.291 0.394 0.491 0.578 0.649 0.700 0.729 0.734 0.756
30 | 0.000 0.172 0.269 0.363 0.454 0.535 0.604 0.657 0.689 0.698 0.723
96 | 0.000 0.154 0.238 0.322 0.404 0.481 0.549 0.603 0.639 0.655 0.649

3.95 | 0.000 0.139 0.215 0.292 0.370 0.445 0.513 0.569 0.609 0.628 0.626
4.62 | 0.000 0.133 0.206 0.281 0.358 0.433 0.502 0.559 0.600 0.620 0.618

10.00 | 0.000 0.103 0.184 0.259 0.337 0.414 0.487 0.547 0.591 0.612 0.609

20.00 | 0.000 0.091 0.172 0.257 0.336 0.416 0.490 0.552 0.596 0.616 0.612

30.00 | 0.000 0.087 0.169 0.258 0.338 0.418 0.493 0.555 0.598 0.619 0.613

50.00 | 0.000 0.087 0.169 0.258 0.338 0.418 0.493 0.555 0.598 0.619 0.613

Mach
e Incidence profile imposed: if the Mach number is larger than 10 then the

incidence is set to 40. If the Mach number is between 2 and 10 then the
incidence is a linear function of the Mach number between the values 12 and
40. If the Mach number is less than 2 then the incidence is set to 12.
e State constraints:
Constraint on the thermal flux: ¢ = Cq\/ﬁv3 < ™2 where
C,=170510"*S.I. and ™ = 717300 W.m 2.
Constraint on the normal acceleration:
2
S . CL _
Yo = — pv?Cpy[1+ [ == < DA% — 2934 m.s 2
2m Cp
. - 1 2 max
Constraint on the dynamic pressure: P = —pv* < P = 25000 kPa.
e Initial and terminal conditions: see Table 1.
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