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OPTIMAL CONTROL WITH STATE CONSTRAINTS AND THE
SPACE SHUTTLE RE-ENTRY PROBLEM

B. BONNARD*, L. FAUBOURG*, G. LAUNAY*, AND E. TRELAT!

Abstract. In this article, we initialize the analysis under generic assumptions of the small time
optimal synthesis for single input systems with state constraints. We use geometric methods to
evaluate the small time reachable set and necessary optimality conditions. Our work is motivated
by the optimal control of the atmospheric arc for the re-entry of a space shuttle, where the vehicle
is subject to constraints on the thermal flux and on the normal acceleration. A multiple shooting
technigue is finally applied to compute the optimal longitudinal arc.

Key words. Optimal control with state constraints, Minimum principle, Control of the atmo-
spheric arc, Multiple shooting techniques

AMS subject classifications. 49K15, 70M20,49M15

1. Introduction. The objective of this article is to initialize the classification
of the local closed loop time optimal control for the single input affine systems: ¢ =
X(q) + uY(q), where ¢ € R? or R3, |u| < 1, with state constraints: c¢(q) < 0. This
analysis is motivated by the optimal control of the atmospheric arc for the re-entry
of the space shuttle where the cost is the total amount of thermal flux and where the
constraints are on the thermal flux and on the normal acceleration, the control being
the angle of bank. The system is modeled by an equation of the form:

mi =T (q)+ D)+ L(q), (1.1)

where m is the vehicle mass, ¢ is the position in an inertial frame, R is the standard
Keplerian force, T is the drag force and T is the lift force controlled by the bank
angle. The target T is a point in an Earth fixed frame. For reasons explained later, we
shall express the dynamics in the Earth fixed frame which is rotating with respect to
the inertial frame and consequently we have additional Coriolis and centripetal forces
and the system is more complicated.

Pioneering necessary optimality conditions concerning the optimality status of
a boundary arc and junction or reflection with the boundary are a consequence of
Weierstrass theory (see [3]) applied to Riemannian theory with obstacles. The author
compares the length of a reference arc with adjacent arcs to deduce geometric neces-
sary conditions. This approach was generalized by Pontryagin and his co-authors [23]
to obtain a minimum principle under regularity assumptions on the constraints. A
general minimum principle based on Kuhn-Tucker theorem and non smooth analysis
is presented in [15]. In these principles, the adjoint vector p dual to the state vector
g can suffer discontinuities at contact points with the boundary of the domain or
in the boundary. Following the works of [16] and [19], these discontinuities can be
specified if we assume that the system is single input and if the order of the constraint
is constant, the order being by definition the first integer such that the control u
appears explicitly in the time derivative of the constraint ¢ — ¢(¢(t)) evaluated along
a boundary arc of the system. For the space shuttle re-entry problem, the constraints
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are of order 2 and although the system is in dimension 6, from [4] we can mainly
restrict our analysis to a subsystem in dimension 3, called the longitudinal subsystem,
controlling the altitude, the modulus of the relative speed and the flight path angle.

The evaluation of the small time reachable set and its boundary which can be
parametrized by the minimum principle with application to the optimal synthesis was
a research program initialized by Sussmann [27] for planar system and pursued in
dimension 3 by [18], see also [6] for problems with a target of co-dimension one. The
objective of this article is mainly to outline such an analysis in the case of optimal
control with state constraints. Here the geometry is different and we must classify
up to changes of coordinates triplets (X,Y,¢) using the order of the constraints. We
make direct evaluation of the reachable set for the constrained system, using normal
forms. One of the main problem is to characterize the optimality status of a boundary
arc. We get under suitable generic assumption necessary and sufficient conditions
which are compared with the necessary conditions of the minimum principle.

Our geometric work, completed by the preliminary study by [7], is finally ap-
plied to the re-entry problem. A quasi-optimal trajectory, consisting of concatenation
of bang and boundary arcs, is given and the exact trajectory corresponding to the
boundary conditions imposed by [12], is computed using a multiple shooting algorithm
and numerical simulations.

2. Generalities.

2.1. Definitions. We consider a smooth (C* or C*) single input affine system
¢ =X(q) +uY¥(q), (2.1)

with |u] < 1, ¢ € U C R™ with state constraint ¢(¢) < 0 where ¢ : R” — R and the
time optimal problem with fixed boundary conditions: ¢(0) = ¢o, ¢(T) = ¢1. We
denote (Pg) the minimization problem which can be embedded in the one parameter
family of problems (P,), where the constraint is ¢(q) < «, « being small enough, « is
an homotopy parameter.

If f is a function and 7 a vector field, it acts on f by the Lie derivative

Zf = g—f(q)Z(q) and if Z;, Z, are two vector fields, the Lie bracket is computed
q

with the convention: [X,Y] = X oY —Y o X, that is in local coordinates:

oy oX

[X,Y](q) = a—q(q)X(q) - a—q(Q)Y(Q)

The generic order of the constraint is the integer m such that:
YCIYXCI...:YXm_2c:0 and YXTTL—16¢O

A boundary arct — 7(t) is an arc (not reduced to a point) of the system contained
in ¢ = 0. If the order is m, a boundary arc and the associated feedback control can be
generically computed by differentiating m times the mapping ¢ — ¢(¢(¢)) and solving
with respect to u the linear equation:

M = XMe 4 qy X™ e =0

A boundary arc is contained in



and the constraint ¢ = 0 is called primary and the constraints ¢ = ... = ¢~ =0
are called secondary. We denote

XM

U = w1,

the boundary feedback control.

2.2. Assumptions C. Let t — v,(¢), t € [0,7] be a boundary arc associated to
up. We need to introduce the following assumptions:

Cy. YX™ te, # 0 where m is the order of the constraint.

Csy. |up| < 1 for t €]0,TY, i.e. the boundary control is admissible.

Cs. |up| < 1 for ¢t € [0,7],i.e. the boundary control is not saturating.

2.3. A minimum principle with state constraints. We recall the necessary
conditions due to [16] and [19] that we shall use in our study. Consider the single
input affine system (2.1), ¢ = X(¢) + uY(¢), ¢ € U C R™,Ju| < 1, and a cost to be
minimized of the form:

where the transfer time is fixed and ¢ satisfies the constraint
c(g) <0,

and the boundary conditions are

with x = (x1,...,x%) and k < n.

2.3.1. Statement of the necessary optimality conditions. Assume that
t— q(t), t € [0,7] is a piecewise smooth optimal solution which hits the boundary
c(q) = 0 at times ?9;_1, ¢ = 1,2,..., M and leaves the boundary at times tq;, i =
1,2,..., M and moreover assume that along each boundary arc , Assumptions C
and C'y are satisfied at contact or junction times. Define the Hamiltonian by

H(q,p,u,m) = (p, X +uY)+nc,

where (,) is the standard scalar product, p is the adjoint vector and 7 is the Lagrange
multiplier of the constraint. The necessary optimality conditions are:
1. There exists t = n(t) > 0, a real number ng and 7 € R* such that the adjoint
vector satisfies:

p=—p <68_§+U86_};) —ng—; a.e. (2.2)
p(T) = no%—f@(T)) + rg—qu) (2.3)

2. The mapping t — n(t) is continuous along the boundary arc and satisfies:

n(t)e(q(t)) =0, Vte[0,T].
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3. At a contact or a junction time ¢; with the boundary, we have
H(ti+) = H(t;—) (2.4)
plts+) = pltim) — v alt) . 1520 (25)
4. The optimal control minimizes almost everywhere the Hamiltonian:

H(a(t),p(0). u(t).0(0) = min H(g) o) vn®) (26

2.3.2. Remarks.
1. In this minimum principle only the primary constraint ¢ = 0 is penalized.
Other choices are possible using the secondary constraint, see [10] and [23].
2. A minimum principle without assumption on the order is stated in [15] and
the adjoint vector is given by:

) == [ 916) (Gotate) + ) 5t ) ds = 3 [ G et

where the y; are non negative regular measure supported by ¢ = 0. With the
assumption of constant order, the measures on the boundary arcs take the
form: du; = n;dt where n; is C°. If Assumption C; is not satisfied, we can
have at a non generic point Y X™~ !¢ = 0 and n; can explode.

2.3.3. Application to the time optimal control problem. In the time min-
imizing problem the transfer time 7" is not fixed. We reparametrize the trajectories
on [0,1] by setting: s =¢/T, z = T. The problem is to minimize ¢(1) for the extended
system:

d i d
= (X4uY)s, =z = =0

ds " ds
The transversality conditions imply:
pe>0ats=1and p, =0fors=0,1.

The adjoint system decomposes into:

dp 0X o ay dc
ds ~ P\ag " "9q ) "aq
dpt _ dpz _
E—O dS —-P(X—i—uY)—
and moreover:
M=minH=0 (2.7)
[v]<1

If we reparametrize by ¢ and replace by n/z and M by M/z, we get the following:
ProPOSITION 2.1. The necessary optimal conditions for the time minimal control
problem are:

g=X+uY a.e. (2.8)
0X Yy Oc
) = — — —n— €. 2.
D p<3 +u 3q) "5, a.e (2.9)
u(p,Y) = |H|11<n v(p,Y) a.e. (2.10)
v|<1
M:lnlli<n<p,X—|—uY>—|—ptEO withp # 0 (2.11)
v|<1
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At a contact or a junction with the boundary

ptit) =pti—=) —vig=, v >0 (2.12)

pe >0, n>0 withn=0 when ¢ < 0 and 5 is Con the boundary ¢ = 0 (2.13)

2.4. Definitions. An extremal is a solution (¢q,p) of the above equations. Tt
is called exceptional if p, = 0. In the non exceptional case we use the normalization
pt = 1/2. An extremal arc is called bang-bang if it corresponds to a piecewise constant
control u(t) = —sign({p(t),Y (¢(2)))); an extremal arc of the unconstrained problem
is called singular if (p(t), Y (¢(t))) = 0. We note ® = (p, Y (q)) the switching function
and X the switching set formed by points ¢ where the optimal control is discontinuous.

2.5. Computation of singular controls. We have:
LEMMA 2.2. Let ®(t) = (p(t),Y (¢q(t))) be the switching function evaluated along
a smooth extremal z(t) = (p(t), q(t)) of the unconstrained problem, then:

o(t) = (p(t). [X, Y](a(1))
(1) = (p(t), [X, [X, Y]](g(0))) + u(®)(p(t), [V, [X, Y]I(a(1)))

COROLLARY 2.3. A singular extremal (p(t), q(t)) satisfies:

(p(t), Y (q(1))) = (p(1), [X, Y](¢())) = 0 a.e
(), [X, X, Y] (g(0)) + uw(@)(p(0), [V, [X, Y](¢(1)) = 0 ae.

2.6. Geometric computations of the multipliers (7,v;) and the junction
conditions. One of the main contributions of [19] is to determine the multipliers
(n,v;) together with the analysis of the junction conditions. This is based on the
concept of order and is related to the classification of extremals. We shall establish
now these relations when the orders are m = 1 and m = 2. Also we make the
computation geometric, that is related to iterated Lie brackets of (X,Y) acting on
the constraint mapping c.

2.6.1. The case m = 1. For first order constraint we have:
LEMMA 2.4. Assume the order m = 1, then:
. [X, Y](g))
o Yol ,
2. Assume the control discontinuous at the contact or entrance-exit of a bang
arc with the boundary, then we have v; = 0.
Proof. Along the boundary, ® = (p, Y)=0 and differentiating we get:

1. Along the boundary, n =

0=2®=(p,[X,Y](q)) —nYe(q)
and Ye # 0 since the boundary arc is of order 1. Hence we get 1.
Let us prove 2. We set a = Xc and b = Ye¢. Hence ¢ = a+ub. Let @ be a contact
point of a bang-bang extremal ¢t — ¢(¢) with the boundary at time ¢;. Let € > 0 small
enough. We have:

clq(t; —e)) <0, e(qt; +€)) <0.



taking the limit when € tends to 0, we get:
(a4 bu)y,— >0, (@4 bu)s,y <0.
Hence making the difference, it follows:
b(q(t:)) (u(ti=) —u(ti+)) > 0. (2.14)

Assume for instance b(q(¢;)) > 0. Hence u(t;—) — u(t;+) > 0 since u(t;—) # u(t;+).
From the minimum principle we must have:

®(t;—) <0, ®(ti+) > 0
from (2.12) we have:
q)(tl—}—) = @(ti—) — I/Z'b(q(ti)) (215)

and we deduce v;b(¢q(t;)) < 0. From the minimum principle v; > 0. Consequently, if
v; # 0 we have b(q(t;)) < 0 and this contradicts our assumption. The case b(¢(t;)) < 0
is similar. The discussion is similar at a junction point with a boundary arc. O

2.6.2. The case m=2. For second order constraint we have:
LEMMA 2.5. Assume the order m = 2 then:
1. Along a boundary arc:

_ 0 [X X YI(9) + (e, [V X Y]I(9))
(X, Y]e)(9)

2. At a contact or entrance-exit point:
@(tz—{—) = @(ti—)

3. At an entry point:

o (ti-)
vi = )
(X, Y]e)(q(t:))
and at an exit point:
B(t;
N |72

(X, ¥]e)(q(t:)

The proof is similar to the proof of Lemma 2.4.
Remark. Hence at a entry (resp. exit) point, v; is determined by the extremal before
reaching (resp. after leaving) the constraint. The multiplier 5 is determined by (¢, p)
along the constraint.

2.7. Small time reachable set, normality and conjugate points along
bang-bang extremals.



time maximal \

T \
\T\ time minimal

R(Go)

q
9o B(q,T)

Fic. 1. Small time reachable set

2.7.1. Definitions. Consider a system of the form ¢ = X +uY | |u] < L.
Let ¢(0) = gqo be fixed and denote ¢(Z, g, u) the solution corresponding to u(.) and
starting at time ¢ = 0 from ¢g. We denote by R(qo) = Uu, ¢ small enough q(t, qo0,u) the
small time reachable set. The time extended system is the system ¢ = X +uY, ¢° = 1.
Let us note § = (g, ¢°) ant let R(qNO) be the small time reachable set for the extended
system, with §o = (¢0,0). We note B(zjo) the boundary of R(fjo) which contains
both time minimal and time maximal trajectories of the system, parametrized by the
minimum principle. Let T > 0, we note B(go,T) the extremities of time minimal
trajectories with time 7', see Fig. 1. The cut-locus C(qo) is the set of points ¢; where
there exists two distinct minimizing curves starting from gg.

We define similarly the small time reachable sets, their boundaries and the cut
locus for the constrained problem ¢(¢) < 0, and they are noted with a subscript b.
The purpose of this article is in particular to compute Cy(qo) and to stratify By(qo,T)
for systems in dimension 2 and 3 under generic assumptions.

2.7.2. Normality and conjugate points along bang-bang extremals for
the unconstrained system. We recall briefly the concept of normality and conju-
gate points introduced by [28]. Consider the family of vector fields

D= {X +uo¥ ,Juo| < 1}

and if Z € D denotes exptZ the one parameter group of Z. Fix qg and 7" > 0 and if
Z1y...Zm € D denotes by ¢ the mapping,

m
oty .. tm) = exptmIm o...0expt1Z1(qo), Zti =T.
i=1

The point ¢; is said (resp. quasi) normally accessible from ¢g in time T' if there
exists such a mapping which satisfies ¢(f) = ¢ for some ¢ = (f1,... ), with
t; > 0 and such that ¢ is a submersion at ¢ (resp. open mapping). In both cases
the image covers a neighborhood of ¢; and hence the corresponding trajectory is not
time minimal, nor time maximal. Let (z(.),¢(.)) be a bang-bang extremal defined
on [0,7]. If n is the dimension of the state, assume that z has n switchings 0 <
t1 < ...<ty =T on[0,T]. The corresponding points ¢(t1),¢(t,) of the trajectory
are called conjugate points. Hence (p(t;),Y (¢(¢;))) = 0, fori =1,...,n. Let Y*
be the vector Y (¢(¢;)) transported from ¢(¢;) to ¢(¢,) by the flow of Z. Then we
have (p(t,),Y;*) = 0, fori = 1,...,n and since p(¢,) is non zero, the vectors Y;*
are linearly dependent. The resulting relation between the switching times is called a
conjugate point relation.

2.8. Conclusion of this section. The remaining of this article is devoted to the
construction of the closed loop time optimal trajectories for a single input affine control
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system in dimension 2 or 3 with application to the space shuttle re-entry problem. To
guide the analysis, a standard result (seee [18]) is the following: Consider a system
in R3 ¢ = X + uY and take gq such that at qo the Lie brackets, X, Y, [X,Y] are
linearly independent. Then the small time reachable set R(gg) has a nice structure. It
is homeomorphic to a conver cone whose boundary is formed by two surfaces S; and
Sa corresponding to bang-bang trajectories with at most one switching, see Fig. 2. The
arcs v+ and y_ are the trajectories corresponding to u = 1 and u = —1 respectively.

Fi1G. 2. Small time reachable set

3. Small time minimal syntheses for planar systems with state con-
straints.

3.1. Generalities. We consider a system ¢ = X +uY, |[u| <1, ¢ = (z,y) € R?
with state constraints ¢(q) < 0. We denote by w = pdq the clock form defined on the
set where X, Y are independent by w(X) = 1 and w(Y) = 0. The singular trajectories
are located on the set S = {g € R? det(Y (q),[X,Y](g)) = 0} and the singular control
us 1is solution of (p, [X, [X,Y]](¢)) + us(p, [Y,[X,Y]](q)). The two form dw is zero on
the set S.

We take qo € {g € R? ¢(q) = 0} identified to 0. The problem is to determine
local optimality status of a boundary arc ¢t — 7, (¢) corresponding to a control u; and
to describe the time minimal syntheses near gg. The first step is to construct a normal
form, assuming the constraint of order one.

LEMMA 3.1. Assume

1. X(qo0), Y(qo) linearly independent,

2. The constraint is of order 1, that is Ye(qo) # 0
Then changing if necessary u into —u there exists a local diffeomorphism preserving
qgo = 0 such that the constrained system is

& =1+ ya(g)
y=>blg)+u, y<O0
Proof. Using a local change of coordinates preserving 0, we can identify Y to ;—y

and the boundary arc to v : ¢t — (¢,0). The admissible space is y < 0 or y > 0.
Changing if necessary u to —u it can be identified to y < 0. O

3.2. The generic case A;. In this case we make the additional assumptions:
1. Y(0),[X,Y](0) are linearly independent,
2. the boundary arc is admissible and not saturating at 0.

3.2.1. Local model. Under these assumptions, we have in the previous normal
form: a(0) # 0 and [6(0)] < 1. To analyze the optimal synthesis near 0, we set

8



a = a(0), b = b(0) and the local model is:

=14 ya
y=b+u, y<0.
The clock form 1s
dz a
w = and dw=——-—dzeANd
1+ ay (1+ay)? Y

3.2.2. Local syntheses. First consider the unconstrained case. The small time
reachable set for the time extended system is represented on Fig. 2. Its boundary,
formed by arc y4v- or y_v4 (where y4v_ denotes an arc v4 followed by an arc
v-) represents time minimal and time maximal trajectories. They are given by the
minimum principle. Considering the model we have two cases: If a > 0, then dw > 0
and each optimal trajectory is of the form vy4y_ (y-7v4+ being time maximal). If
a < 0 then dw < 0 and each optimal trajectory is of the form y_v4 (y47- being time
maximal).

For the constrained case, the same reasoning on the clock form shows that the
boundary arc is optimal if and only if @ > 0. The local optimal synthesis is represented
on Fig. 3. We have proved:

, N =~ time
‘0 S 70 \\{mammal
‘ y=0 |
T ve \7_ P N
Y+ - >
7
~ < e
N /// time Y-
N -7 ™ maximal T+
N
(a)a>0 (b)a<o
Fia. 3.

LEMMA 3.2. In the case A; we have:
1. For the unconstrained problem, if a > 0 an arc y4vy— s time minimal and an
arc y_~4 s time mazimal and conversely if a < 0.
2. For the constrained problem, a boundary arc is optimal if and only if a > 0
and wn this case, each optimal trajectory is of the form y4vpy—. If a < 0 each
optimal arc is of the form y_~4.

3.2.3. Link with the minimum principle. According to Lemma 2.4, along

(p, [X,Y](9))
(Ye)(q)

n = —apy and p, is oriented by (p, X +uY)+p: = 0, p: > 0. Hence p; < 0. Therefore
sign (n) = sign (a) and the necessary optimality condition is violated if a < 0.

the boundary n = with (p,Y) = 0. Hence denoting p = (pz, py) We get

3.3. The singular case B1.



3.3.1. Generalities and local model. If Y and [X,Y] are linearly dependent
at 0 then a(0) = 0, we assume that the set S = {q € R? det(Y (¢),[X,Y](g)) = 0} is
a simple curve. In Lemma 3.1, we have normalized Y to 88_y and the boundary arc 7
tot — (¢,0). Hence the slope of S at 0 is an invariant. In the small time model, we
approximate S by a straight line and the equations of the system are:

=1+ y(ay + bzx)
j=ctu, <o

where the set S is identified to {(z,y) € R? 2ay + bz = 0} and we assume a # 0.
Consider the system without state constraint and assume u € R. From [5] there
exists along S a singular arc which can be time minimal or time maximal. The test
to distinguish between the two cases is the Legendre-Clebsch condition and we have
two cases:

e a < 0: the singular arc is time minimal.

e a > 0: the singular arc is time maximal.
The singular control us which makes S invariant is solution of

b(1 + y(ay + bz)) + 2a(c +us) =0
and its value at 0 is
us = —c—b/2a.

Taking into account the constraint, the condition of admissibility is |¢ +b/2a| < 1. In
the previous normalizations the clock form is
d: 2ay + b
= 27]: and dw = %daj/\dy
ay® + bry (ay? + bzy)

and we have sign (dw) = sign (2ay + bz). We assume that the boundary arc is ad-
missible and non saturating: |¢| < 1. We have 3 generic cases to analyze. These cases
are distinguished by the behavior of the bang-bang extremals for the unconstrained
system near the switching surface. Differentiating twice ® = (p, Y (¢)), we have:

@ = (p,[X,Y](q))
@, = (p, [X,[X, Y]](g) + ulY,[X,Y]](q))

with u(t) = —sign(p(t),Y (¢(t))) and p is oriented by (p, X + uY) < 0. The three
generic cases are represented in Fig. 4 and are respectively

e hyperbolic case (a): ®4 < 0and ®_ >0 and (p,Y) = (p,[X,Y]) = 0.

e elliptic case (b): ®_ < 0and &4 > 0and (p,Y) = (p,[X,Y]) =0.

e parabolic case (c): '.1.>+ and ®_ have the same sign at (p,Y)={(p,[X,Y])=0.

In the hyperbolic case the singular arc is admissible, not saturating and is time

minimal. In the elliptic case it is admissible, not saturating and time maximal. In
the parabolic case ; |us| > 1 and the singular arc is not admissible. In the sequel we
analyze the three cases.

3.3.2. Hyperbolic case. a <0, |c+b/2a| < 1, |¢|] < 1 and b # 0.

We have two cases according to the slope at 0 of the singular arc, see Fig. 5.

The analysis is similar in both cases and we only study the case b > 0 in details.
For the unconstrained problem, the singular arc is optimal and each optimal trajectory

10



N\o
&
NO

dw >0 dw >0 \

(a)b>0 (b)b<o0

Fia. 5.

has at most two switchings and the local optimal synthesis is of the form yLysv+. For
the constrained problem, using the clock form together with Stokes theorem leads to
optimality of the boundary arc for > 0 and non optimality for z < 0. The optimal
synthesis to join two points of the boundary is then of the form v_v,7;. Each optimal
curve in a neighborhood of 0 has at most 3 switchings and the local optimal synthesis
is of the form y17vsvy+. The situations are represented on Fig. 6 and is summarized
in the following lemma.
LEMMA 3.3. Under our assumption, in the hyperbolic case each small time opti-
mal trajectories has at most 3 switchings. Moreover:
1. Ifb > 0, a boundary arc is optimal if and only if x > 0 and each optimal arc

is of the form v+7sVe7+ -
2. If b <0, a boundary arc is optimal if and only if x < 0 and each optimal arc

s of the form ~vLypysy+

non optimal optimal optimal 0 non optimal
|
s
T+ o
/\\ T+ /\ 9% Yo
(a)b>0 (b)b< O
Fia. 6.

3.3.3. Elliptic case. a > 0, |[c+b/2a] < 1, |¢] < 1 and b # 0. We have
again two cases according to the sign of the slope of the singular arc. Both cases
are distinguished by the optimality status of the boundary arc, 0 being excluded, see
Fig. 7. We shall only study the case b > 0 in details.
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nonoptima>~_ 0 optimal optimal__ b0<wmal
o T

A= =T TN XA
dw <0 S g dw <0

(a)b>0 (b)b<o0
Fia. 7.

For the optimal problem without state constraint the situation is the following.
Each optimal control is bang-bang with at most one switching. This is proved by the
concept of conjugate points, see [27]. Indeed take near 0 a reference extremal with
two switchings. It can be embedded into a one parameter family of extremals with
the same initial point, represented on Fig. 8, which reflects on the switching locus.

q
qo ~ ; >_< 2 o
switching locus

q2
Fia. 8.

Optimality status is lost after the second switching point which is conjugated.
In particular there exists a cut locus C'(0) for optimal trajectory starting from 0, see

Fig. 9(a).

0
T 7b>/ /(.’[/‘2,0)

v dw =0

Fia. 9.

This has the following consequence for the problem with state constraints. Let
7° be the arc associated to u = —1 starting from 0 and consider an arc 4% v, joining
0 to the boundary in this admissible domain, see Fig. 9(b). Then it intersects dw = 0
and it can be optimal or not. Using the model, we compare the time along the bound-
ary arc v, and the time along 7% v4 to decide about optimality. A straightforward
computation gives us:

LEMMA 3.4. Consider the elliptic case, with b > 0. If % > 1;_032 then the

boundary arc starting from 0 is optimal. If % < 161632 the optimal policy to join 0
to a nearby point of the boundary is v*~vy. The small time reachable set from 0 is

represented on Fig. 10.
If the boundary arc is admissible, there exists a cut-locus Cj(0).

12
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3.3.4. Link with the minimum principle. In the hyperbolic and elliptic case
the condition 1 > 0 along a boundary arc of the minimum principle detects the opti-
mality outside 0, since n = —bxp,. To decide at 0, we must use second order condition,
taking the clock form. In the elliptic case, the bifurcation between the two cases can
be obtained by the following standard argument. For an extremal with a non trivial
boundary arc, and according to Lemma 2.4, the adjoint vector is continuous at the
junction and hence (p,Y) = 0, which determines p (using homogeneity) prior to the

junction. This gives us a switching curve K for extremal curves with a boundary arc,

b/2a |
5/2a—(c+1) %
Depending on the slope, an extremal can reflect or cross this locus, see Fig. 11. The

passing through 0. This curve can be computed and we get y = 2(c + 1)

Fic. 11.
critical value is when the slope of 4% is equal to the slope of K that is % = :_c;.
Hence optimality of the boundary arc corresponds to the crossing case. This is coherent
with [1], see also Fig. 8.

3.3.5. The parabolic case. This case arises when the singular control is not
admissible. The unconstrained case is easy to analyze and the optimal synthesis fol-
lows from the classification of extremals. Indeed, in the parabolic case, differentiating
twice the switching function ® we have:

® = (p, [X,[X, V] + u[Y, [X, Y]])

and @ has the same sign for u = +1 and u = —1 and we have two situations repre-
sented on Fig. 12. Computing using the normal form we get with (p,Y) = 0, that is
py = 0O:

= —pz(b+ 2a(c+ u))
Hence for the unconstrained problem, if b+2a(c+1) > 0 the optimal solution is of the

form y_v4v— and if b 4+ 2a(c + 1) < 0, the optimal solutions are of the form y4y_v4
and the length of the intermediate arc is determined by the first switching point.
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We analyze the optimal synthesis for the problem with state constraints. We have
four cases, all similar. Consider for instance the case a > 0, b > 0. Since |¢] < 1 we
have ¢+ 1 > 0 and the optimal law for the problem without state constraint is of the
form y_~4v-. The optimal status of the boundary arc, 0 excluded, is represented on
Fig. 13 and the boundary arc is non optimal if < 0 and optimal if x > 0. Moreover

non opti\mal>>g optimal

7 ‘ = ~_
N \;(i)_
dw <0 Y+

dw =0

Fia. 13.

the boundary arc 4 starting from 0 is optimal because the sector dw > 0 is positively
invariant. The optimal synthesis follows from the minimum principle and Lemma 2.4.
LEMMA 3.5. Consider the parabolic case and assume for instance a > 0, b > 0.
Then
o for the unconstrained case each optimal policy is of the form v_~vyy~v_;
o for the constrained case each optimal policy is of the form y_~yyvypy-.

3.4. The saturated case Bj;. We analyze now the generic saturated case.
Hence we assume that the boundary control up is saturated at 0, that is up = 1. We
suppose that there exists no singular arc that gets through 0, that is @ does not vanish
at 0 in our model of Lemma 3.1. Consequently, denoting a(0) = a and b(0) = b, the
local model is

=14 ya
y=b+u+cx+dy, y<0

where a, b, ¢ are constants and b = 1. Moreover we assume ¢ # 0. The various cases
are easy to analyze and we shall discuss in details the case a > 0, b = +1. For the
unconstrained problem, an optimal arc is of the form v4~_ and for the constrained
problem the saturating control is up, = —1. We have two cases distinguished by the
sign of ¢, see Fig. 14.
If ¢ < 0 (resp. ¢ > 0) the boundary arc is admissible only for z > 0 (resp. z < 0).
The local time minimal synthesis follows easily and is represented on Fig. 15.
LEMMA 3.6. Assume we are in the saturated case with a > 0, b= 1. Then
1. If ¢ < 0, each local optimal arc has at most 3 switchings and is of the form
T+7T-T7--
2. If ¢ > 0, each local optimal arc has at most 2 switchings and is of the form
Y47
14
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The analysis is similar in the other cases and the syntheses are represented on

Fig. 16.

4. Small time minimal synthesis for system in dimension 3 with state
constraints.

4.1. Preliminaries. We consider a system of the form ¢ = X + uY, ¢(q) <
0, |u] <1, with ¢ = (z,y,2) € R3 The objective of this section is to initialize the
classification of the optimal syntheses near a point ¢g, identified to 0, on the boundary
of the domain. Consider first the unconstrained case and assume that X, Y, [X,Y]
are linearly independent at gg. The small time reachable set R(qq) is represented
on Fig. 2, and its boundary is formed by the two surfaces S; and S; respective
extremities of arcs of the form y_v4 and y4v-. To construct optimal trajectories
we must analyze the boundary of the small time reachable set for the time extended
system. Its structure is described in [18], under generic assumptions. We proceed as
follows. Differentiating twice the switching function ® = (p(¢), Y (¢(t))) we get:

(1) = (p(1), [X, Y](a(t))) ,
(1) = (p(t), [X + uY, [X, Y]|(a(t))) -

If (p(t), [V, [X,Y]](¢(t))) is not vanishing we can solve <I>(t) = 0 to compute the singular
control:

(p, [X, [X,Y](g))
(p, [Y, [X, Y])(g))

If Y and [X,Y] are independent, p can be eliminated by homogeneity and us; com-
puted as a feedback control. Introducing D = det(Y,[X,Y],[Y,[X,Y]]) and D' =
det(Y,[X,Y],[X,[X,Y]]), we get D'(q) + usD(¢) = 0. Hence in dimension 3 through
each generic point there is a singular direction. Moreover, as in the planar case, the
Legendre-Clebsh condition allows to distinguish between slow and fast directions in

Uy = —
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the non exceptional case where X, Y, [X,Y] are not collinear. We have two cases,
see [5].
e Case 1: If X and [[X,Y],Y] are on the opposite side with respect to the
plane generated by Y, [X,Y], then the singular arc is locally time optimal if
u € R.
e Case 2: On the opposite, if X and [[X,Y],Y] are in the same side, the
singular arc is locally time maximal.

In the two cases, the constraint |ug| < 1is not taken into account and the singular
control can be strictly admissible if |us| < 1, saturating if |us| = 1 at gg, or non
admissible if |us;| > 1. We have 3 generic cases. Assume X, Y, [X,Y] not collinear
and let p oriented with the convention of the minimum principle: {(p(¢), X + uY") < 0.
Let ¢ be a switching time of a bang-bang extremal: ® = (p(t), Y (q(t))) = 0. It is
called of order one if ®(t) = (p(t), [X,Y](¢q(t))) # 0 and of order two if ®(t) = 0 but
O(t) = (p(t), [X + uY, [X,Y]](q(?))) # 0 for u = +£1. The classification of extremals
near a point of order two is similar to the planar case, see Fig. 4. We have three cases:

¢ parabolic case; ®4 have the same sign.

o elliptic case: @ >0 and d_ < 0.

e hyperbolic case: <I>+ <0and ®_ > 0.
In both hyperbolic and parabolic cases, the local time optimal syntheses are obtained
by using only the first order conditions from the minimum principle and hence from
extremality, together with Legendre-Clebsch condition in the hyperbolic case. More
precisely we have:
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LEMMA 4.1. In the hyperbolic or parabolic cases, each extremal policy is locally
time optimal. In the hyperbolic case each optimal policy is of the form vyivsve. In
the parabolic case, each optimal policy is bang-bang with at most two switchings.

The set B(qo, T') describing the time minimal policy at fixed time is homeomorphic
to a closed disk, whose boundary is formed by extremities of arcs y_v4 and v4y_ with
length T" and the stratification in the hyperbolic case is represented on Fig. 17(a).

T+ Y+Y—
T-T+ Y-+
(a) hyperbolic (b) elliptic
Fic. 17.

In the elliptic case, the situation is more complicated because there exist a cut-
locus. The analysis is related to the following crucial result based on the concept of
conjugate points defined in Section 2.7.2 due to [28].

LEMMA 4.2. Consider system ¢ = X +uY, |u] < 1,q € R3. Let qo be a point such
that each of the two triplets Y, [ X, Y], [X =Y, [X,Y]] and Y, [X,Y], [X+Y,[X,Y]] is
linearly independent at qo. Then near qq each bang-bang locally time optimal trajectory
has at most two switchings.

The local time optimal policy at fixed time is represented on Fig. 17(b). There
exists a cut locus C'(qo) whose extremities are conjugate points on the boundary of the
reachable set.

We shall now analyze the constrained case. If the order of the constraint is one,
the situation is similar to the planar case, analyzed in Section 3. Hence we shall
assume that the constraint is of order 2. The case corresponding to the space shuttle
problem is the parabolic case which is considered first.

4.2. Geometric normal form in the constrained parabolic case and local
synthesis. For the unconstrained problem the situation is clear in the parabolic case.
Indeed X, Y, [X,Y] form a frame near qo and writing:

[X £, [X,Y]] = aX +bY + c[X, Y],

the synthesis depends only upon the sign of a at gg. The small time reachable set
is bounded by the surfaces formed by arcs y_+4 and v4v-. Each interior point can
be reached by an arc y_+y4v- and an arc y4v_v4. According to Fig. 12, if a < 0
the time minimal policy is y_~y4+v_ and the time maximal policy is y4v_~v4+ and the
opposite if @ > 0. To construct the optimal synthesis one can use a nilpotent model
where all Lie brackets of length greater than 4 are 0. In particular the existence of
singular direction is irrelevant in the analysis and a model where [V, [X, Y]] is zero can
be taken. This situation is called the geometric model. A similar model is constructed
next taking into account the constraints, which are assumed of order 2. Moreover we
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shall first suppose that Cy, Cj are satisfied along a boundary arc v, that is Y X¢ # 0
along v, and the boundary control is admissible and not saturating. We have the
following:

LEMMA 4.3. Under our assumptions, a local geometric model in the parabolic
case is:

T =a1x+ aszz
y:1—|—b1$+b32
Z=(c+u)+crz+ cay+ c3z, lu| <1

with as > 0, where the constraint s x < 0 and the boundary arc is identified to

Y :t— (0,t,0) Moreover we have [X,Y] = —Clgaa—x — bg%, [Y,[X,Y]] =0,
[X, [X, Y]] = (a1a3 + 0363)88—33 + (a3b1 —|— bgcg)% + (a361 + b3€2 —|— C%)%, and
[X,[X,Y]] = a X mod{Y,[X,Y]}, with a = azby — ai1bs # 0. If the boundary arc is
admissible and not saturating we have |c| < 1. Moreover az = —[X,Y]c.

Proof. We give the details of the normalizations.
Normalization 1. Since Y (0) # 0, we identify locally Y to 9/0z. The local diffeo-
morphisms ¢ = (1, 2, p3) preserving 0 and Y satisfy: 921 — 922 — () and % =

oz oz
Since the constraint is of order 2, Ye¢ = 0 near 0 and Y is tangent to all surfaces
¢ = a, a small enough, hence % =0.

Normalization 2. Since ¢ is not depending on z, using a local diffeomorphism
preserving 0 and Y = %, we can identify the constraint to ¢ = z. Then the system
can be written: & = X1(q), y = X2(¢), 2 = X3(¢) + u, and # < 0. The secondary
constraint is £ = 0, and by assumption a boundary arc =, is contained in z = 2 = 0
and passing through 0. In the parabolic case the affine approximation is sufficient for

our analysis and the geometric model is:

T = aix+ asy +asz,
Yy ="bo+ b1z + by + bsz,
Z=co+crz+cay+esz+u,

where 7, is approximated by the straight line: z = 0, azy + azz = 0.
Normalization 3. Finally we normalize the boundary as follows. In the plane z = 0,
making a transformation of the form: z/ = ay + z, we can normalize the boundary
arc to x = z = 0. Using a diffeomorphism y' = ¢(y), the boundary arc can be
parametrized as v, : ¢t — (0,¢,0). The normal form follows, changing if necessary u
to —u, and hence permuting the arcs vy4 and v_. O

THEOREM 4.4. Consider the time mimization problem for the system: ¢ = X (q)+
uY (q), ¢ € R3,|u| < 1 with the constraint ¢(q) < 0. Let qo € {¢ = 0} and assume the
following:

1. At qo, X, Y and [X,Y] form a frame and [X £Y,[X,Y]](q0) = aX(q0) +

bY (q0) + ¢[X,Y](q0), with a < 0.

2. The constraint i1s of order 2 and Assumptions C1 and C3 are satisfied at qq.
Then the boundary arc through qo is small time optimal if and only if the arc y_ 1is
contained in the non admissible domain ¢ > 0. In this case the local time minimal
synthesis with a boundary arc is of the form ~v_ 'yi'yb'yf'y_, where 'yi are arcs tangent
to the boundary arc.

Proof. The proof is straightforward and can be done using a simple reasoning
visualized on the normal form. In this case go = 0, the boundary arc is identified
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to t — (0,¢,0) and due to az > 0, arcs tangent to v, corresponding to u = %1, are
contained in ¢ < 0 if u = —1 and in ¢ > 0 if u = +1. Let B be a point of the
boundary arc 7, for small enough B = (0, y0,0). If u = +1, we have the following
approximations for arcs initiating from B:

z(t) = as(co + cayo + u)t2/2 + 0(t2)
z(t) = (co + cayo + u)t +o(2) .

The projections in the plane (z,z) of the arcs y_vy4v- and y4v_7v4 joining 0 to B
are loops denoted ¥_447- and 447_ 74 represented on Fig. 18. The loops y_y475—

Fia. 18.

(resp. ¥+9-44) are contained in # < 0 (resp. # > 0). We can now achieve the proof.
Taking the original system, if the arc y_~4v_ joining 0 to B which is the optimal
policy for the unconstrained problem is contained in ¢ < 0, it is time minimal for the
constrained case and the boundary arc is not optimal. On the opposite, we can join
0 to B by an arc y4+v-74 in ¢ < 0, but this arc is time maximal. Hence clearly the
boundary arc 7, is optimal.

In this case the optimal synthesis follows easily. Indeed take two points B; <
0 < By of the boundary arc and consider the arcs y_~4 arriving at B; and y47y-
departing from Bj, this gives us the local optimal synthesis represented on Fig. 19. O

Fia. 19.

4.2.1. Connection with the minimum principle and geometric interpre-
tation. From Lemma 2.5 we have

_ 0 [X X YI(9) + we(p, [V X Y]I(9))
([X, Y]e)(9)

where we can assume [Y,[X,Y]] = 0. Moreover [X,[X,Y]] = aX 4+ bY + ¢[X,Y] and
(p,Y)=(p,[X,Y]) = 0 along the boundary, hence we have:

~alp, X(9))

(X, Y]e)(9)

In the normal form [X,Y]e = —az < 0 and (p, X) < 0 by extremality. Hence the
necessary condition n > 0 tells us a > 0. In this case y4v_~v4 is the optimal policy
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of the non constrained problem and from Fig. 18 it is contained in > 0. Hence the
necessary optimality condition 1 > 0 s violated if a < 0 in the normal form, when
the boundary arc is not optimal.

Observe that also the jump v and vs of the adjoint vectors at the entry point
B; and at the exit point By are given by the extremals arcs of the non constrained
problem joining respectively P to By and By to . This will be used later in the
multiple shooting algorithm.

4.3. Connecting two constraints of order 2 in the parabolic case. If there
are two constraints in a small neighborhood of a point gy, one needs to describe the
transition between the two constraints. Hence we give a geometric normal form to
analyze such a transition together with the optimal strategy.

PropPoOsITION 4.5. Consider the control system ¢ = X +uY, |u| <1, ¢ € R3
with two distinct constraints ¢;(q) <0, i = 1,2. Assume that Assumptions 1 and 2 of
Theorem 4.4 are satisfied for both constrained system and denote i, 77 the respective
boundary arcs. Moreover assume that the boundary arcs are optimal. Take a small
neighborhood U of 0 containing subarcs of both v} and ~%, and assume that v} hits
the boundary co = 0. Then there exists a geometric model of the form:

Tz =a1x+ azz
y:1—|—b11‘+b32
z=cHu+tcle+chy+chz

where the constraints are given by ¢1(q) = « and ca(q) = x+ey, with e small. Moreover

the optimal policy near qo = 0 with boundary arcs are of the form y4yLviyLv2yLv4

where the intermediate arc 47 is the only arc tangent to both constraints.
Proof. The first constrained system is normalized by Lemma 4.3 as:

r=aix+ azz
z=(c+u)+ iz + chy + 5z, lul <1

. . . de
and ¢1(g) = « < 0. Since the constraint c¢g is of order 2, we have “2 — 0 and we can

z
set ¢a(g) = dix +day, at first order. Observe that ¢y = ¢ if and only if d3 = 0. Hence
proceeding by perturbation and assuming that the arc hits the boundary of ¢; < 0,
we can set:

c2(g9) =  + ey, where € > 0 is small .
The arcs y_ tangent ¢ identified to ¢ — (0,¢,0) are approximated by
z(t) = as(co + cayo + u)tz/? + 0(t2)
y(t) = (t+y(0)) +o(t)
z(t) = (¢ + cayo + w)t + o(2) ,
and to make the connection with 77 at time ¢, we must have:
(t)+ey(t) =0, E(D)+eit) = 0

This gives us two conditions which geometrically means that we must construct near
0 an arc y_ tangent to both constraints. The equations have near 0 a unique solution
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parametrized by (0,y(0),0) , where y(0) < 0 is the exit point of 4} and ¢ the time to
reach the arc 4Z. The estimates are
3 3

t~—

O datermy T Tmlerw

Also observe that from the practical point of view, that the construction can be ex-
tended on each domain where there exists an unique arc y_ tangent to the constraints.

O

4.4. The constrained hyperbolic case. Let 40 be the singular arc through
qo = 0 and let u? be the associated singular control. We assume that 7? is not tangent
to the boundary arc. Changing if necessary u into —u, we can assume that the arc
4% through 0 is contained in the admissible domain identified to # < 0 and the model
is:

r=a1x+azz+ ...
i=(c+u)+..., z <0, az >0

Where t — (0,¢,0) is the boundary arc.
we have two situations represented by projection in the plane (z,z) on Fig. 20.
The case 20(a) corresponds to ¢ + u? > 0 and the case 20(b) to ¢+ u? < 0.

Fia. 20.

In the first case, the arc 47 is not admissible and the local synthesis follows easily.
Indeed take two points 0 = (0,0,0) and B = (0, y,0), with y > 0, on the boundary.
According to [18], the optimal synthesis to join the two points in the unconstrained
cases is y_~vs;7— and is contained in the domain 2 < 0. Hence the boundary arc is
not optimal. Moreover a computation similar to the parabolic case proves that the
necessary condition n > 0 along the boundary of the minimum principle is violated.
Hence we have proved:

LEMMA 4.6. With our assumption in the hyperbolic case, assume that the singular
arc 42 through 0 is not admissible for the constrained problem. Then the boundary
arc is not optimal and the necessary condition n > 0 in the minimum principle is
violated.

Consider now the second case, where 40 is contained in z < 0. To simplify we
only analyze the limit case |u| < M when M tends to co. According to the analysis
of [5], the singular arc is C°-locally optimal for the unconstrained problem and the
optimal synthesis consists in following a singular arc, with jumps at the extremities
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along the control direction Y identified to aa_z to match the boundary conditions. To
analyze the constrained case, we make the following reasoning. We denote by 47 the
singular arcs tangent to the boundary, which are by assumption contained in z < 0.
Let P be a point of 47 which reaches the boundary at Q. And consider the policy
represented on Fig. 21, which consists in jumping at P to another arc 5, reaching the

boundary and then jumping to the boundary arc and following the latter. If ¢, ¢5, t3

Fia. 21.

are the times represented on Fig. 21, we have 5 +t3 > t; because 4! is optimal for
the unconstrained problem. This proves the following;:

LEMMA 4.7. With our assumption in the hyperbolic case, assume that the singular
arc through qo = 0 is admussible. Then the boundary arc is optimal and for the limit
case, each optimal trajectory with boundary is of the form RY~yTv,7TRY, where RY
represents jumps in the control direction to match the boundary conditions.

To study the case |u] < 1, we first describe the local time optimal synthesis at
time 7', T small enough, starting from gy = 0. For the sake of simplicity we adopt the
point of view of [18] and we restrict our attention on the so called ”free” nilpotent
case, where [X,[X,Y]] =0

t=z,y=1-2cx—22 2=cH+u (4.1)

with |e| < 1 and the constraint given by < 0. Then the singular control is u; = 0
and is strictly admissible. The boundary arc is t — (0,¢,0) and is associated with the
control up = —c. The singular arc is not tangent to the boundary arc and since we
assume that 40 is admissible (see Fig. 20(a)), that means ¢ < 0.

LEMMA 4.8. Under our assumptions, the boundary arc is the optimal policy to
Jjoin two points A = (0,a,0) and B(0,b,0) of the boundary.

Proof. According to [18], extremal trajectories without boundary arc are of the
form y1vs7+. None of these extremal trajectories allows a junction between A and
B staying in the admissible domain z < 0. Hence the boundary arc is optimal. O

To describe the small time optimal syntheses let us define, for T" small enough,
the sets:

Tys— = {exptsZ_exptaZsexpt1Zp(0),t1+t2+t3 =T} {z < 0}
Fps+ = {exptsZs exptaZsexptiZp(0),t1 + 12 +t3 =T} {z <0} (4.2)
I_,— ={exptsZ_exptaZsexpt1Z_(0),t1+t2+1t3=T} )

I s+ ={exptsZyexptaZsexpt1Z_(0),t1+ta+1t3 =T} {z <0}

where 7y, Z5 and Z4 corresponds to X + uY with u respectively equal to u; the
boundary control, us the singular control and u = +1 the regular controls.
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LEMMA 4.9. Under our assumptions, each small time optimal trajectory starting
from 0 is of the form yyX v4 or % ~v,v+. Moreover, each of the sets defined in (4.2)
1s homeomorphic to a disk. Furthermore we have:

| Vo ﬂrbs+ =T = {exthZs exptlzb(o):tl +1iy = T}

Tps—(Tos- =T5_ ={exptaZ_expt175(0),t1 +t2 =T}
Tes—-T-os4 =T, UT- ={exptZ;(0),t =T} U{exptZ_(0),t =T} (4.3)
Fbs-}—ﬂr—s— =T

Cos+ (Posy =Tsp = {exptaZyexpt1 Z5(0),t1 +t2 =T} {z < 0}

These relation are described in Fig. 22, by projection in the plane (z, z).
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Proof. According to [18], extremal trajectories without boundary arc are of the
form v4vsv+. In the same way, after leaving a boundary arc an extremal trajectory
is of the form 47,7+ . Moreover, an extremal trajectory for the constrained problem
can not leave the boundary arc with an arc y4 which is not contained in the admissible
domain. Let us also prove that if an extremal trajectory leaves a boundary arc with
an arc y— then there is no more switching. Indeed, writing the necessary conditions
of Proposition 2.1 with our system (4.1), we obtain for the adjoint system:

Do = Qpr —-n, py =0, p,=—-ps + 22py~

Along a boundary arc p, = py, = 0, py < 0 and 1 = 2¢p, > 0. At the exit time #;,
we have pg(t14) = po(ti—) —vi = —v1, py(ti+) = py(ti—), pz(t1+) = p:(t1—) =0,
with vy > 0. Therefore, after leaving the boundary with an arc y_, the switching
function is ®(¢) = —py (t — t1)(t —t1 — v1/py) and is strictly positive for ¢ > ¢;. This
ends the proof of the first part of the lemma. For the second part of the lemma,
straightforward computations prove assertions (4.3). O

Solving the same problem backward in time, we obtain the small time optimal
syntheses to join ¢g = 0.

LEMMA 4.10. Under our assumptions, each small time optimal trajectory joining
0 is of the form v+ vp or y+7s7°.

The small time local synthesis near the boundary follows from Lemma 4.9 and
Lemma 4.10. The computations are simplified in the ”free” nilpotent case but our
reasoning uses only the minimum principle and more generally, we deduce the follow-
ing:

ProrosiTiON 4.11. Consider the hyperbolic case and assume that the singular
arc 40 through qo = 0 not tangent to the boundary arc. If v0 is contained in the non
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admissible domain, the boundary arc is not optimal. Ifv? is contained in the admissi-
ble domain, the boundary arc is locally optimal and the local optimal trajectories with
boundary arcs are of the form y+y? vyl v+ .

4.5. Conclusion. In order to classify the generic situation in dimension 3, the
elliptic case has to be analyzed. This is beyond the scope of this article. Indeed in the
elliptic case we must introduce second order conditions to compute conjugate points
along bang-bang trajectories, in the constrained case and make a Morse theory. This
will be the purpose of a forthcoming paper.

5. Control of the atmospheric arc, multiple shooting algorithm and
numerical results.

5.1. A short review on the multiple shooting algorithm. This numerical
algorithm is standard, and a classical reference is [26].
Let us consider a single-input affine control system in IR":

¢ =X(q) +uY(q)
where the control satisfies the constraint:
lul <1
and the state ¢ is submitted to a scalar constraint:
c(g) <0

The problem is to minimize the cost:

J(w) = / " pla(t))dt

among all trajectories satisfying ¢(0) € Mo, ¢(tf) € M1, where My and M; are sub-
manifolds in R".

Now applying the minimum principle stated in Section 2.3.1 one comes to a boundary
value problem of the following type:

Fo(t,Z(t)) if g <t<ty
Fl(t,z(t)) if ¢ <t <ty

Fy(t, z(t)) if t, <t <ty

where z = (¢,p) € R*® and t;,t5,... 1, € [to,tf] are:

o cither switching times, i.e. times at which the shooting function ®(¢) =
(p(t),Y(q(t))) vanishes, and hence the control u(t) may pass for instance
from —1 to +1,

e cither junction times, i.e. times at which the trajectory joins a boundary arc,

e cither contact times, i.e. times at which the trajectory only touches the
boundary.

Moreover the following conditions hold at these points:

Vie{l,...,s} ri(ty,2(t5), 2(t])) = 0 (5.2)

Among these conditions we have:
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e continuity conditions on the state and costate at switching points,

e at junction and contact points: continuity conditions on the state, jump con-
ditions on the costate, and conditions on the constraint c.
For instance if one joins a boundary arc with order p then the following p
conditions hold at that point:

c=¢=-..=cP" =9
Finally, we have the boundary conditions:

rea(ty, 2(10), (1) = 0 (5.3)

which contain:
e the initial and final conditions on the state,
e the initial and final conditions on the costate, given by the minimum principle
(for instance if the component ¢; (o) of the state is free then the corresponding
component of the costate vector is equal to zero at time tg),

o if the final time ¢; is not fixed then the Hamiltonian vanishes at time ¢;.
Remark. A priorit; is unknown. On the other part in the multiple shooting method
the number s of switchings has to be fired and must be deduced from a geometric
analysis of the problem.

The multiple shooting method consists in subdividing the interval [to,t;] in N
subintervals, where the value of z(¢) at the beginning of each subinterval is unknown.
More precisely, let g < o1 < --- < o < t; be a fizred subdivision of the interval
[to,tf]. At each point o; the function z is continuous. We can consider ¢; as a fixed
switching point at which the following conditions hold:

{Z(U;L) = z(aj_)

_ *
oj =0 fixed

Now introduce the nodes:

{.1‘1,... ,l‘m} = {to,tf}U{O’l,... ,O’k}U{tl,... ,ts} (54)

We arrive at the following boundary value problem:

Fl(t,Z(t)) ifI1§t<l‘2

Fa(t, z(t)) if 2o <t < 23
o Z(t)=F(t,z(t) =

Froo1(t,2(t) ifapmer <t <ap
e Vjie{2,...,m—1} rj(rj,z(a:;),z(xj)) =0

o 1y (Tm, 2(21),2(2m)) =0

where z, =t is fixed and z,, = ;.

Remark. The stability of the method can be improved by increasing the number of
nodes. Indeed the principle of the method is to overcome the unstability of a simple
shooting method where the influence of inaccurate initial data can grow exponentially
with the length t;-tq, see [26].
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Set z]+ = z(rj), and let z(t, z;_1, zf_l) denote the solution of the Cauchy prob-
lem:

()= F(t,2(1), 2(xj-1) = 74

We have:

V= 2(z= 2 . 2T
z(a:j )= z(a:j L1, zj_l)
The interior and boundary conditions can be rewritten as:

Vied{2,...,m—1} rj(xj,z(m;,xj_l,zf_l),zf)

T’m(ajm: Z1+: Z(ﬁ;,“ Tm—1, ZTT’L—I)) =
Now set:

, T 2n+1)(m—1
Z = (2t a2t e, 2h 1) € RZrt1)(m-1)

(where z € IR™). Then the previous conditions hold if:

rm(rmaZf_az(r;uxm—lazjr_z—l))
T2($2;Z($2_:$1;ZfL)aZ;)

G(2) = : =0 (5.7)

T’m_l(l‘m, 2(33771—1: Tm—2, ZrT@—Z): 2:1—1)
The problem is now reduced to determine a zero of the function G which is defined
on a space vector whose dimension is proportional to the number of switching points
and points of the subdivision. The equation G = 0 can be solved iteratively with the
help of a Newton type method.
We refer to [11, 17] for more details on numerical methods. Our algorithm is
written in Fortran, and simulations were lead with Matlab.

5.2. The atmospheric re-entry problem.

5.2.1. The model. Let 0 be the center of the planet, K = NS is the axis of
rotation, 2 is the angular velocity. We denote by F = (ey,eq,e3) with e3 = K, an
inertial frame with center 0. The reference frame is the quasi-inertial frame R; =
(I,J, K) with origin 0, rotating around K, with angular speed € and I is chosen to
intersect the Greenwich meridian. Let 77 be the radius of the planet, G the center of
mass of the shuttle. We note (r,{, L) the spherical coordinates of G, r > rp being the
distance OG, h = r — rp is the altitude, [ is the longitude and L is the latitude. We
note Ry = (er, €1, €er), a moving frame with center GG, where e, is the local vertical,
(er,er) is the local horizontal plane and ey is pointing to the north. The spherical
coordinates have a singularity at the poles.

Let £ :t — (2(t),y(t), z(t)) be the trajectory of G measured in the quasi-inertial
frame attached to the planet and let @ = &I + yJ + 2K be the relative velocity. The
vector @ is represented by its modulus v and two angles:

e 7: path wnclination which is the angle with respect to the horizontal plane,
e Y: azimut angle which is the angle of the projection of @ in the horizontal
plane measured with respect to the axis er,.
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We denote by (i, 7, k) the orthonormal frame defined by i = @’ /v, j is the unitary
vector in the plane (¢, e,) perpendicular to ¢ and oriented by j.e, > 0 and k =i A j.
The system is written in the coordinates (r,v,7,L,{,x). The forces acting on

the vehicle are the gravitational force = m7g and the aerodynamic force Whic_l)l
decomposes into a drag force opposite to the relative velocity and a [lift force L
perpendicular to the velocity. Since ¢ = (r,L,l) are measured in a quasi inertial

frame, we have additional Coriolis and centripetal forces. The aerodynamics forces
have simple expressions in the frame (¢, j, k) and from [20] and [12] the equations of
the system are:

dr .
— = vsin
dt !
d . 1 SC . .
& —gsiny — —p D y2 4+ Q%rcos L(sin~ycos L — cosvysin L cos x)
dt 2" m
d 1 1 SC
d_;fy = cosvy (—% + %) + §p mL'Ucos,u

+ 2Q cos L sin x + 02l cos L(cos~ycos L + sinysin L cos x)

v

dL v (5.8)
— = —COS7YCOosX
dt r
dl v cos 7y sin y
dt r cosL
d 1 SCL, . v ' . .
ax _ —p L sin p ! + Ecos*ytamLsmx—l— 2Q(sin L — tan+y cos L cos x)
dt 2" m cosy T

+Q2rsinLcosLsinX

v cos 7y

where p is the bank angle, S is the reference area and Cp, Cp are respectively the lift
and drag coefficients depending upon the angle of attack « (incidence) and the Mach
number. The air density is p and we take an exponential model: p(r) = poe=#". For
the atmospheric arc the angle of attack a is held constant and the control is the bank
angle . We set u; = cos u and us = sin p.

5.2.2. Optimal control. The problem is to steer the vehicle from an initial
manifold My to a terminal manifold M;. To be more precise the terminal time ¢; is
free and the boundary conditions are given in Table 5.1.

Initial conditions | Terminal conditions
altitude A 119.82 km 15 km
velocity v 7404.95 m.s~1 445 m.s~!
flight angle —1.84 deg free
latitude L 0 10.99 deg
longitude [ free 166.48 deg
azimut x free free

TaBLE 5.1

Boundary conditions

The state constraints are of the form ¢;(¢q) <0, for i = 1,2, 3 and are:
e constraint on the thermal fluz:

o = cq /7 < ™,
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where ¢, is a constant.
e constraint on the normal acceleration

max

Vo = Ynopv® < AT,

e constraint on the dynamic pressure

lpv2 S pmaz

2
They are approximated on the Fig. 23 in the flight domain, in terms of the drag
d= %—ST(;;D pv? and v.

normal_acceleration

thermal flux

Fi1ac. 23. Constraints - Harpold and Graves strategy

The optimal control problem is to minimize the total amount of the thermal flux:

ts
I = [ e (5.9)
0
If we introduce the new time parameter

ds = pdt (5.10)
our optimal problem is a time minimizing problem.

5.2.3. Harpold and Graves strategy [14]. If we use the approximation
v = —d, the cost can be written:

and the optimal strategy is to maximize during the flight the drag d. This is the policy
described in [14] which reduces the problem to find a system trajectory to track the
boundary of the domain in the following order: thermal flux — normal acceleration
— dynamic pressure, see Fig. 23.

5.2.4. Properties and structure of the system. The problem is to minimize
time for a system of the form:
dg
P X(q) +u1Yi(q) +u2Ya(q),
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where u; = cosp, us = sinp and ¢ = (r,v,7v,L,l,x). If we set ¢; = (r,v,v) and
q2 = (L, 1, x), the system can be decomposed into:

g1 = Ii(q1,u1) + O(Q), 42 = Fa(q, u2) .
The first system governing the longitudinal motion is given by

dr

B (wsinn)y
dv N . 1 SCD42

i <QSIH’Y+§PTU )1/)-1-0(9) (5.11)
dfy _ g v 1 SCL‘ .

I (COS’)/(—U + r) —|—2p - Ucos,u—|—29cosLsmx)1/)—|—o(Q)

and the second system governing the lateral motion is:

dL ('v )1/)
— = | —cosycos
dt r TEosX
dl v cos 7y sin Y
i\ ez )Y
r o cos (5.12)
d 1 SC ' '
ax _ —p Lsin,u v —}—EcosytaaninX Y
dt 2" m cosy T

+2Q(sin L — tanycos L cos x)¥ + o(Q2)

where ¢ = 1/ and the centripetal force o(?) is neglected.

For the control of the atmospheric arc, one of the main problem in the flight
domain is to avoid violation of the constraint thermal flux in the first part of the arc
and this requires a careful analysis of the longitudinal motion. Omitting the Coriolis
and centripetal terms, (5.11) is a scalar input affine system of the form

G=X+uY, |ul <1, where ¢ = (r,v,7) € R?,
and the state constraints are of the form ¢;(¢) <0, i =1,2,3.

5.2.5. Lie bracket properties of the longitudinal motion and constraints.
Consider the system ¢ = X +uY, ¢ = (z,y,2) € R3, where

B o 0 . 9y 0 g, vy
X—1/2<Usm'76r (gsln’y kpv )5@+COSV( v+7“) 37) ’

0
!
Y = ¢k pU@'y ,
which describes the longitudinal motion when the rotation of the Earth is neglected
(2 =0) and g = go/r? is assumed to be constant. The following results, coming from
computations, are crucial:
LEMMA 5.1. In the flight domain where cosy # 0, we have:
1. X, Y, [X,Y] are linearly independent.
2. [Y,[X,Y]] € span{Y, [X,Y]}.
5. X1, YI)(@) = (@) X(a) + b(a)Y (a) + c(@)[X, V(@) with a < 0.
LEMMA 5.2. Assuming Cp and Cp are constants, the constraints are of order 2
and Assumption C1, "YXc does not vanish on the boundary”, is satisfied in the flight
domain.
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5.2.6. Application of the classification to the space shuttle. The con-
straints are of order 2 and Assumption C] is satisfied. In the part of the flight domain
where the boundary arc is admissible and not saturating (Assumption Cjs), the arc y_
is violating the constrained along the boundary. Hence we proved (see Theorem 4.4):

COROLLARY 5.3. Assume Q = 0 and consider the longitudinal motion in the
re-entry problem. Then in the flight domain where Assumption Cs s satisfied, a
boundary arc is locally optimal and the small time optimal synthesis with fired bound-
ary conditions on (r,v,7) is of the form y_ 'yz'yb'y_{'y_.

5.3. Extremals of the problem.

Preliminaries. First consider the problem without constraint on the state. The
Hamiltonian is:

H(g,p,u) = (p, X(q)) + u1 (p, Yi(q)) + ua {p, Ya(q)) + P’ ,

where u = (u1, ug), 43 = cos y, us = sin g and
e p = (pr,Pv, Py, PL, i, Py) is the vector dual to the state g,
e pY is the dual component of the flux.

If the trajectories are parametrized by ds = ¢(q)dt, the optimal problem is a
time minimization problem. The control domain is u? + uZ = 1 and the optimal
control problem is not conver and can be relaxed by taking u? + w2 < 1 in order to
ensure the existence of optimal solutions. According to the minimum principle the
optimal controls have to minimize u — H (g, p, u) over u? +u2 = 1. Hence outside the
switching surface X: (p, Y1) = (p, Y2) = 0, an extremal control is given by:

uy = cospi = — {p, V1) _ . cosYpy
\/<P; Y1) +(p, Y2)? cos? ’yp% + pi
5.13
UQISil'lM:— <p:Y2> — _ Px ( )
V(P Y1)? + (p, Y2)? cos? 7y p2 + p}

The corresponding extremals are called regular and the extremals contained in
the switching surface are called singular. Due to the existence of singularities, the
behavior of regular extremals is complex and the analysis is outlined in [7].

The system parametrized by s can be written:

W = X+ wFi (o) + ua¥alo) (5.14)

Where~)~( = 'X, Y, = ¢ Yy, Yo = ¢ 1Y, and set F(q,,u) = )N((q) + cos,uf’l(q) +
sin e Ya(q).
Definitions. We denote by E : u(.) — ¢(¢, go, u) the end-point mapping of sys-
tem (5.14) and E’ : u(.) — ¢(t, o, i) the end-point mapping associated to ¢ = F(q, W).
Observe that if e is the mapping u(.) — (cos p,sin ), we have: E' = Foe. If we
endow the set of inputs with the L® norm topology, both mapping F and E’ are
Fréchet differentiable and they have inputs where the Fréchet derivatives are singular,
that is not surjective. The following result is standard.

LEMMA 5.4. The reqular extremals are the singularities of E' and the singular
extremals are the singularities of F.
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Hence regular extremals are the singular trajectories of the system ¢ = F(q, p).
They are depending upon the system (5.14) and the constraint: u} + u% = 1. The
reduced Hamiltonian takes the form

H(q,p,p) = (p, F'(q, 1)) -

The extremals contained in H = 0 are called exceptional. The optimality status of
singular trajectories in the time optimal control problem can be investigated using
the Morse theory developed in [5] under generic assumptions, see also [24], [2] and
[30]. This requires the computation of the second order derivative of E’ to evalu-
ate the conjugate points. This computation is simplified along singular trajectories
corresponding to constant controls. The algorithm is given in [4].

The computations of singular extremals which depend only upon the system can
be reduced to a calculation of [7] if we assume Q = 0. Indeed in this case the axis
NS is arbitrary and the system decomposes into a system in dimension 5 of the form
¢ =X+u 371’ + usg 372’ where ¢' = (r,v,7, L, x) and [ = F(¢'). From [7] we have:

LEMMA b5.5. Assume to simplify ¢ = go. The singular trajectories of ¢ =
X'+ uy Y/ +uy Yy are located at x = km with uy = 0 and are the singular trajectories
of single input system ¢’ = X' + u; 371'.

The computation in the single input case is standard. Now, making the axis N.S
vary, we generate all the singular extremals for the full system, assuming 2 = 0. If
the Earth rotation is not neglected, the poles are fixed.

5.4. Reduction procedure. In order to implement the multiple shooting algo-
rithm we design a quasi-optimal trajectory based on the following reasoning;:
Sling effect: According to our numerical data, every trajectory starting from our
initial conditions violates the constraint on the thermal flux if Q is taken as 0. Hence
the Coriolis force which dominates at the beginning the centripetal force has to be
used in the first part of the trajectory to compensate the gravitation and to track the
boundary arc. Moreover the Coriolis component in the longitudinal motion is given
by F. = 2Qcos Lsinx and is maximized for L = 0 and x = n/2. Therefore since
L(0) = 0, we choose x(0) ~ 7/2.
Embedding procedure: if Q = 0, taking into account the structure of the system,
we observe that if we relax the boundary conditions on x, L and [ then the adjoint
vector is such that p, = pr = p; = 0, and the problem is reduced to an optimal
control problem for an affine single input control system in dimension 3, describing
the longitudinal motion. Hence the boundary arcs are small time optimal and the
local optimal synthesis has been computed in Section 4 for fixed boundary conditions.
Since at the end 7 is free, a quasi-optimal trajectory is of the form:

7- 71 Tfux 7:1; PYacc'Y:{ )

where v are arcs associated to u; = cospu = x1, us = sinpg = 0 and Yaux, Yacc are
boundary arcs, corresponding respectively to the constraint on the thermal flux and
on the normal acceleration, the constraint on the dynamic pressure being not active.
The terminal latitude is adjusted using a small variation of x(0) near 7/2.

This strategy is only an approzimation of the optimal policy for two reasons. First
of all, since @ cannot be neglected in the first part of the trajectory our policy is not
extremal. But it can be checked numerically that an extremal policy is such that
|cosp| ~ 1, sinu ~ 0 since |py| > |py|, except during short durations corresponding
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to switchings. Secondly, the transfer time has to be supposed small enough to ensure
optimality. Otherwise we must estimate conjugate and cut points, see [4] for details.

5.5. Conclusion. Having selected such a policy the exact switching times are
computed using our multiple shooting algorithm, implemented without using the ez-
tremal system. This is realized in the next section.

5.6. Numerical simulations and results. Switching times and initial values
of latitude, longitude and azimut have to be determined by the multiple shooting
method. More precisely:

e The first switching time, from y_ to v4, allows to adjust the entry in the
iso-flux phase, which is characterized by ¢ = ™ ¢ = 0.

e The third switching time, from yaux to ¥4, is used to adjust the entry in the
iso-normal acceleration phase.

e The fifth switching time, from ~acc to v4, permits to adjust the final velocity
'U(tf).

e The initial azimut x(0) is used to adjust the terminal latitude L(t¢).

On the other part the final time is determined by the final altitude.
Results are drawn on Fig. 24 and Fig .25.

x 10% Altitude Velocity Flight angle
12 8000 0.05
10 o
6000
—0.05
8
-0.1
6 4000
—-0.15
4
2000 —0.2
2 -0.25
o (o) -0.3
o 500 1000 (o] 500 1000 o 500 1000
Latitude Longitude Azimut
0.25 2.8 2
0.2
2.6 1.5
0.15
2.4 1
0.1
2.2 0.5
0.05
o 2 (o)
o 500 1000 (o] 500 1000 (o] 500 1000

Fi1Gc. 24. State coordinates.
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