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Abstract

This article is devoted to the study of monoids which can be endowed
with a shuffle product with coefficients in a semiring. We show that,
when the multiplicities do not belong to a ring with prime characteristic,
such a monoid is a monoid of traces. When the characteristic is prime,
we give a decomposition of the congruences ≡ (or relators R) such that
A∗/≡ = 〈A;R〉 admits a shuffle product. This decomposition involves only
addition of primitive elements to the successive quotients. To end with,
we study the compatibility with Magnus transformation and examine the
case of congruences which are homogeneous for some weight function. The
existence of such a weight function is also showed for congruences of depth
one.

1 Introduction

Partially commutative structures share many nice combinatorial properties
with their free counterpart [8, 19, 21]. They have also been use intensively in
the computer science area [12, 13]. These structures can be rapidly described
as being presented with

< A; {[a, b]}(a,b)∈θ >cat

where A is a set of generators (an alphabet), θ ∈ A2 an unoriented graph
without loop, cat a suitable category (Monoid, Group, K-associative algebras,
Lie algebras) and [a, b] expresses the fact that a and b commute in the structures
of cat.

The simplest (and already bearing all the combinatorial power [10]) of these
structures is the partially commutative monoid < A; {ab = ba}(a,b)∈θ >Mon

(denoted M(A, θ)) whose algebra over a semiring K (K < A, θ >= K[M(A, θ)])
is called the algebra of partially commutative polynomials.
It is well known that, if a congruence ≡ (i.e. an equivalence over the free monoid

1



A∗) is generated by commutations (i.e. is the kernel of a natural morphism
nat : A∗ → M(A, θ)) then the shuffle product of two classes is a class-sum 1

(This can be verified by hand in the general case and in case K is a ring, is
related to the fact that K < A, θ > is the envelopping algebra of the - free - Lie
algebra generated by the letters [20]).

This amounts to say that, if two series Si =
∑

w∈A∗(Si, w)w; i = 1, 2 are
≡-saturated (i.e. are constant on every class of ≡) then their shuffle product
S1 S2 is again saturated, which in turn reflects, by duality, the fact that there
exists a coproduct c≡ : K[A∗/≡] → K[A∗/≡] ⊗ K[A∗/≡] such that the square

K < A > K < A > ⊗K < A >

K[A∗/≡] K[A∗/≡] ⊗ K[A∗/≡]

c

nat ⊗ nat
c≡

nat (1)

is commutative (c being the coproduct dual to the shuffle). The converse was
shown by Duchamp and Krob [7] with the restriction that K be a ring of
characteristic 0.

The aim of our paper is to discuss the property defined by (1) which will be
called, throughout the paper K − compatibility.
Let us mention here that only the shuffle product is worth and gives rise to such
an interesting discussion as the compatibility with the other classical rational
laws (sum, external product, star and also Cauchy, Hadamard and infiltration
products [6]) over series give weaker or equivalent results (for full details see
Commentary 3). The structure of the paper is the following.

First (section 2), we prove that the result of Duchamp and Krob holds
in almost every case, the only exception being the rings of prime characteristic
for which differences of words that are primitive elements can occur. The iter-
ation of these adjunctions exhausts every finitely generated congruence. More
formally, we have:

Theorem 1 Let ≡ be a finitely generated congruence on A∗ which is K −
compatible then

1. If K is not a ring or if the characteristic of K (ch(K)) is not prime then
A∗/≡ is a partially commutative monoid.

2. If ch(K) = p is prime, then a finite R ⊂ A∗ × A∗ exists with a partition
R =

⋃

i∈[1,n] Ri such that for i ∈ [1, n], Ri consists in pairs (u, v) ∈ R

such that (the image of) u − v is primitive in K[A∗/≡⋃i−1
j=1

Rj

].

In a second part (section 3), we investigate some properties of the new family
of monoids. We prove that these monoids admit a Magnus transformation and
we use it to examine the properties of cancellability, gradation, embeddability
in a group and roots.

1The structure constants are the partially commutative subword coefficients [5, 19].



Theorem 2 Let ≡ be a finitely generated congruence on A∗ which is K −
compatible and generated by relators of the form u ≡ v where u− v is primitive.
We have the following alternatives.

1. The monoid A∗/≡ is not cancellable.

2. A weight function exists ω : A → N
∗ for which ≡ is homogeneous and

A∗/≡ embeds in a group.

2 Compatibility with the Shuffle Product

This section is devoted to study the K − compatibility of a congruence.
First, we address the problem in the general case (K is a semiring) and give
some results common to all the semirings. We treat the case when K is the
boolean semiring and when it is a ring, we develop some results about the
primitive polynomials which are useful to prove our Theorem 1. In the last
paragraph of this section, we sketch the proof.

2.1 General Properties

In the sequel we will denote N.1K the subsemiring of a semiring K generated
by 1K .
We first remark that a congruence is K− compatible if and only if it is N.1K−

compatible. The property below is straightforward from this observation.

Lemma 3 Let φ : K1 → K2 be a morphism of semirings then

1. If ≡ is K1 − compatible then it is K2 − compatible.

2. If φ is into the converse holds.

This shows that, in order to study the K − compatibility of a congruence, it
suffices to study its N.1K − compatibility.

Remark 1 If ≡ is N − compatible then it is K − compatible for each
semiring K.

The properties below will be useful in the sequel, their proof are easy and we
omit them.

Lemma 4 1. If ≡1 and ≡2 are K− compatible congruences then ≡1 ∨ ≡2

and ≡1 ∧ ≡2 also are (supremum and infimum are defined with respect to
relation ”is coarser than”).

2. Let R be a relator on A∗. The congruence ≡R generated by R is K −
compatible if and only if for each pair (w1, w2) ∈ R we have c(w1) ≡⊗2

R

c(w2).



3. Let u ∈ A+ and n be the maximal integer such that u can be written as
u = u1a

n with a ∈ A. Then for each K we have (c(u), u1 ⊗ an) = 1.

4. Each congruence generated by relators of the form a ≡ b (LI) or dc ≡ cd
(LC) with a, b, c, d ∈ A is K − compatible.

5. Let B ⊆ A be a subalphabet of A. If ≡ is K − compatible then its
restriction to B∗ is.

2.2 The Boolean Case

This paragraph deals with the case when K = B (the boolean semiring). The
B − compatibility is completely characterized by the following proposition.

Proposition 5 A congruence is B− compatible if and only if it is generated
by relators like a ≡ 1 (LE), a ≡ b (LI) or ab ≡ ba (LC), with a, b ∈ A.

Sketch of the proof. The ”if” part is immediate using Properties (1), (2) and (4)
of Lemma 4.
For the converse, one defines a suitable section S ⊂ A such that S∗ natS→ A∗/≡
is onto and ≡S= Ker (natS) is generated by only (LC) relators. We have
successively verify that ≡S is multihomogeneous and then, in fact, a partially
commutative congruence.

2.3 Primitive Elements

We suppose now that K is a ring and we examine the link between K −
compatibility and primitivity of polynomials.

Definition 6 Let K be a ring and ≡ be a K − compatible congruence. A
polynomial P ∈ K[A∗/≡] is called primitive if and only if c≡(P ) = P ⊗1+1⊗P .

As usual we have the following property.

Proposition 7 The submodule Prim(K[A∗/≡]) of primitive polynomials en-
dowed with the Lie bracket [ , ] is a Lie algebra.

We suppose now that ≡=≡θ is a relation generated by commutations. Recall
first that the free partially commutative monoid is

M(A, θ) =< A|{ab = ba}(a,b)∈θ > .

The monoid M(A, θ) can be totally ordered by a relation <std in the following
way :

t <std t′ ⇔ std(t) <lex std(t′)

where std(t) denotes the maximal word for the lexicographical order in the com-
mutation class t. Using this order Lalonde [16, 15] has generalized the notion of
Lyndon word : the set of Lyndon traces is defined as the set of connected and



primitive2 traces minimal in their conjugate classes and denoted Ly(A, θ). In
his thesis Lalonde has shown the following theorem.

Theorem (Lalonde). Let Λ : Ly(A, θ) → LK(A, θ) (the - free - Lie algebra
generated by the letters in K < A, θ >) be the mapping defined by

{

Λ(a) = a if a ∈ A
Λ(l) = [Λ(l1), Λ(l2)] if l = l1l2, l1, l2 ∈ Ly(A, θ) and |l2| minimal

then (Λ(l))l∈Ly(A,θ) is a basis of LK(A, θ) as a K module and for each Lyndon
trace l ∈ Ly(A, θ) one has

Λ(l) = l +
∑

t>stdl

βtt

We have the following proposition.

Proposition 8 Let p be a prime integer and u − v be a primitive polynomial
of Z/pZ < A, θ > such that u, v ∈ M(A, θ). We can prove either u = apα

and

v = bpβ

or u = apα

bpβ

and v = bpβ

apα

.

Sketch of the proof. We denote L
(p)
Z/pZ

(A, θ) the Lie algebra of the primitive

polynomials. We can prove successively that

a) The only monomials u which are primitive are of the form u = apα

.

b) If a1 · · · an − b1 · · · bm is a primitive polynomial then we have a1 · · · an =
an · · · a1 and b1 · · · bm = bm · · · b1 or n = m and a1 · · · an = bn · · · b1

3.

c) Using Lalonde’s Theorem, the set {(Λ(l))pe

} generates L
(p)
Z/pZ

(A, θ) as a

K-module and we write u − v in the form

u − v = lp
e

+
∑

t>lpe

γtt.

Without restriction we can consider that u <std v and then u = lp
e

.
According to (b), we have to consider two cases

i) If u = u and v = v, we prove that u and v are primitive and by (a)
we get the claim.

ii) Suppose that u = v. Remarking that, if a power le (e > 0) is not
of the form aα or aαbβ , one has le = awbαcβ with a, b, c ∈ A, w ∈
M(A, θ), α, β > 0 with α + β maximal, c 6= b and a 6= c. In this case
(c(le), awcβ⊗bα) = 1 (by Property (3) of Lemma 4) and (c(le), awcβ⊗
bα) = 0, which proves that if u 6= aαbβ and u 6= aα, u − v is not
primitive. Solving the equations c(aα − bβ) = (aα − bβ) ⊗ 1 + (aα −
bβ)⊗ 1 and c(aαbβ − bβaα) = (aαbβ − bβaα)⊗ 1 + 1⊗ (aαbβ − bβaα),
we obtain that α and β are necessarily two powers of p.

2In the sense of traces (i.e. a trace is primitive if it can not be written as the power of an
other trace)

3In the sequel, the mirror image of a trace u will be denoted by u.



2.4 Structure of Compatible Congruences

This paragraph is devoted to sketch the proof of Theorem 1. We recall it here.

Theorem 1. Let ≡ be a K − compatible and finitely generated congruence
on A∗. Then

1. If K is not a ring or if the characteristic of K (ch(K)) is not prime then
A∗/≡ is a partially commutative monoid.

2. If ch(K) = p is prime, then a finite R ⊂ A∗ × A∗ exists with a partition
R =

⋃

i∈[1,n] Ri such that for i ∈ [1, n], Ri consists in pairs (u, v) such

that (the image of) u − v is primitive in K[A∗/≡⋃i−1
j=1

Rj

].

Sketch of the proof. We prove first (2). Suppose that A is finite (one can
restrict ourselves to the letters of the words of the relators), let K be a ring
and ≡ be a finitely generated congruence on A∗ which is K − compatible.
It is always possible to derive a finite set of relators R ⊂ A∗ × A∗ closed in the
following sense

u ≡ v and max{u, v} < max{max{u′, v′}|(u′, v′) ∈ R} =⇒ (u, v) ∈ R.

We construct (Ri)i∈[0,n] in the following way.

1. We set S0 = R0 = ∅.

2. For each i > 0, Ri is the set of the pairs (u, v) ∈ R−
⋃

j≤i−1 Sj such that
u − v is primitive in K[A∗/≡⋃

j≤i−1 Rj
].

3. The relator Si is the set of the pairs (u, v) ∈ R −
⋃

j≤i−1 Rj such that
u ≡Ri

v.

One can prove that this process ends, remarking that for each i if ≡⋃

j≤i−1
Rj

6=≡R

we have Ri 6= ∅. Now let us prove (1). We may consider two cases.

1. The semiring K is not a ring or a ring of characteristic 0. If 1K +1K = 1K ,
as one has B →֒ K Lemma 3 and propositon 5 prove that it is generated
by (LE), (LI) or (LC) relators (see Lemma 5). If 1K + 1K 6= 1K , Lemma
3 implies that ≡ is generated by (LE), (LI) or (LC) relators , examining
all these cases, we find that only (LE) is impossible. In the two remaining
cases, A∗/≡ is a free partially commutative monoid.

2. The semiring K is ring of characteristic n 6= 0 not prime. We consider
two cases.



(a) We have n 6= pα with p prime and α > 1. At least two prime factors
p1 and p2 of n exist. By Lemma 3 ≡ is Z/p1Z − compatible and
Z/p2Z − compatible. Proposition 8 and assertion (2) imply that
≡ is generated only by (LI) or (LC) relators.

(b) We have n = pm, then by Lemma 3 ≡ is Z/p2
Z − compatible.

Again by Lemma 3 it is Z/pZ-compatible which implies, using Propo-
sition 8, that the only primitive polynomials u − v are of the form

apα

− bpβ

or apα

bpβ

− bpβ

apα

. Remarking that
(

pα

pα−1

)

6= 0 [p2], we

find that these relators occur only when α = β = 0. Using assertion
(2), again Proposition 8 gives the result.

Such a family (Ri)i∈[1,n] will be called a primitive partition of ≡. The
minimal length of the primitive partitions will be called the depth of ≡.

Example 2 1. All the congruences generated by relators of the form apα

=

bpβ

or apα

bpβ

= bpβ

apα

are Z/pZ − compatible with depth 1.

2. The congruence generated by










a2α

b2β

a2α

b2β

= b2β

a2α

b2β

a2α

a2α+1

b2β

= b2β

a2α+1

b2β+1

a2α

= a2α

b2β+1

with α, β ∈ N − {0} are Z/2Z − compatible with depth4 2.

3 Group Properties

3.1 Compatibility with Magnus transformation

In this paragraph we show that, when ≡ is a K − compatible congruence (K
semiring), one can define a Magnus transformation on K[A∗/≡] . Recall that
the Magnus transformation is the unique endomorphism of K < A > such that
µ(a) = 1 + a for each letter a. One has here

Lemma 9 Let K be a semiring and ≡ be a congruence K − compatible.
Then it exists an unique morphism µ≡ such that the square

K < A > K < A >

K[A∗/≡] K[A∗/≡]

µ

nat
µ≡

nat (2)

is commutative.
4We only know congruences with depth 2.



Proof It suffices to remark that µ = (Id⊗ev)◦c where ev is the linear mapping
from K < A > on K sending each word w ∈ A∗ on 1. This application is
constant over A∗, then it is compatible with the congruence ≡ (i.e. it exists an
application ev≡ sending each class of word to 1). Furthermore, as ≡ is K −
compatible, c≡ exists and, therefore our morphism is µ≡ = (Id⊗ ev≡)◦ c≡.

Remark 3 Before closing the general case, let us mention that the problem
of compatibility can also be addressed for other rational laws. This laws are
”.” (concatenation or Cauchy product), ∗ (star operation, partially defined),×
(external product) and + (union or sum) for the first kind (which is the realm
of Kleene-Schützenberger Theorem [14]) and for the second kind ⊙ (Hadamard
product), (shuffle product), ↑ (infiltration product [18]) and ↑q (q-infiltration
product5, the dual of the coproduct cq = (a ⊗ 1 + 1 ⊗ a) + qa ⊗ a). The results
can be summarized as follows

Kind Laws Compatible with commutation Other
× Yes All
+ Yes All

First . No ?
* No ?
⊙ Yes All

Yes depends of K
Second ↑ Yes as

↑q Yes as

3.2 Homogeneous Congruences Compatible with the Shuf-

fle

In this paragraph, we examine the congruences which are homogeneous for some
weight function ω : A → N

+. The function ω is extended to A∗ by ω(w) =
∑

a∈Alph(w) |w|aω(a), where |w|a is the partial degree of w with respect to the
letter a. Remarking that ω is a morphism the following result is straigthforward.

Lemma 10 Let R ⊂ A∗ × A∗. The following assertions are equivalent.

1. For each (u, v) ∈ R, ω(u) = ω(v).

2. For each u, v ∈ A∗, u ≡R v ⇒ ω(u) = ω(v).

Definition 11 We will say that ≡ is homogeneous (for ω) if and only if it
satisfies the assertions of Lemma 10.

5It can be shown that q-infiltration is the only dual law satisfying alphabetical and algebraic
constraints [6]



Theorem 2 Let ≡ be a finitely generated congruence on A∗ which is K −
compatible and generated by relators of the form u ≡ v where u− v is primitive.
We have the following altenative.

1. The monoid A∗/≡ is not cancellable.

2. A weight function exists ω : A → N
∗ for which ≡ is homogeneous and

A∗/≡ embeds in a group.

Sketch of the proof. Suppose that A∗/≡ is cancellable. If ch(K) is not prime then
A∗/≡ is a free partially commutative monoid, and the result is straightforward

from [9]. If ch(K) is prime, ≡ is generated by relators of type apα

bpβ

= bpβ

apα

(pLC) and apα

= bpβ

(pLI). As all the (pLC) relators are multihomogeneous it
suffices to prove the existence of a weight function for which (pLI) is homoge-

neous. We prove that, if we have two relators apαi
≡ bpβi

(i = 1, 2) one has
α1 − β1 = α2 − β2. Denoting by da,b this difference, the result is a consequence
of the following lemma whose proof is easy and left to the reader.

Lemma 12 Let G be the graph of an equivalence relation on A. Let d : G → Z

be a function such that

(a, b), (a, c) ∈ G ⇒ d(a, b) + d(b, c) + d(c, a) = 0.

Then,

1. It exists a (potential) function h : A → Z such that d(a, b) = h(b) − h(a).

2. If A is finite, we can choose h positive.

End of the proof. We remark that da,b + db,c + dc,a = 0, according to Lemma
12 we can construct a function h : A → N

+ such that da,b = h(b) − h(a).
With the weight function ω = ph, the congruence ≡ is homogeneous. On the
other hand we have µ≡(A∗) ⊂ 1 + MK(A∗/≡) where MK(A∗/≡) is the ideal
of series S such that (S, 1) = 0. But, as ≡ is homogeneous, 1 + MK(A∗/≡)
is a group. Furthermore µ≡(w) = w +

∑

ω(u)<ω(w) nuu, which implies that

µ≡ : A∗/≡ →֒ 1 + MK(A∗/≡) is into. This proves the result.

We now give quickly some properties of the Magnus group 1 +MK(A∗/≡).
It has been shown in [9] that, if ch(K) = 0, the function S → Sn; n > 0 is one
to one within the Magnus group (the monoid then is partially commutative).
We cannot expect such a property if ch(K) = p because the congruence ap ≡ bp

can occur with a 6≡ b. However, we have

Proposition 13 Let K be a ring of prime characteristic p and ≡ a K −
compatible and cancellable congruence. Then:
i) If q 6≡ 0 [p] the function S → Sq is one to one within the Magnus group
1 + MK(A∗/≡).
ii) If qi 6≡ 0 [p]; i = 1, 2 then Sq1T q2 = T q2Sq1 implies ST = TS



Proof Solving degree by degree

(1 +
∞
∑

i=1

Xi)
q = (1 +

∞
∑

i=1

Yi) (3)

(with two auxilliary alphabets such that deg(Xi) = deg(Yi)), it can easily be

seen that the series
∑∞

k=0

(

1
q

k

)

Xk has its coefficients in Z[1/q]. This proves (i).

Now (ii) is a consequence of (i) as the hypothesis can be reformulated T−q2Sq1T q2 =
Sq1 .

4 Conclusion

We have seen that in “almost every case”, the congruences compatible with the
shuffle product give partially commutative quotients. The only degenerate case
occurs when the characteristic of the ground ring is prime and gives rise to a
bunch of new phenomena. A process (primitive partitions) to analyse these new
congruences has been described. Moreover, for congruences of depth one, we
have a complete description of the relators. This allows to prove, thanks to a
“Magnus-type” transformation, that the quotients are either not cancellable or
embeddable in a group. This transformation gives us the opportunity to use
some analytic tools as the series of the q− root for q prime to the characteristic.
An infinite family of congruences of depth two has been provided. The problem
of describing higher depth remains however open.
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