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Université de Bourgogne, Laboratoire de topologie,
UMR 5584 du CNRS, BP47870, 21078 Dijon Cedex, France

e-mail : bbonnard@satie.u-bourgogne.fr
trelat@topolog.u-bourgogne.fr

Abstract

Consider a sub-Riemannian geometry (U, D, g) where U is a neighbor-
hood of O in R3, D is a Martinet type distribution identified to Ker ω,

ω = dz −

y
2

2
dx, q = (x, y, z) and g is a metric on D which can be taken

in the normal form : a(q)dx2 + c(q)dy2, a = 1 + yF (q), c = 1 + G(q),
G|x=y=0 = 0. In a previous article we analyzed the flat case : a = c = 1 ;
we showed that the set of geodesics is integrable using elliptic integrals of
the first and second kind ; moreover we described the sphere and the wave
front near the abnormal direction using the exp-log category. The objec-
tive of this article is to analyze the transcendence we need to compute
the sphere and the wave front of small radius in the abnormal direction
and globally when we consider the gradated normal form of order 0 :
a = (1 + αy)2, c = (1 + βx + γy)2, where α, β, γ are real parameters.

1 Preliminaries

Consider the local SR-geometry (U,D, g) where U is a neighborhood of 0 ∈ R3,
D is a Martinet type distribution which can be taken in the normal form D =

Kerω, ω = dz − y2

2 dx and g is a Cω metric onD which can be written (see [1]) in
the normal form : a(q)dx2 + c(q)dy2, a = 1 + yF (q), c = 1 +G(q), G|x=y=0 = 0
and a, c can be expanded in Taylor series using the following weights : x, y of
weight 1 and z of weight 3 given by the privileged coordinates system at O :
q = (x, y, z) (see [9]). Hence we get on orthonormal basis :

F1 =
1√
a
G1 , G1 =

∂

∂x
+
y2

2

∂

∂z
, F2 =

1√
c
G2 , G2 =

∂

∂y
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Expanding F1, F2 in Taylor series according to the previous weights, and
identifying at order p two elements whose Taylor series are the same at order p,
we get the following normal forms of order −1 and 0 :

• Normal form of order −1 :

g = dx2 + dy2 (flat case)

• Normal form of order 0 :

g = (1 + αy)2dx2 + (1 + βx+ γy)2dy2 α, β, γ ∈ R

1.1 Geodesics equations

The energy minimization problem equivalent to the SR-problem is the optimal
control problem :





dq

dt
(t) =

2∑

i=1

ui(t)Gi(q(t))

min
u(.)

∫ T

0

(
a(q(t))u2

1(t) + c(q(t))u2
2(t)
)
dt

and from Pontryagin’s Maximum Principle [9] the minimizing solutions are so-
lutions of the following equations :

q̇ =
∂Hν

∂p
, ṗ = −∂Hν

∂q
,

∂Hν

∂u
= 0 (1)

where Hν is the pseudo-Hamiltonian :

Hν =

2∑

i=1

ui < p,G(q) > −ν(au2
1 + cu2

2)

where ν is a constant normalized to 0 or 1/2. A solution of the previous equa-
tions is called an extremal ; when ν = 1/2 (resp. ν = 0) they are said normal
(resp. abnormal) and their projection on the state space are called the geodesics.
They can be easily computed :

• Abnormal case : If ν = 0, D = Span{G1, G2} = Kerω and they depend

only on the distribution D. If ω = dz − y2

2 dx, they are contained in the
plane y = 0 called the Martinet plane and are the straight-lines : z = z0.
In particular the line passing through 0 is given by : t 7−→ (±t, 0, 0) and
is called the abnormal direction.

• Normal case : For ν = 1/2, with g = a(q)dx2 + c(q)dy2 we get :

H1/2 =
2∑

i=1

uiGi(q) −
1

2
(au2

1 + cu2
2)

2



Solving
∂H1/2

∂u = 0 we get :

u1 =
1

a
(px + pz

y2

2
) , u2 =

py

c

and plugging (u1, u2) into H1/2 we obtain the Hamilton function :

Hn(q, p) =
1

2

[
(px + pz

y2

2 )2

a
+
p2

y

c

]

where p = (px, py, pz) and (1) takes the form :

q̇ =
∂Hn

∂p
, ṗ = −∂Hn

∂q

Another representation is obtained using the frame F1, F2 and F3 = ∂
∂z ,

and defining P = (P1, P2, P3) with Pi =< p, Fi(q) >, i.e. P1 =
px+pz

y2

2√
a

,

P2 =
py√

c
, P3 = pz. The Hamiltonian takes the form : Hn = 1

2 (P 2
1 + P 2

2 ).

Assuming g not depending on z (isoperimetric situation) the normal ex-
tremals are solutions of the following equations :

ẋ =
1

a

(
px + pz

y2

2

)

ẏ =
py

c

ż =
y2

2a

(
px + pz

y2

2

)

ṗx =
p2

ycx

2c2
+

(
px + pz

y2

2

)2

2a2
ax

ṗy =
p2

ycy

2c2
+

(
px + pz

y2

2

)2

2a2
ay −

(
px + pz

y2

2

)

a
pzy

ṗz = 0

(2)

which takes the following form in (q, P ) coordinates :

ẋ =
P1√
a

ẏ =
P2√
c

ż =
y2

2

P1√
a

Ṗ1 =
P2√
a
√
c

(
yP3 −

ay

2
√
a
P1 +

cx
2
√
c
P2

)

Ṗ2 = − P1√
a
√
c

(
yP3 −

ay

2
√
a
P1 +

cx
2
√
c
P2

)

Ṗ3 = 0

(3)
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1.2 Sphere and wave front

Let r > 0. The wave front W (0, r) at 0 is the end-points of geodesics with
SR-length r starting from 0 ; the sphere S(0, r) is the end-points of minimizing
geodesics of length r and starting from 0. We are interested in the local problem
near 0, hence we choose r small enough ; in this case using Filippov existence
theorem about minimizers we have : S(0, r) ⊂W (0, r).
The exponential mapping exp0 is defined as follows. Consider a solution (q, p)
with q(0) = 0 corresponding to the Hamiltonian Hn, and parametrized by arc-
length : Hn = 1/2. We set exp0 : (p(0), t) 7−→ q(t).

Integrability problem : Two basic questions to compute the sphere and
the wave front are the following :

• Question 1 : Are the geodesics equations (2) integrable by quadratures ?

• Question 2 : If the geodesics equations are integrable by quadratures, what
kind of functions do we need to make the computations : elementary func-
tions (exp, log, cos, sin, ...), elliptic functions (cn, sn, dn, E, K, ...) or
others ?
In particular if we can parametrize the solutions with no more transcen-
dence than elliptic functions, the sphere and the wave front can be rep-
resented using minimal computations with packages of Mathematica or
Maple.

We make in this article a complete analysis concerning those two problems
with the gradated normal form of order 0 : g = (1 + αy)2dx2 + (1 + βx+ γy)2dy2.

1.3 The singularity problem and the exp-log category

The general theory (see for instance [2]) tells us that the abnormal geodesic :
t 7−→ (±t, 0, 0) is a global minimizer if its length is small enough ; hence its end-
points of length r, r small, given by (±r, 0, 0) belongs to the sphere S(0, r). Near
those end-points the sphere has singularities wich do not belong in general to the
analytic category. In particular this will cause numerical problems to compute
the sphere near those points, even in the ‘integrable’ case. An objective of this
article is to indicate how to deal with this problem in the ‘integrable’ case ; we
compute converging asymptotic expansions in the exp-log category, which is the
extension of sub-analytic functions by the exp-log functions (see [7]). We give
the scale of the asymptotic expansions.

1.4 General research program

More generally the results presented in this article fit in a general research
program to explain the role of abnormal minimizers in SR-geometry on the
transcendence of the sphere. The main lines of this program are the following :

4



1. Prove that the SR-sphere is not sub-analytic if there exists abnormal min-
imizers.

2. Prove that the SR-sphere is in the exp-log category if the geodesics equa-
tions are integrable by quadratures.

3. Investigate if the SR-sphere is pfaffian in the general case.

This article gives the main lines of the proof of the two first propositions in
the SR-Martinet integrable case. The third difficult problem is briefly discussed
in section 4.

This research program is parallel to a research program of Agrachev-Sarychev
to prove that the SR-sphere is sub-analytic if there exists no abnormal minimiz-
ers, see [3].

2 The integrability problem

2.1 Isoperimetric situation

Since the metric is not depending on z, the z-coordinate is a cyclic coordinate
for the Hamilton function Hn = 1

2 (P 2
1 + P 2

2 ) ; hence pz is a first integral and the
integrability of equations (2) can be reduced to the integrability of the vector
field :

ẋ =
1

a

(
px + pz

y2

2

)

ẏ =
py

c

ṗx =
p2

ycx

2c2
+

(
px + pz

y2

2

)2

2a2
ax

ṗy =
p2

ycy

2c2
+

(
px + pz

y2

2

)2

2a2
ay −

(
px + pz

y2

2

)

a
pzy

(4)

with pz = λ constant. The geodesics corresponding to λ = 0 are called excep-
tional. They have a geometric interpretation. If we denote by gR the Rieman-
nian metric a(x, y)dx2 + c(x, y)dy2 induced by g on the plane (x, y) identified
to the quotient space : R3

/ ∂
∂z

, the trajectories of (4) with λ = 0 in the plane

(x, y) are the geodesics of the Riemannian metric.

2.2 Metrics of the form : g = a(y)dx2 + c(y)dy2

In this caseHn is not depending on x and x is a cyclic coordinate ; therefore px is
a first integral ; another first integral is the Hamiltonian Hn. Hence the system
has three first integrals : px, pz and Hn , with commuting Poisson brackets.
Therefore the system is integrable by quadratures.
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We proceed as follows. If we parametrize the geodesics by arc-length, we get :
Hn = 1/2 and the equation :

P 2
1 + P 2

2 = 1 (5)

with P1 =
px+pz

y2

2√
a

, P2 =
py√

c
, where px, pz are constant, is called the charac-

teristic equation ; it can be written :

(
√
c ẏ)2 +

(
px + pz

y2

2√
a

)2

= 1 (6)

Using the time dη = dt√
c

it can be rewritten :

(
dy

dη

)2

+

(
px + pz

y2

2√
a

)2

= 1

It corresponds to the evolution of a particle of R of mass 2, whose energy is
1, with potential field : V (y) = P 2

1 (y).

2.3 The general gradated case of order 0 :

g = (1 + αy)2dx2 + (1 + βx + γy)2dy2

If we parametrize the geodesics by arc-length, we can set : P1 = cos θ , P2 = sin θ.
Moreover if P3 = pz = λ and θ 6= kπ we get the geodesics equations in cylindric
coordinates :

ẋ =
cos θ√
a

ẏ =
sin θ√
c

ż =
y2

2

cos θ√
a

θ̇ = − 1√
a
√
c

[
yλ− ay

2
√
a

cos θ +
cx

2
√
c

sin θ

]

(7)

and the last equation can be written :

θ̇ = − 1√
a
√
c
(yλ− α cos θ + β sin θ)

Making the following change of parametrization :
√
a
√
c d

dt = d
dτ and denoting

6



by ′ the derivative with respect to τ we get :

x′ = cos θ(1 + βx+ γy)

y′ = sin θ(1 + αy)

z′ =
y2

2
cos θ(1 + βx + γy)

θ′ = −(yλ− α cos θ + β sin θ)

(8)

The vector field can be projected on space (y, θ).

Asymptotic integrability The parameters α, β, γ are given by the metric.
The exponential mapping is defined on the cylinder (θ, λ) and the relevant be-
havior is when |λ| → +∞. Hence we shall assume :

Assumption : |λ| ≫ α, β, γ.
Moreover we make the analysis for λ > 0, the case λ < 0 being similar.

Consider the projection of the equations on the plane (y, θ) :

y′ = sin θ(1 + αy)

θ′ = −(yλ− α cos θ + β sin θ)
(9)

The singular points localized near 0 are given by : θ = 0 , y = α
λ and θ = π ,

y = −α
λ , where y → 0 when λ→ +∞.

Differentiating the second equation and simplifying we get :

θ′′ + λ sin θ + α2 sin θ cos θ − αβ sin2 θ + β cos θ θ′ = 0 (10)

By setting ds =
√
λdτ we get the equation :

d2θ

ds2
+ sin θ + εβ cos θ

dθ

ds
+ ε2α sin θ(α cos θ − β sin θ) = 0 (11)

where ε = 1√
λ

is a small parameter, and the remaining equations are :

dx

ds
= ε cos θ(1 + βx+ γy)

dz

ds
= ε

y2

2
cos θ(1 + βx + γy)

and y is given by the second equation of (9).
For ε = 1√

λ
, the equation (11) defines a one-dimensional foliation (F) on the

cylinder (eiθ, dθ
ds ).

7



Local analysis The foliation (F) has two fixed singular points corresponding
to M1 : (θ = 0, θ′ = 0) and M2 : (θ = π, θ′ = 0). The behaviors near those two
points can be studied by linearization of :

θ̇ = v

v̇ = −(sin θ + εβ cos θ v + ε2α sin θ(α cos θ − β sin θ))

We get :

• Near M1. The linearized system is :

θ̇ = v

v̇ = −(θ(1 + ε2α2) + εβv)

and the eigenvalues are the complex numbers :

σ± =
−εβ ± 2i

√
1 + ε2(α2 − β2

4 )

2

In particular for β 6= 0 , the point M1 is a focus.

• Near M2. We set ψ = θ − π and the linearized system is :

ψ̇ = v

v̇ = −(−ψ − εβv + ε2α2ψ)

and the eigenvalues are the two real numbers :

η± =
εβ ± 2

√
1 + ε2(β2

4 − α2)

2

and the point M2 is a saddle.

Integrability properties of F

• Near M1 We must distinguish between two cases :

Case β 6= 0 : M1 is a focus. The equation can be linearized in the real
analytic category ; hence the system can be locally integrated using the
following elementary functions : exp, sin, cos. This does not mean that
the system can be (even locally) integrated by quadratures. In particular
a focus does not admit any continuous first integral.

Case β = 0 : In this case M1 is a center. The global solution will be
given later.

8



β = 0 β > 0

−π−π +π+π

θθ

dθ
ds

dθ
ds

00

Figure 1: The conservative and the dissipative cases.

• Near M2 The integrability problem is much more complex because M2 is
a saddle. The formal linearization depends upon the resonant situation:
η+/η− ∈ Q , and the non resonant situation : η+/η− 6∈ Q ; but in both
cases there exists a formal first integral (see [6], and the discussion of
section 4).
The analytic integrability requires some extra work but we can conjecture :

Conjecture : For β 6= 0 , there exists ε such that the saddle is not
integrable in the real analytic category.

Global discussion For β = 0 , the foliation (F) is described by :

θ′′ + sin θ + ε2α2 sin θ cos θ = 0 (12)

where θ′ is the derivative with respect to s. This equation is integrable and
is indeed a standard equation from elasticity theory, see [14], [4]. It can be
integrated as follows. Multiplying by θ′ we get :

θ′′θ′ + sin θ θ′ + ε2α2 sin θ cos θ θ′ = 0

Integrating we obtain :

1

2
(θ′

2
(s) − θ′

2
(0)) = cos θ(s) − cos θ(0) +

ε2α2

2
(cos2 θ(s) − cos2 θ(0)) (13)

9



Remark In our problem dθ
ds |s=0

is computed using : q(0) = (x(0), y(0), z(0)) = 0.

We observe that θ can be integrated with only one quadrature using equation
(13). Hence we have :

Proposition 2.1. The foliation (F) is integrable in the C0-category if and only
if β = 0. In this case it is integrable in the Cω-category. The condition β = 0
is equivalent to the fact that θ can be integrated using one quadrature.

Integration in the case β = 0
This case is called the conservative case and the Hamiltonian Hn has two

cyclic coordinates : x and z, and the geodesics equations have the three first
integrals : px, pz and Hn = 1

2 (P 2
1 + P 2

2 ) whose Poisson brackets are zero. The
angle θ can be computed using one quadrature and the same is true for y using
the relation between y and θ coming from the equation px = constant.
Using the analogy with the pendulum where the derivative of the angle can be
represented with the Jacobi functions cn and dn (see [10]), we can compute y
using the same Jacobi functions. This comes from the following analysis. The
characteristic equation (6) can be written using the parametrization dτ = dt√

a
√

c
:

(
dy

dτ

)2

+

(
px + pz

y2

2

)2

= a (14)

where a = (1 + αy)2.

Hence setting : F (y) = (1+αy)2−
(
px + pz

y2

2

)2

, we observe that F is a quartic

which can be written as F1F2 with :

F1 = (1 + αy) −
(
px + pz

y2

2

)
, F2 = (1 + αy) +

(
px + pz

y2

2

)

and we can write :

F (y) =

(
2m2 − λ

2

(
y − α

λ

)2
)(

2m′′ +
λ

2

(
y +

α

λ

)2
)

where 2m2 = 1 − px + α2

2λ , 2m′′ = 1 + px − α2

2λ and m2 +m′′ = 1.
We have px = cos θ(0) , hence |px| 6 1. Then m2 > 0 if α 6= 0 ; m2 > 0 if α = 0
and θ(0) 6= 2nπ.
If we set :

η =

√
λ y

2m
− α

2m
√
λ

, η̄ =

√
λ y

2m
+

α

2m
√
λ

we can write :
F (y) = 4m2(1 − η2)(m′′ +m2η̄2) (15)

and F is a quartic whose roots on C are η = ±1 , η̄ = ±
√

m′′

m . The case m′′ = 0
is called critical and it corresponds to a double root for F .

Lemma 2.2. If α 6= 0 in the gradated normal form of order 0, there exist
geodesics starting from 0 which are critical.
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Geometric interpretation If α = 0, the geodesics can be integrated like in
the flat case studied in [2] : m′′ = k′2 =

√
1 − k2, where k is the modulus of the

elliptic functions, and k′ is the complementary of the modulus. When px → −1,
k′ → 0, then y behaves like a sech. In the (θ, θ̇) projection, the system has a
saddle connection and the projections of the geodesics tend to the separatrix.
When α 6= 0, the separatrix is the projection of a geodesic starting from 0.
The role of the parameter α is to make the separatrix and hence some rotating
trajectories of the pendulum as projection of geodesics starting from 0.

Normal form The characteristic equation can be normalized using a classical
method, see [10,p.55]. We proceed as follows ; F is factorized into F1F2 and we
consider the pencil F1 + νF2 of two quadratic forms.
If α 6= 0, there exists two distinct real numbers ν1, ν2 such that F1 + νF2 is a
perfect square : K1(y − p)2,K2(y − q)2.
Using the homographic transformation :

u =
y − p

y − q
(16)

the characteristic equation can be written in the normal form :

dy√
F (y)

=
(p− q)−1du√

(A1u2 +B1)(A2u2 +B2)
(17)

Excepted the critical case m′′ = 0, the solution in the u-coordinate can be
computed as follows :

• if the quartic F admits two real roots, u can be parametrized using the
cn Jacobi function ;

• if the quartic F admits four real roots, u can be parametrized using the
dn Jacobi function.

If α = 0, the analysis is simplier ; indeed F (y) can be written :

F (y) = 4k2(1 − η2)(k′
2
+ k2η2)

where η =
√

λ y
2k and η can be computed using only the cn function.

Hence we have proved the following :

Proposition 2.3. We have two cases :

(i) If α = 0, y = 2k√
λ
η where η is the cn Jacobi function.

(ii) If α 6= 0, y is generically the image by an homography of the cn or dn
Jacobi function.

11



Geometric interpretation If α = 0, the motion of y is a cn whose amplitude
is 2k√

λ
; in particular the motion is symmetric with respect to y = 0 and the

amplitude tends to 0 when λ tends to the infinity.
If α 6= 0, we can expand the homography : y = uq−p

u−1 near u = 0. The motion
of y is no more symmetric with respect to y = 0 ; there is a constant term in
the expansion. Hence y can generically be approximated for u small enough by
a shift plus a cn or dn motion.

Integrating x or z Both x(τ) and z(τ) can be computed using only one inte-
gral. The integrand is a polynomic function of y. Moreover y can be expanded
into a power series in u. Hence the transcendence we need to compute x or z is
given by primitives of the form :

Jm =

∫
cnmudu , Km =

∫
dnmu du

Those primitives are computed by recurrence in [10, p.87]. It involves a new
transcendence : the Jacobi epsilon function E(u, k) defined by :

E(u, k) =

∫ u

0

dn2(v, k) dv

This function was already needed in the flat case, see [2].

Arc-length parameter To recover the length parameter we use the formula:
dt = (1 + αy)(1 + γy)dτ . As previously y can be computed as a power series in
u ; hence it can be evaluated using the same primitives Jm and Km.

2.4 Application : computation of conjugate points

One interesting and non trivial application of the previous parametrizations is
the computation of the conjugate points ; they are solutions of the equation :

∂x

∂λ

∂y

∂θ0
− ∂y

∂λ

∂x

∂θ0
= 0

where θ0 = θ(0) and x, y are the two first components of a normal geodesic.
This equation was used in the flat case to evaluate the conjugate points.

3 Transcendence of the sphere and the wave front

near the abnormal line. The exp-log category.

3.1 The geometric framework

In order to study the structure of the sphere or wave front near the abnormal
direction it is convenient to consider the following traces :

S̃(0, r) = S(0, r) ∩ {y = 0} and W̃ (0, r) = W (0, r) ∩ {y = 0}

12



This leads to the important concept of return mapping :

Definition 3.1. Let e : t ∈ [0, T ] 7−→ (x(t), y(t), z(t)) be a normal geodesic
parametrized by arc-length. If y(t) 6≡ 0 we can define : 0 < t1 < · · · < tN 6 T
as the times corresponding to y(ti) = 0. The first return mapping is :

R1 : (λ, θ(0)) 7−→ (x(t1), z(t1))

and more generally the n-th mapping is the map :

Rn : (λ, θ(0)) 7−→ (x(tn), z(tn))

If the length is fixed at r, we observe that W̃ is the union of the image of
the return mapping with x = ±r, z = 0.
The following proposition is straightforward, see[4] :

Proposition 3.2. For each n > 1, the return mapping Rn is not proper.

0 0

λ

cos θ(0)

+1−1

Dom R1

R1

z

x

Im R1

(r, 0)(−r, 0)

B1

Figure 2: The first return mapping in the flat case.

3.2 Formulas in the conservative case

If the metric g is not depending on x, it is convenient to use the following
formulas from [8]. We introduce :

σ =

{
sign ẏ(0) if ẏ(0) 6= 0
sign ÿ(0) if ẏ(0) = 0

If the motion of y is periodic with period P , we set :

y+ = max
t∈[0,P]

y(t) , y− = min
t∈[0,P]

y(t)

13



Parametrizing the geodesics by y we must solve the equations :

dx

dy
=

√
c√
a

P1

P2
,

dz

dy
=
y2

2

√
c√
a

P1

P2
, dt =

√
c

P2
dy

where P2(y) = σ
√

1 − P 2
1 (y) for t ∈ [0, t1].

If y(T ) = 0 for T = tN we get the formulas :

• N odd

x(T ) = 2

∫ yσ

0

σ

√
c√
a

P1(y)√
1 − P 2

1 (y)
dy + (N − 1)

∫ y+

y−

√
c√
a

P1(y)√
1 − P 2

1 (y)
dy

z(T ) =

∫ yσ

0

σ

√
c√
a

y2P1(y)√
1 − P 2

1 (y)
dy + (N − 1)

∫ y+

y−

√
c

2
√
a

y2P1(y)√
1 − P 2

1 (y)
dy

(18)

• N even

x(T ) = N

∫ y+

y−

√
c√
a

P1(y)√
1 − P 2

1 (y)
dy

z(T ) = N

∫ y+

y−

√
c

2
√
a

y2P1(y)√
1 − P 2

1 (y)
dy

(19)

and the period is given by :

P = 2

∫ y+

y−

√
c√

1 − P 2
1 (y)

dy (20)

3.3 Computations in the flat case

The basis of the general algorithm to compute the image of the return mapping
is coming from the flat case where g = dx2+dy2. The algorithm is the following.
Both sets S̃(0, r) and W̃ (0, r) are symmetric with respect to 0 and we can assume
z > 0. From [2] the image of R1 in z > 0 is parametrized by :

x(k, λ) = −t+ 4E√
λ

z(k, λ) =
4

3λ3/2
[(2k2 − 1)E + k′

2
K]

(21)

where K and E are the complete elliptic integrals with modulus k =
√

1−px

2 ,

px = cos θ(0), k′ =
√

1 − k2 and θ(0) ∈ [−π, 0] :

K =

∫ π
2

0

dθ√
1 − k2 sin2 θ

, E =

∫ π
2

0

√
1 − k2 sin2 θ dθ

14



and the period P = 4√
λ
K(k).

Both parameters λ, k are related when we fix the length to r :

t = r =
2K√
λ

(22)

Hence the image of R1 in z > 0 is given by :

x = −r + 2r
E

K

z =
r3

6K3

[
(2k2 − 1)E + k′

2
K
] (23)

It is a parametric curve parametrized by k′. It is semi-analytic excepted when
θ(0) −→ −π and k −→ 1−. This can be seen using the following expansions for
E,K when k′ −→ 0 :

E = u1(k
′2) ln

4

k′
+ u2(k

′2)

K = u3(k
′2) ln

4

k′
+ u4(k

′2)

where the ui’s are analytic functions and moreover :

u1(k
′2) = k′2

2 + o(k′3) u2(k
′2) = 1 − k′2

4 + o(k′3)

u3(k
′2) = 1 + k′2

4 + o(k′3) u4(k
′2) = −k′2

4 + o(k′3)

In particular both E and K have a logarithmic singularity when k′ −→ 0
and hence, using [11], the branch of (23) near x = −r, denoted by B1, can be
computed in the exp-log category by eliminating k′. More precisely the algorithm
is the following :
Let X = x+r

2r , Z = z
r3 . We get :

X =
E

K
=

u1(k
′2) ln 4

k′ + u2(k
′2)

u3(k′
2) ln 4

k′ + u4(k′
2)

(24)

Z =
1

6K3

[
(2k2 − 1)E + k′

2
K
]

(25)

Then :

Step 1 : ‘Compactification’ If we introduce :

X1 = k′ , X2 =
1

ln 4
k′

we have : X1, X2 −→ 0 when k′ −→ 0+ and both X and Z are analytic func-
tions of X1 and X2.

15



Step 2 : ‘Finding equivalents’ An easy computation using (24) shows the fol-
lowing :

X1 ∼ 4e−
1
X , X2 ∼ X when X −→ 0+

and we can write :

X1 = 4e−
1
X (1 + Y1(X)) , X2 = X(1 + Y2(X))

where Y1, Y2 −→ 0 when X −→ 0+

Both Y1 and Y2 can be compared and a computation gives us :

Y2 = X A1(X,Y1) , Y1 ∼ Y2

X
when X −→ 0+

where A1 is a germ of analytic function at 0.

Step 3 : ‘Solving equation (24) in the analytic category’ The equation (24) can
be solved in the variables Y1, X1, X2 by using the implicit function theorem in
the analytic category and the computations show the following :

Y1 = A2(X,
e−

1
X

X
)

where A2 is a germ at 0 of an analytic function.
Using this relation we end with :

Z = F (X,
e−

1
X

X
)

where F is a germ at 0 of an analytic function.

N.B. If we use only the fact that the ui’s functions are analytic with respect

to k′ we get a scale e−
1
X

X2 .

3.4 Computations in the general conservative case

The algorithm is similar to the flat case using the integral formulas of subsection
3.2, but the computations are much more complex. The additional complexity
is coming from two phenomena called respectively the double log and the period
halfing.

3.4.1 Double log

In the flat case the relation (22) expressing the fact that the length is fixed to
r is trivial. In general this is no longer true and we must solve an equation of
the type :

x = y ln y y −→ +∞

16



We set :
y =

x

lnx
(1 + Y1(x)) with Y1 = o(1)

and plugging y into the equation we get, using the implicit function theorem in
the analytic category, a relation :

Y1 = A(X1, X2)

where A is a germ at 0 of an analytic function, and X1, X2 represent the scale
factors :

X1 =
1

lnx
, X2 =

ln lnx

lnx

3.4.2 The period halfing

In the flat case, the image of R1 contains only one branch B1 in the domain
z > 0 which is not sub-analytic. It corresponds to the limit behavior of the
oscillating trajectories of the pendulum when θ(0) −→ −π, which tend to the
separatrix. When α 6= 0 it comes from our analysis that we must consider :
on one side, oscillating trajectories, where y is parametrized by the cn Jacobi
elliptic function ; on the other side, rotating trajectories, where y is parametrized
by the dn Jacobi elliptic function. It can be interpreted as a period halfing
phenomenon by using for fixed k the relation : dn2s = k′2 + k2cn2s and taking
k −→ 1. In this case the image of R1 contains two branches B1 and B2 which
end at x = −r, z = 0 and they are not sub-analytic. The branch B1 corresponds
to a cn-behavior and the branch B2 to a dn-behavior. The branch B2 shrinks
to 0 when α −→ 0.

−π +π

θ

dθ
ds

00

x

z

B1

B2

(−r, 0)

R1

Σ
S

Figure 3: The separatrix Σ
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The figure 3 illustrates the role of the parameter α. Indeed imposing y(0) = 0
and y(r) = 0, this defines a section S given in the space (θ, dθ

ds) by the equation :

dθ

ds
= ε(α cos θ − β sin θ)

The role of the parameter α is to push the separatrix Σ as an admissible tra-
jectory ; hence we get the two non sub-analytic branches B1 and B2. This
phenomenon is illustrated on figure 3.

3.5 The algorithm to compute B1 and the complexity of

B1

The aim is to give the precise transcendence of the branch B1 in the general
conservative case. From now on, An(.) and An0(.) denote a germ of analytic
function at 0, and moreover An0(0) = 0.
Recall the general formulas that give a parametrization of this branch :

x(r) = −2

∫ y
-1

0

√
c√
a

P1√
1 − P 2

1

dy (26)

z(r) = −
∫ y

-1

0

√
c√
a

y2P1√
1 − P 2

1

dy (27)

r = −2

∫ y
-1

0

√
c

1√
1 − P 2

1

dy (28)

where :

{
a(y) = An(y) = 1 + αy + α′y2 + . . .

c(y) = An(y) = 1 + γy + . . .

and :

P1(y) =
px + λ

2 y
2

√
a(y)

= px − px
α

2
y +

(
px(

3

8
α2 − α′) +

λ

2

)
y2 + . . .

and y−1 is the negative root of 1 − P1(y) (we will justify it later).

The objective is to express x and z as a parametric curve in the exp-log category
and compute the graph in the same category by elimination of the parameter.

3.5.1 Precision on parameters

We study the system near the abnormal direction, so we have :

λ −→ +∞ , px −→ −1

18



y

P1

0

1

−1

y−1 y

P1

0

1

−1

y−1

Flat case Perturbed case

Figure 4: P1’s graph

Precision on y−1 In the flat case, P1’s graph is a parabola, represented on
figure 4.

The general integrable case can be considered as a perturbation of the flat
case where the parabola is deformed into a non symmetric graph (see figure 4).

Hence the existence of y−1, as a negative simple root of P1 = 1, is straight-
forward.
Using the implicit function theorem, we get :

y−1 =
1√
λ
An

(
px,

1√
λ

)

Moreover, by continuity with the flat case : y−1 ∼√
λ→+∞

−
√

2
λ (1 − px)

Precision on P ′
1(y)’s roots

Proposition 3.3. There is in the foregoing domain an unique root S of P ′
1.

Moreover :

S =
α

λ
An(px,

1

λ
) ∼

λ→+∞

pxα

2λ
< 0

Remark 3.4. S = 0 ⇔ α = 0.

Proof. If λ is large enough, then : ∀y P ′′
1 (y) > 0

Moreover : P ′
1

(
− 2√

λ

)
P ′

1

(
2√
λ

)
< 0

We can deduce that P ′
1 admits an unique root in this domain. The remaining

goes as before.
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Remark 3.5. In the flat case, we have : S = 0 , P1(S) = px.

This remark leads us to define :

Definition 3.6. k′ =
√

1+P1(S)
2 , k =

√
1−P1(S)

2

As in the flat case, we have : k2 + k′2 = 1 , and then : k = 1 + An(k′2).
Note that px −→ −1, so k′ −→ 0.

k′ and λ are our new parameters. They are the initial conditions for the
geodesics. Our aim is the following : from (27) and (28) we express x and z
in terms of k′ and λ ; from (28) we get an implicit relation between k′ and λ.
Solving this implicit equation, we will get λ in terms of k′, so that we get x
and z in terms of k′. Then the problem is to eliminate the parameter k′, to get
finally the graph z(x).

As we will see, the previous expansions are in the exp-log category (see [11]),
e.g. these are analytic expansions in k′ and some functions composed of exp
and log. Hence the aim is to express the graph z(x) in this category, with a
precise scale.

We meet two technical problems :

1. justifying the convergence of the expansions.

2. solving algorithmically this problem of elimination of parameter in the
exp-log category.

The problem of analyticity of the expansions is based on the following :

Proposition 3.7. Let fn(x) =
∑
p
an,px

p, n ∈ N, be a family of entire series

that converge for |x| < 1. Suppose : ∃A / ∀p
∑
n
|an,p| 6 A.

Then f(x) =
∑
n
fn(x) =

∑
p

(
∑
n
an,p)x

p is analytic and converges for |x| < 1.

In what follows, we will not detail all these calculations, which would be too
long. Note that, to do this, formal computations using Maple packages was very
helpful.

We will now express all our parameters in terms of k′ and 1√
λ
.

Expression of px By definition : k′2 = 1+P1(S)
2 with S = α

λAn(px,
1
λ )

So : 2k′2 − 1 = P1(S) = px + 1
λAn(px,

1
λ )

And, using the implicit function theorem, we conclude that :

px = An

(
k′

2
,
1

λ

)
∼ −1 (29)

Expression of S We get easily :

S =
1

λ
An

(
k′

2
,
1

λ

)
∼ − α

2λ
(30)
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Expression of y−1 We obtain :

y−1 =
1√
λ
An

(
k′

2
,

1√
λ

)
∼ − 2√

λ
(31)

3.5.2 Preliminaries before calculating integrals

The aim is to expand analytically all the integrands, so that very simple refer-
ence integrals appear, which will give the precise transcendence of the branch.

Expansion of P1 with the new parameters P1 appears in all formulas, so
it’s natural to work on its expression.

Recall that : P1(y) =
px+ λ

2
y2√

a(y)
= An

(
px,

1√
λ
,
√
λ y
)

Let’s make a change of variable :

y =
1√
λ

(
2kη + S

√
λ
)

(32)

We get actually, recalling that P ′
1(S) = 0 :

P1(y) = P1(S) + 2k2η2

(
1 +

1

λ
F

(
px,

1√
λ

))
+

η3

√
λ
An

(
k′

2
,

1√
λ
,
η√
λ

)
(33)

with F analytic.

Expansion of 1√
1−P1(y)

From (33) we get :

1 − P1(y) = 2k2 − 2k2η2

(
1 +

1

λ
An

(
px,

1√
λ

))
− η3

√
λ
An

(
k′

2
,

1√
λ
,
η√
λ

)

Hence, remarking that k = An(k′2) :

1√
1 − P1(y)

=
1√
2

(
1 +An

(
k′

2
,

1√
λ
, η2,

η√
λ

))
(34)

(valid if |P1(y)| < 1 , which will be the case in our integrals...)

Expansion of 1√
1+P1(y)

From (33), we get :

1 + P1(y) = 2k′
2
+ 2k2η2

(
1 +

1

λ
F

(
px,

1√
λ

))
+

η3

√
λ
An

(
k′

2
,

1√
λ
,
η√
λ

)

If we make the change of variable : η = k′

k
1

1+ 1
λ F

(
px, 1√

λ

) u

Then :

1 + P1(y) = 2k′
2
(

1 + u2 +
k′u3

√
λ
An

(
k′

2
,

1√
λ
,
k′u√
λ

))

= 2k′
2
(1 + u2)

(
1 +

k′u3

√
λ(1 + u2)

An

(
k′

2
,

1√
λ
,
k′u√
λ

))
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Hence :

1√
1 + P1(y)

=
1

k′
√

2

1√
1 + u2

(
1 +An

(
k′

2
,

1√
λ
,
k′u√
λ
,

k′u3

√
λ(1 + u2)

))
(35)

(same remark on the validity of the expansion)

3.5.3 Expansions of the integrals

Reference integrals As we will see later, the following integrals are useful.
They will be, in our expansions of x, z, and r, our reference integrals.

Proposition 3.8. Let p, i ∈ N. Then :

∫ x

0

u2i

(√
1 + u2

)2p+1 du =
1

(√
1 + x2

)2p−1

(
µ0

(√
1 + x2

)2p−1

ln(x+
√

1 + x2)

+µ1x+ µ3x
3 + · · · + µ2i−1x

2i−1

)

∫ x

0

u2i+1

(√
1 + u2

)2p+1 du = µ1 +
1

(√
1 + x2

)2p−1

(
µ0 + µ2x

2 + · · · + µ2ix
2i
)

Proof. The proof is elementary. Let Ii,p be one of both integrals studied. We
have immediately :

Ii+1,p = Ii,p−1 − Ii,p

So it’s enough calculating (Ii,0)i∈N and (I0,p)p∈N to get all Ii,p , which is easy.

Proposition 3.9. Let i ∈ N. Then :

If i > 1 :
∫ x

0
t2i

√
1 + t2 dt = λ0 ln(x+

√
1 + x2) + λ1x

√
1 + x2

+(1 + x2)3/2(µ1x+ µ3x
3 + · · · + µ2i−1x

2i−1)

If i = 1 :
∫ x

0
t2
√

1 + t2 dt = λ0 ln(x+
√

1 + x2) + λ1x
√

1 + x2

If i = 0 :
∫ x

0

√
1 + t2 dt = λ0 ln(x+

√
1 + x2)

Proof. The change of variable : t = sh(u) leads to the formulas.

Expansion of the length Recall the formula :

r =

∫ y
-1

0

√
c(y)

1√
1 − P 2

1 (y)
dy

It is an improper integral, because P1(y−1) = 1. Since y−1 is a simple root, the
integral exists. We see easily that the formal expansions done previously are
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relevant, and that we can exchange
∫

and
∑

, which is not obvious a priori.
From our previous calculations, and both changes of variables, we get :

r = 2

∫ B

A

C du

with :

A =
1

k′

(
−1 +An(k′

2
,

1√
λ

)

)

B =
α

4
√
λk′

(
1 +An(k′

2
,

1√
λ

)

)

C =
√
c× 1/

√
1 − P1 × 1/

√
1 + P1 × dy

=

(
1 +An(k′

2
,

1√
λ
,
k′u√
λ

)

)
× 1√

2

(
1 +An(k′

2
,

1√
λ
, k′

2
u2,

k′u√
λ

)

)
×

1

k′
√

2

1√
1 + u2

(
1 +An(k′

2
,

1√
λ
,
k′u√
λ
,

k′u3

√
λ(1 + u2)

)

)
× 2k√

λ
k′
(

1 +An(k′
2
,

1√
λ

)

)

Hence :

r
√
λ

2
=

∫ B

A

du√
1 + u2

+

∫ B

A

1√
1 + u2

An(k′
2
,

1√
λ
,
k′u√
λ
,

k′u3

√
λ(1 + u2)

, k′
2
u2) du

= I1 + I2

Calculation of I2 I2 is sum of the following integrals :

Jp,m,n =

∫ B

A

k′p+m+2n
u3p+m+2n

(√
λ
)p+m (√

1 + u2
)2p+1

du p,m, n ∈ N

Hence from (3.8) and (3.9) we get :

Jp,m,n =




An
(
k′2, 1√

λ
, k′2 ln 1

k′ , k
′2 ln

√
λ
)

if α 6= 0

[5pt]An
(
k′2, 1√

λ
, k′2 ln 1

k′

)
if α = 0

Remark that k′ always appears squared. This induces that the expression of
z in function of x+ r will not contain any

√
x+ r.

Moreover, a detailed analysis gives :

I2 =





ln 2 +An0

(
k′2, 1√

λ
, k′2 ln 1

k′ , k
′2 ln

√
λ
)

if α 6= 0

[5pt] ln 2 +An0

(
k′2, 1√

λ
, k′2 ln 1

k′

)
if α = 0
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Calculation of I1
I1 = Argsh(B) − Argsh(A)

But, if X → +∞ :

Argsh(X) = ln(X +
√

1 +X2) = lnX + ln 2 +An0(
1

X2
)

Hence :

I1 =





2 ln 1
k′ − ln

√
λ+ ln(α) +An0

(
k′2, 1√

λ
, k′2λ

)
if α 6= 0

[5pt] ln 1
k′ + ln 2 +An0

(
k′2, 1√

λ
, k′2λ

)
if α = 0

Remark 3.10. Here we can state that there is a ‘period doubling’ if and only
if α 6= 0.

We obtain actually an implicit equation in
√
λ :

r
√
λ

2
=

{
2 ln 1

k′ − ln
√
λ+ ln 2α+An0(k

′2, 1√
λ
, k′2 ln 1

k′ , k
′2λ, k′2 ln

√
λ) if α 6= 0

ln 1
k′ + 2 ln 2 +An0(k

′2, 1√
λ
, k′2λ) if α = 0

Resolution of the implicit equation From now on, we set : t = k′
2

.
We must distinguish between two cases :

• Case α 6= 0 We have :

r
√
λ

2
= ln

1

t
− ln(

r
√
λ

2
) + ln(rα) +An0(t,

1√
λ
, t ln

1

t
, tλ, t ln

√
λ)

Easily : r
√

λ
2 ∼ ln 1

t . We set : r
√

λ
2 = ln 1

t + u . Hence :

u = − ln ln
1

t
+ ln(rα) +An0(t,

1

ln 1
t

,
u

ln 1
t

, t ln
1

t
, t ln2 1

t
, t ln ln

1

t
)

Then we set : u = − ln ln 1
t + ln(rα) + v . We get :

v = An0(t,
1

ln 1
t

,
ln ln 1

t

ln 1
t

, t ln
1

t
, t ln2 1

t
, t ln ln

1

t
, v)

And the implicit function theorem allows us to conclude that :

v = An0(t,
1

ln 1
t

,
ln ln 1

t

ln 1
t

, t ln
1

t
, t ln2 1

t
, t ln ln

1

t
)

= An0(
1

ln 1
t

,
ln ln 1

t

ln 1
t

, t ln2 1

t
)

ccl :
r
√
λ

2
= ln

1

t
− ln ln

1

t
+ ln(rα) +An0(

1

ln 1
t

,
ln ln 1

t

ln 1
t

, t ln2 1

t
, v)
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• Case α = 0 We set : r
√

λ
2 = 1

2 ln 1
t + 2 ln 2 + u . Hence :

u = An0(t,
1

ln 1
t

, t ln
1

t
, t ln2 1

t
, u)

And, in the same way, thanks to the implicit function theorem, we obtain :

ccl :
r
√
λ

2
=

1

2
ln

1

t
+ 2 ln 2 +An0(

1

ln 1
t

, t ln2 1

t
)

Expansion of x Recall that :

x(r) = −2

∫ y
-1

0

√
c√
a

P1√
1 − P 2

1

dy

Write : P1√
1−P 2

1

= 1+P1√
1−P 2

1

− 1√
1−P 2

1

=
√

1+P1√
1−P 2

1

− 1√
1−P 2

1

And using :

r = −2

∫ y
-1

0

√
c

1√
1 − P 2

1

dy

We get :

X =
x+ r

2r
=

1

r

∫ 0

y
-1

√
c√
a

√
1 + P1√
1 − P1

dy − 1

r

∫ 0

y
-1

(√
c√
a
− 1

)
1√

1 − P 2
1

dy

Now, with the previous notations, we have :

•
√

c√
a

= 1 +An(k′2, 1√
λ
, k′u√

λ
)

•
√

1 + P1 = k′
√

2
√

1 + u2
(
1 +An(k′2, 1√

λ
, k′u√

λ
, k′u3

√
λ(1+u2)

)
)

Thus we obtain X = x+r
2r as an analytic sum of integrals of following type :

Jp,n,m =

∫ B

A

k′p+m+2n+2
u3p+m+2n

(
√
λ)

p+m+1
(
√

1 + u2)2p−1
du

From (3.8), we get :

Jp,n,m =

{
1√
λ
An(k′2, 1√

λ
, k′2 ln 1

k′ , k
′2 ln

√
λ) if α 6= 0

1√
λ
An(k′2, 1√

λ
, k′2 ln 1

k′ ) if α = 0

Knowing 1√
λ
, we obtain :

If α 6= 0 : X =
x+ r

2r
=

1

ln 1
t

An

(
1

ln 1
t

,
ln ln 1

t

ln 1
t

, t ln2 1

t

)

=
2

r
√
λ

+
C

rλ
+ O(

1

λ
3
2

)

If α = 0 : X =
x+ r

2r
=

1

ln 1
t

An

(
1

ln 1
t

, t ln2 1

t

)
(36)
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Expansion of z Recall that :

Z =
z(r)

r3
=

∫ 0

y
-1

√
c√
a

y2P1√
1 − P 2

1

dy

In the same way, we prove :

If α 6= 0 : Z =
1

ln3 1
t

An

(
1

ln 1
t

,
ln ln 1

t

ln 1
t

, t ln2 1

t

)

=
4

r3λ
3
2

+ o(
1

λ
3
2

)

If α = 0 : Z =
1

ln3 1
t

An

(
1

ln 1
t

, t ln2 1

t

)
(37)

Now we have a parametrization (X(t), Z(t)), the problem is to eliminate the
parameter t.

3.5.4 Inversion of the parameter : t in function of X

Set X = x+r
2r .

The method to express t in function of X is general in the category of functions
in which we work. In our example, X is an analytic function of t and some
functions composed of ln and t, which tend to 0 when t tends to 0. So we work
in a sub-class of the exp-log category (see [11]), denoted by LE. The general
theory from [11] tells us that t = F (X) with F ∈ LE. But this general theorem,
whose proof is based on Weierstrass preparation theorem, is not algorithmic.
Our problem is more specific : we work with a parametrization with a specific
scale. In this case we can develop an algorithm to compute precisely F , and
thus find the sub-class of LE which is needed to express t as a function of X .

First of all we give the algorithm in the particular case of our example, then
we give a general result :

Algorithm Let u = 1
ln 1

t

. Then :

X = An

(
u, uln

1

u
,
e−

1
u

u2

)

= u+ u2ln
1

u
+ Cu2 + o(u2)

(38)

where C is a constant (which can be precisely computed).
We get easily :

u = X −X2ln
1

X
− CX2 + o(X2)
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which leads us to set :

u = X −X2ln
1

X
− CX2 +X2v

Then :

1

u
=

1

X
+ ln

1

X
+ C − v +An(X,X ln2 1

X
,X ln

1

X
, v)

e−
1
u = e−CXe−

1
X (1 + vAn(v))

ln
1

u
= ln

1

X
+An(X,X ln

1

X
,Xv)

Plugging into (38), we get :

0 = X2v +An(X,X ln
1

X
,
e−

1
X

X
, v)

the analytic function being a o(X2), which allows us to divide this equation by
X2. Then :

0 = v +An(X,X ln
1

X
,X ln2 1

X
,X ln3 1

X
,
e−

1
X

X3
, v)

Applying the implicit function theorem, we get :

v = An(X,X ln
1

X
,X ln2 1

X
,X ln3 1

X
,
e−

1
X

X3
)

and the same goes for u.
Plugging into the expansion of Z, we conclude :

Z = An(X,X ln
1

X
,X ln2 1

X
,X ln3 1

X
,
e−

1
X

X3
) (39)

Remark 3.11. we can be more specific on the first terms of the expansion :

Z =
1

6
X3 +X4An(X) + O(X4e−

1
X ).

Our computations have proved the following :

Theorem 3.12. The sub-Riemannian sphere in the general Martinet conser-
vative case is in the log-exp category.

3.5.5 Generalization of the algorithm

The previous algorithm can be generalized in the following manner. Our aim is
to build a sub-class of the general log-exp category (see [11]) with the following
functions :

h1(t) = t

h2(t) = ln
1

t

h3(t) = e−
1
t
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Notation hp means h× h× . . .× h (p times).
h[p] means h oh o . . . oh (p times).

Definition 3.13. We set :

E1 =

{
hp

1

∏

0<i1<i2<···<im

(
h

[ik]
2

)i′k
/ i′k ∈ Z∗,m ∈ N, (p = 1 and i′1 < 0) or (p > 2)

}

I =

{
hp

1

∏

0<i1<i2<···<im

(
h

[ik]
2

)i′k
/ (p > 1) or (p = 0 and i1 = 1, i′1 6 −2)

}

E2 =

{
hp

1

∏

0<i1<i2<···<im

(
h

[ik]
2

)i′k
e−

1
f / p ∈ Z, i′k ∈ Z, f ∈ I

}

Proposition 3.14. Let F (X0, X1, . . . , Xn) be an analytic function near 0, so
that : F ∼

0
X0.

Let X(t) = F (t, f1(t), . . . , fn(t)) where fi ∈ E1 ∪ E2.
Let r be the greatest degree of meromorphy in the expressions of the fi’s, i.e.

the greatest power to which appears 1
t in the expressions of the fi’s.

Let g1(t) so that : X(t) = g1(t) + o(tr+1) (in fact : g1 ∈ Vect(h1, E1))
Then :

1. ∃g2 ∈ Vect(h1, E1) / t = g2(X) + o(Xr+1).

2. If we set : t = g2(X) +Xr+1u, then u can be computed using the analytic
implicit function theorem.

Remark 3.15. This algorithm implies not only that t can be expressed as a
function of X in the log-exp category ; it gives a precise scale.

4 The general gradated case of order 0

To investigate the general case a method is to consider the general case as a
perturbation of the integrable case. This point of view is similar to the one used
to solve the 16th Hilbert problem about limit cycles.

We proceed as follows : if β 6= 0 in the gradated normal form of order 0, the
basic second order equation (11) describes a non conservative pendulum. The
asymptotic expansions of the SR-distance near the abnormal direction can be
evaluated by estimating the solutions near the saddle.

Since this saddle is not a priori integrable in the analytic category for any
value of the parameter ε = 1√

λ
, we use the procedure of [13, p91] to compute

the Poincaré transition map near an hyperbolic saddle point depending on a
parameter.
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It is based on the existence of a formal first integral and uses the following
normal form near a saddle :

Xε ∼ x
∂

∂x
+ y(−r(ε) +

N∑

i=1

αi+1(ε)(xy)
i)
∂

∂y

where r(ε) is defined using the linearized system :

Xε(0) = x
∂

∂x
− r(ε)y

∂

∂y
, r(ε) =

∣∣∣∣
λ2(ε)

λ1(ε)

∣∣∣∣

where λ1, λ2 are the two eigenvalues of the saddle, and r(0) = 1 (flat case) in
our situation.

The previous vector field can be integrated by making the following (toric)
blowing-up : u = xy, v = x. This procedure allows to compute asymptotic
expansions for the solutions near the saddle. By essence this method will not
provide converging expansions.

This procedure is based on the use of our normal form. Moreover for com-
puting x and z we require one more integration. Hence we can imagine that
the final expansions are converging. Another method which could be used to
compute converging expansions is the use of Briot-Bouquet theory. This method
is the following :

Similarly to the general conservative case, the objective is to express X and
Z in terms of k′. To understand precisely the role of the parameter β, one may
study the system with the following particular metric :

a = 1 , c = (1 + βx)2

In this particular case, the general differential system (3) is simplier. Indeed
dividing by ẏ we obtain :

dx

dy
= σ(1 + βx)

P1√
1 − P 2

1

(40)

dz

dy
= σ(1 + βx)

y2

2

P1√
1 − P 2

1

(41)

P1

dy
= λy + εσ

√
1 − P 2

1 (42)

where σ = sign(ẏ).
Moreover we fix the length to r, hence :

r = 2

∫ y1

y−1

(1 + βx)
P1√

1 − P 2
1

dy (43)

Contrary to the conservative case where P1 was explicitly given, P1 is solu-
tion of a differential equation.
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It seems reasonable to think that one could express P1 analytically in some class
of functions. Indeed plugging in (41) one would express x(y), then the relation
(43) would give λ(k′), and finally it would go as before.In this analysis the key-
equation is equation (42) :
If we set : P1 = −1 + 2f2, f(0) = k′, and η =

√
λy, we get :

2f
df

dη
=

1

2
η + εf

√
1 − f2 =

1

2
η + εf + ε

∞∑

n=1

anf
2n+1

This is a Briot-Bouquet equation, studied by Boutroux, see [5]. We can expect
to get sectorially converging expansions of P1, which could help us to compute
expansions of X and Z. More precisely we conjecture that :

• for D1 = {0 6 η < k′}, P1 has a convergent Taylor series (which is
computable thanks to (42)).

• for D2 = {k′ < η < 1}, P1 can be analytically expanded in some scale.

θ

θ̇

+π−π
D1

D2
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