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SHEAR-LAYER INSTABILITY IN A ROTATING SYSTEM 
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Technopôle Château Gombert, 49 rue F. Joliot-Curie, B.P.146, 13384 Marseille 

Cedex 13 – France. (poncet@irphe.univ-mrs.fr) 

 

The shear-layer instability in the flow over a rotating disk with a free surface is 

investigated experimentally by flow visualizations for a large range of the flow control 

parameters: the aspect ratio G of the cavity, the rotationnal Reynolds number Re and 

the radius ratio s between the inner and outer radii of the rotating disk. This instability 

develops along the cylindrical shroud as sharp-cornered polygonal patterns 

characterized by the number of vortices m. This number m can be scaled by 

considering an Ekman number based on the water depth, which confirms that the 

shroud boundary layer is of Stewartson type. The appearance threshold of the first 

polygonal mode is constant by considering the mixed Reynolds number introduced by 

Niino and Misawa (1984) based on both the water depth at rest and the rotating disk 

radius. For large values of s, the instability patterns appear along the hub as small 

stationary cells. 
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1.  INTRODUCTION 

 

The stability of rotating disk flows has been addressed for a long time, mostly in the case 

of a single infinite rotating disk (Faller 1991) and more recently in the rotor-stator 

configuration (Cros et al. 05, Poncet & Chauve 05). The present work considers an 

experimental system where steady modes of a shear-layer instability are obtained over a finite 

rotating disk with a free surface. Shear layers in rapidly rotating systems (called Stewartson 

layers) are of primary importance from a geophysical point of view, as they can be observed 

in oceans or in planetary atmospheres. For examples, the Great Red Spot on Jupiter and the 

Blue spot on Neptune result from differential rotation with sharply sheared zonal flows. 

Rotating shear layer instabilities have been seen also in flows enclosed in computer hard 

drives. The instability that affects a circular shear-zone has then been widely studied in 

various configurations. 

Stewartson (1957) considered the stationary linear problem in the case of a split rotating 

cylinder. He showed, using an asymptotical method, that the flow generated by a slight 

differential rotation of one part of the shell is composed by two cylindrical shear layers 

aligned with the axis of rotation and located at the split radius. The largest one is geostrophic 

and its width scales like  (where  is the Ekman number based on 

the cylinder radius b , 

4/1
bE RebEb /1)/( 2 =Ω=ν

ν  the kinematic viscosity of the fluid, Ω  the rate of rotation of the 

cylinder and Re the rotationnal Reynolds number), whereas the width of the thinner ones 

scales like . 3/1
bE

Hide and Titman (1967) investigated experimentally the linear stability of the Stewartson 

layers, which develop on a differentially rotating disk suspended in a rotating tank. The 

instability appears as non-axisymmetric patterns of m waves in planes perpendicular to the 
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rotation axis above a well-defined threshold. The number m is maximum at the threshold and 

decreases with the amplitude of the differential rotation. In their experiments, the Coriolis 

force plays an important role in the development of the vortices proving that this is more than 

a simple Kelvin-Helmholtz instability. Rabaud and Couder (1983) performed experiments on 

the destabilization of a thin layer of air between two plates. The instability is of Kelvin-

Helmholtz type and induces regular, steady patterns of m vortices. Neither the centrifugal nor 

the Coriolis forces are involved in the motion. The same configuration has been considered 

later by Chomaz et al. (1988), who compared the results presented in Rabaud and Couder 

(1983) with new experiments and numerical simulations. They showed in particular the 

dependence on the aspect ratio of the cell on the dynamical behavior of the flow. In large 

cells, transitions from a mode with m vortices to a mode with (m-1) vortices occur through 

localized processes. On the contrary, in small cells, transitions occur after a series of 

bifurcations corresponding to successive breakings of all the symmetries of the flow.  The 

same configuration has been studied numerically by Bergeron et al. (2000). They compared 

the results of their numerical simulation code with the experimental data and the linear 

stability analysis of Rabaud and Couder (1983) and Chomaz et al. (1988) with a reasonable 

agreement between the different approaches, although Bergeron et al. (2000) found a clear 

dependence of the critical Reynolds number on the aspect ratio of the shell. 

Niino and Misawa (1984) considered a flow driven by a thin disk at the bottom of a tank 

to study the barotropic instability of horizontal shear flows. They compared their experimental 

results with a linear stability analysis applied to an initially circular shear-layer, including 

viscous diffusion and Ekman pumping. They found that the number of vortices should 

decrease with increasing Reynolds number. In a laboratory experiment, Früh and Read (1999) 

studied also the barotropic shear layer in a rotating fluid. Above a critical shear, the shear 

layer breaks up through barotropic instability, which appears as a string of vortices along the 
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shear zone. They showed that the transition from the axisymmetric mode to regular vortices 

occurs through a Hopf bifurcation. They obtained modes m in the range 2-8. Van de 

Konijnenberg et al. (1999) investigated experimentally and numerically the instability of a 

forced, circular shear layer in a rotating fluid. They applied a radial pumping to a shallow 

layer of water in a parabolic tank to model a geophysical β -effect. The instability appears as 

a sequence of vortices, the number of which decreases with increasing strength of the shear. 

The radial pumping of fluid from the periphery to the center of the cavity induces an 

azimuthal flow, which stabilizes the shear flow if it is opposite to the rotation or destabilizes it 

otherwise. A β -effect may prevent the formation of a steady vortex chain. 

Dolzhanskii et al. (1992) considered a MHD device for the generation of both a circular 

shear flow and a Kolmogorov flow. They compared their experimental results to the stability 

theory of quasi-two-dimensional flows with a close agreement between the different 

approaches. In the circular geometry, the modes 3=m , 5 and 6 of the shear layer instability 

have been observed. 

The flow between an enclosed corotating disk pair (ECDP) offers a well-known 

configuration to observe polygonal patterns. Abrahamson et al. (1989) studied experimentally 

this type of flow for a radius ratio 5.0/ == bas ,  and 

 (a and b are respectively the inner and outer radii of the rotating disks 

and h is the interdisk space). They observed three distinct regions: a solid body inner region 

near the hub, an outer region dominated by large counter-rotating vortices and a boundary 

layer along the shroud, the last one is three-dimensional (3D)  contrary to the two others. 

They considered two flow control parameters: the Ekman number  and the aspect ratio of 

the cavity G . When  decreases or G  increases, the number of vortices m decreases but 

they become larger. Herrero et al. (1999) established numerically the bifurcation diagram in 

the ECDP case in the plane (Re,G) for 

65 105.1Re105.1 ×≤≤×

1.0/013.0 ≤=≤ bhG

bE

bE

537.0=s , 82380Re ≤  and . They 2.005.0 ≤≤ G
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distinguished three regions corresponding respectively to axisymmetric steady flow with 

interdisk midplane symmetry, to 3D unsteady flow with shift-and-reflect symmetry and to 3D 

unsteady flow with symmetry breaking with respect to the midplane. In the last case, they 

obtained the mode 4=m  for  and 13710Re = 18.0=G  and the mode  for  

and  in agreement with the observations of Abrahamson et al. (1989). 

Randriamampianina et al. (2001) presented a numerical investigation of the flow in the ECDP 

case for , 

5=m 82380Re =

091.0=G

5.0=s 6.01.0 ≤≤ G  and . For , they showed that the 

transition to unsteady 3D flow occurs after the pitchfork bifurcation. The flow structure is 

then characterized by a shift-and-reflect symmetry, which is consistent with the experiments 

of Abrahamson et al. (1989). For smaller values of the aspect ratio, the 3D flow shows a 

symmetry breaking. For  and increasing values of the rotation rate, they obtained 

successively the mode  for 

41006.1Re ×= 26.0≥G

6.0=G

8=m 3750Re = , the mode 6=m  for 4250Re =  and the mode 

 for . 5=m 410Re =

The shear layer instability in the flow between two counter-rotating disks enclosed by a 

cylinder has been investigated experimentally and numerically by Moisy et al. (2004) for 

 and 0=s 5.0048.0 ≤≤ G . It develops as a sharp-cornered polygonal pattern with m sides, 

already observed by Lopez et al. (2002), surrounded by a set of  spiral arms. The lower 

modes  are observed essentially for large aspect ratios and the number of sides 

increases for decreasing values of the aspect ratio. No hysteresis is reported for the instability 

threshold but a noticeable one is present for the onset mode. The authors believe that the 

bifurcation remains supercritical for the whole range of the flow control parameters. The 

reader is referred to the work of Moisy et al. (2004) for a more extensive literature survey on 

such a flow configuration. 

m2

53−=m

The reader is referred also to the review paper of Dolzhanskii et al. (1990) and to the work 

of Bergeron et al. (1996) for discussion about the analysis of the shear layer with weakly 
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nonlinear theory, which accounts for phenomena such as hysteresis and saturation of the 

amplitude of the unstable wave mode. 

 

2.  EXPERIMENTAL SET-UP AND FLOW CONTROL PARAMETERS 

 

2.1. The apparatus 

 

A sketch of the experimental cell is presented in figure 1. It consists of a smooth rotating 

stainless-steel disk of radius  enclosed by a fixed cylindrical shroud of radius 

 (

mmb 140=

mmjb 85.140=+ mmj 05.085.0 ±= ). A central hub of radius  equal to either ,  or 

 can be attached or not (

a 40 75

mm105 0=a ) to the rotating disk. The disk drive shaft is going 

through the bottom of the tank and is connected to an electric engine by means of a belt, so 

that the disk can rotate with an angular velocity Ω varying from 0 to 200 rpm. A servo-contro 

system for the rotation rate permits to maintain Ω constant with an accuracy of 0.2%. Note 

that both the disk and the hub rotate clockwise. The heights of the cylinder and the hub are 

fixed to . The cavity is filled up by water at constant working temperature 

(kinematic viscosity of water 

mmh 20=

C°20 sm /10 26−=ν ). The water depth at rest is denoted e and 

can vary between 0 and . mm15

In order to visualize the hydrodynamic structures, which develop in the flow, the water is 

seeded with reflective anisotropic particles of ``kalliroscope'' (size mµ07.0630 ×× ) in 

suspension, whose orientation depends upon the shear stress of the flow. We illuminate the 

flow with an annular neon and the surface of the stainless steel rotor is painted black to 

improve the visualizations. Images ( 576768×  pixels) are taken at a video frequency of 25 
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images per second using a CCD video camera situated one meter above the cavity. The 

camera can rotate to study instabilities in their reference frame. 

 

2.2. The parameters 

 

The flow is mainly controlled by three control parameters: the rotationnal Reynolds 

number  based on the outer radius b  of the rotating disk, the aspect ratio G  of the cavity 

and the radius ratio  defined as followed: 

Re

s

75.0,536.0,286.0,0107.0102.1Re 5
2

==≤=×≤
Ω

=
b
as

b
eGb

ν
 

Note that corresponds to the case where no hub is attached to the rotating disk. These 

dimensionless numbers appeared to be the more common ones as they contain only one 

varying parameter.  

0=s

The axial  and *z *r  radial dimensionless coordinate are defined as followed:  

and , where  is the local water depth (see next section).  corresponds to 

the rotating disk surface and  to the free surface. 

Hzz /* =

brr /* = )(rH 0* =z

1* =z

For future discussions, the Ekman number based on the water depth e at rest is introduced: 

. It measures the viscous dissipation compared to the Coriolis term. Numerous 

authors introduced also a Rossby number Ro based on the differential rotation of their system. 

In the present work, the shear layer is produced by the differential rotation between the 

rotating fluid ( ) and the fixed shroud (

)/( 2eEe Ω=ν

fΩ 0=Ω s ). The Rossby number Ro based on the 

differential rotation fsf ΩΩ−Ω /)(  is then equal to 1=Ro  and does not appear to be a 

relevant parameter to study the stability of this flow.  
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2.3. The experimental procedure 

 

We have observed that the stability of the basic flow is very sensitive to the initial 

conditions (in particular to the initial shear stress), but also to the time history of the rotation 

rate as it is the only varying flow control parameter during a sequence of observations. Thus, 

the thresholds and the sequence of the instabilities depend strongly on the experimental 

procedure, which must be always the same. In order to impose a “continuous” shear between 

the rotating fluid and the shroud, we have chosen to increase the rotation rate Ω by step of one 

rpm between two observations. According to the linear Ekman dynamics (Greenspan, 1968), 

the time evolution in rotating flow systems is characterized by the Ekman time: 

sbE 137)(/ ≈Ω= ντ  for . As long as the symmetry (the number of vortices) is 

constant, the adjustment of the flow to changes in Re is almost instantaneous (Bergeron et al. 

2000) but the time scale related to the transition between two modes is much longer and close 

to 

rpm10=Ω

Eτ . As soon as the last pattern is obtained for large values of the rotation rate, the same 

procedure is applied for decreasing values of Ω until the last mode disappears. The shear is 

supposed to be constant along the axial direction as the water depth e remains small. All 

results reported in the next section were found to be repeatable. For future discussions, as 

already introduced by Bergeron et al. (2000), spin up (resp. spin down) refers to a sequence of 

observations where the values of the Reynolds number Re are increased (resp. decreased). 

 

2.4. Shape of the free surface for 0s =  
 
 

The experiments were performed in a shallow layer of water over a rotating disk. The 

radial and axial pressure gradients are respectively given by the centrifugal force and the 
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gravity. Thus, the shape of the free surface is parabolic and the water depth depends on the 

radial location r. The local water depth  can be expressed for )(rH 0=s  as: 

                                                      )
2

(
2

)(
2

2
2 br
g

erH f −
Ω

+=                                             (1) 

where  is the acceleration of gravity. The fluid velocity 2/81.9 smg = fΩ  has been measured 

by laser Doppler anemometry (LDA). It rotates almost as a solid body with a tangential 

velocity directly proportionnal to the rotating disk speed: Ω=Ω Kf , with K the entrainment 

coefficient of the fluid equal to 05.084.0 ±  depending slightly on both the spatial location 

and the radius ratio. This value of K is close to the one obtained by Herrero et al. (1999) in the 

ECDP case: . We have experimentally verified equation (1) for different values of 

. For the range of parameters considered in the present work (

85.0≈K

Ω rpm59≤Ω , ), the 

water depth  is always larger than the Ekman layer thickness 

mme 15≤

)(rH Ω= /νδ , which implies 

that the centrifugal and Coriolis forces may have an influence on the flow. The gradient in the 

depth of the fluid layer induces a similar effect to the β -effect encountered in atmospheric 

and oceanic flows (see Van de Konijnenberg et al. 1999), with . As 

already mentionned, the Rossby number Ro being equal to one, the topographic 

drdHHf /2 1−Ω=β

β -effect is 

weak in the present case. Moreover, Manin (1990) and Van de Konijnenberg et al. (1999) 

reported that it does not affect the dependence of the number of vortices on the Reynolds 

number.  

 

3.  RESULTS AND DISCUSSION 

 

3.1. Structure of the flow for 0=s  
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Figure 2 illustrates an example of the flow structure (mode 5=m ) observed for 0=s , 

 and . This illustration is quite comparable to the vorticity maps 

obtained by direct numerical simulations (see for example Randriamampianina et al 2001) in 

the 

45155Re = 0429.0=G

),( θr  plane, where r  and θ  are respectively the radial and tangential directions. The 

vortical structure occupies all the water depth as the shear is supposed to be constant along the 

axial direction (small values of G). We can distinguished three distinct radial regions, the 

inner and outer regions, separated by a polygonal boundary.  

The inner region is the region observed for , in which the flow is two-

dimensional, laminar and rotates roughly as a solid body. The shape of the inner region is 

polygonal with  sides. During flow visualization in the rotating frame of reference, we 

observed that the polygon rotates slightly relative to the rotating disk, which is induced by the 

passage of the vortical structures in the outer region. 

64.0/0 * ≤=≤ brr

5=m

The outer region, confined between the inner region and the shroud, is actively turbulent. 

It contains  counterclockwise vortical structures. These structures are almost distributed 

along a circle of radius , with 

5=m

brr cc /* = ( ) 2/21 RRrc += .  and  are respectively the 

minimum radial location of the polygonal boundary and the maximum radial location of the 

vortical structures as shown in figure 2. This critical radial location for the appearance of the 

polygonal patterns is approximately equal to .   

1R 2R

73.0* ≈cr

The five vortices, which span the radial extent of the outer region, rotate relatively to the 

rotating disk with a speed, estimated from the flow visualization, of about 79% of the disk 

speed relative to the laboratory. This value is in good agreement with the 75% obtained by 

Abrahamson et al. (1989) for , 5=m 05.0=G  and . 510924.4Re ×=

The vortical structures are responsible for the deformation of the inner region, which 

produces the polygonal boundary. As showed by the straight arrows in figure 2, the portion of 
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the vortex that flows outward induces the lobes of the polygon by pulling the inner region 

fluid away from the center of the rotating disk. In the same way, the portion of the vortex that 

flows inward (dashed arrows) flattens the boundary by forcing it radially inward. Thus, the 

shape of the boundary moves with the vortices. The inner region fluid moves with the vortices 

too. In response to the passing train of vortices, it moves slightly in cyclic orbital motion. 

At the periphery of the rotating disk, a boundary layer develops along the fixed cylindrical 

shroud. This shroud boundary layer is three-dimensional according to the observations of 

Abrahamson et al. (1989). 

 

3.2. Transition diagram for  0=s

 

The main results concern a cavity where no hub is attached to the rotating disk ( 0=s ). 

The two only flow control parameters are the water depth e ( beG /= ) and the rotation rate Ω 

( ). The purpose to the two next subsections is to provide flow visualizations of 

the shear instability and transition diagrams for various geometries. The reader is referred to 

the numerical studies of Chomaz et al. (1988) and Bergeron et al. (2000) for a detailed 

description of the transition processes during spin-up and spin-down, which is quite difficult 

to report from experimental observations.  

ν/Re 2bΩ=

In figures 3 to 5, we represent the stability diagram of the basic flow in the plane (m,Re) 

for three characteristic aspect ratios. We recall that m is the number of vortices. For 

 (figure 3), the flow becomes unstable above a first threshold  and the 

axisymmetric mode denoted  appears as a first circle C1 (figure 6a) moving slightly 

towards the center of the rotating disk for increasing values of the Reynolds number. A 

second circle C2 appears along the shroud and moves also towards the center of the disk. The 

flow is then almost entirely laminar. When both circles interact for  (it 

0714.0=G 4105Re =

0=m

16420Re =
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corresponds to  introduced below), a second pattern develops as a sharp cornered 

polygon with five vortices (see figure 6e).  When the Reynolds number is further increased 

above this critical value, a series of two symmetry-breaking bifurcations occur. Each one of 

these is characterized by a reduction of the number of vortices in the system. The transition 

from the mode  to the mode 

NMRe

5=m 4=m  (figure 6f) occurs above a third threshold 

. The existence domain of the mode 36945Re = 4=m  is quite narrow, contrary to the mode 

 (figure 6g), which subsists in the range 3=m 102625Re43103 ≤≤ . For larger Reynolds 

numbers, an axisymmetric state (figure 6h) is restored but the flow at the periphery of the 

cavity is turbulent and the mode denoted 1=m  appears. During spin-down (dashed arrows in 

figure 3), only the modes  and 0 are successively obtained. The sequence has then 

changed and the thresholds are slightly shifted to smaller values of Re than in the case of spin-

up. Finally the flow becomes again stable for 

5,3,1=m

4105Re = . During spin-down, the number of 

vortices in the flow has increased by more than one when the transition from mode 3=m  to 

mode  occurred. It could be assigned to a too fast spin-down or to an external noise, 

which postpones the transition as suggested by Bergeron et al. (2000). 

5=m

Note that the mode  has never been observed for 2=m 0=s  and that the modes 0=m  

and 1 are always obtained whatever the geometry of the cavity (all values of G and s). All the 

observations reported here are in good agreement with other experiments (Chomaz et al. 

1988, Moisy et al. 2004), where strong hysteresis is observed for the modes, although no or a 

weak hysteresis is present for the threshold values. This problem is generic for systems where 

the geometrical confinement leads to azimuthal wavenumber quantization (Rabaud & Couder 

1983). 

When the aspect ratio G decreases (figures 3 to 5), the number of vortices of the first 

polygonal pattern increases:  for 5=m 0714.0=G  (figure 3), 6=m  for  (figure 

4) and  for  (figure 5). The sequence is almost the same whatever the aspect 

0429.0=G

8=m 0179.0=G
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ratio. N polygonal patterns are observed during the spin-up and (N-1) patterns during the spin-

down. The number of observed polygonal structures N decreases from  for  

and  to 

3=N 0719.0=G

0429.0=G 2=N  for . The instability thresholds are also slightly shifted 

to smaller values of the Reynolds number when G decreases. Note that the hysteresis on these 

thresholds is more important for the smallest value of 

0179.0=G

0179.0=G  (figure 5). Moreover for 

this aspect ratio, the transition process during the spin-down does not continue until the same 

number of vortices obtained at the threshold is reached. This result is in contrast with the 

numerical simulations of Bergeron et al. (2000), which is probably due to both the 

configuration and especially to the experimental procedure. 

Figure 7 presents the marginal stability diagram of the first observed polygonal mode in 

the plane (Re,G) for 0=s  and increasing values of the Reynolds number Re. For large aspect 

ratios G, the first polygonal pattern appears for small values of Re and the number of vortices 

m is then small. When G decreases, Re and m increase. For 0=s , modes in the range 

 have been obtained for 84 −=m 12.0≤G . 

The first observed polygonal mode m (during spin-up) can be scaled by:  as 

already mentioned by Schaeffer and Cardin (2005) in their study of the instabilities of the 

Stewartson layer in flat and depth-varying containers or by Moisy et al. (2004) in the flow 

between counter-rotating disks, where  is the Ekman number based on the 

water depth e at rest. The reader is referred also to the brief review of Manin (1990) for 

similar behaviors and to the pioneering work of Stewartson (1957). Figure 8 showed indeed 

that, in the present case, . It confirms that the boundary layer along the 

shroud is a Stewartson boundary layer, whose thickness is given by .  

4/1~ −
eEm

)/( 2eEe Ω=ν

4/126.2~ −×− eEm

bEe
4/1

From figures 6b to 6g, we can deduce the critical radius location for the appearance of the 

polygonal patterns: , with brr cc /* = ( ) 2/21 RRrc +=  (see figure 2). It appears from all the 
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observations that this critical radius is almost constant whatever the number of vortices m: 

. Note that it is not the case for the minimum radial location of the polygonal 

boundary  and for the maximum radial location of the vortical structures .  

73.0* ≈cr

1R 2R

Niino and Misawa (1984) proposed a Reynolds number, denoted here ν/Re VLNM = , as 

the only parameter which governs the stability of the basic flow, where V and L are the 

characteristic velocity and length of the basic flow. They found a critical Reynolds number 

. Note that Manin (1990) mentionned that the value of  depends on 

the axial profile of the radial velocity. In the present case, V is defined by  as the 

shear is produced at the periphery of the rotating disk, and the thickness L of the shear layer is 

given by  (Niino & Misawa, 1984). Thus,  can be expressed as: 

5.07.11Re ±≈NM NMRe

bV Ω=

eEL e ×= 4/1)4/( NMRe

2/)/(Re 4/32/1 νΩ= ebNM . We have verified, in figure 9, that the critical Reynolds 

number  is almost constant: NMRe 62Re ≈NM . This value is an estimate since the instability 

takes place for radii lower than the cell radius b. It confirms that, as the Rossby number is 

close to 1, the Reynolds number  is the only preponderant parameter to study the 

stability of the basic flow.  It means also that the ratio 

NMRe

δ/m  between the number of vortices 

and the Ekman layer thickness is constant. 

Spiral patterns have also been observed. They can coexist with the polygonal structures as 

they are located at the periphery of the rotating disk as shown in figure 10. As the vortical 

structures, a weak hysteresis is observed on the thresholds of the instability (tab.1). They 

appear for relatively small values of the Reynolds number. Figures 11 and 12 represent two 

space-time diagrams respectively in terms of an angle  (at ) and in 

terms of a radius 

)2/(* rπθθ = 95.0* =r

*r  of the flow for 0=s , 24630Re =  (spin-up) and . They 

correspond to the flow visualization in figure 10 in the frame of reference of the polygonal 

0714.0=G
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pattern. We define the dimensionless time as . The diagonal lines in figure 11 

correspond to the spiral passing. The negative slope indicates that they move slower than the 

vortices (16.6% of the passing velocity of the polygonal structures ie ). The space-

time diagram according to a radius (figure 12) shows the radial extent of the spiral rolls, their 

inclination angle ε and their azimuthal wavenumber n, which is also the number of structures 

by rotation. We can notice also the passing of the vortical structures. The characteristics of the 

spirals are sumed up in table 1. Note that they have not been observed for . These 

are positive spiral patterns as they are rolled up towards the disk axis in the rotation sense of 

the rotor. The inclination angle remains small 

Ω= /2* tt π

rΩ125.0

0179.0=G

°≤≤ 2514 ε  compared to the values obtained 

by Poncet and Chauve (2005) in a rotor-stator cavity with throughflow ( °→ 70ε ), as well as 

the number of structures  to be compared to . As already mentionned, 

they are located at the periphery of the cavity for . All these characteristics are close 

to the ones of the SRJ2 spirals studied by Poncet and Chauve (2005) in the case of weak 

inward throughflow. These authors showed that it is a crossflow instability due to the 

inflexion point in the axial profile of the mean radial velocity.  It can be noticed that the 

characteristics of the spirals slightly depend on the aspect ratio of the cavity G. In fact, the 

value of G (and the one of Re) settles the number of vortices, which settles itself the 

characteristics of the SRJ2 rolls. 

4028 ≤≤ n 90→n

85.0* ≥r

 

3.3. Influence of the radius ratio s 

 

Four values of the radius ratio s have been considered: 536.0,286.0,0=s  and 0.75. 

Figures 4, 13 and 14 present the stability diagrams of the flow for  and three 

values of the radius ratio in the plane (m,Re). Whatever the value of 

0429.0=G

536.0≤s , modes in the 

range  have been obtained but the thresholds and the sequences are different. When 64 −=m
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the size of the hub increases, the radial extent of the inner region decreases strongly and the 

fluid rotates slightly faster, which settles the values of the thresholds. Note that for  

and , the mode  (figure 15) has been observed in the range 

 only during spin-down. 

536.0=s

0714.0=G 2=m

41050Re32840 ≤≤

Figures 16a to 16d represent the influence of the radius ratio  on the flow pattern for 

,  (spin-up). Apart from the largest value of the aspect ratio , 

the mode  is observed. The critical radius  is almost constant whatever the value of 

:  for ,  and . When the radius ratio  is larger than the value of 

the critical radius, the radial extent between the hub and the shroud is too small for the 

development of the vortical structures. Thus, for 

s

0429.0=G 36945Re = 75.0=s

6=m *
cr

s 73.0* ≈cr 0=s 286.0 536.0 s

75.0=s  (fig.16d), the critical size of the 

system has been reached and no patterns are observed .  

For , no vortical structures are obtained but new stationary patterns develop along 

the hub as small cells (figures 17a to 17f) only for . 10 cells appear above a first 

threshold . From  (figure 17a) to 

75.0=s

0714.0≥G

10263Re = 10263Re = 16420Re =  (figure 17b), the 

number of cells decrease from 10 to 9 but they grow both in the radial and tangential 

directions. They break up into 11 cells for 20525Re =  (figure 17c), then into 12 larger cells 

for  (figure 17d). From 24630Re = 24630Re =  (figure 17d) to 28735Re =  (figure 17e), 

some cells merge and only 8 structures can be observed. When the Reynolds number is 

further increased, the number and the size of the patterns does not change but the flow 

confined between the cells and the shroud becomes turbulent (figure 17f) and is fully 

turbulent for .  36945Re =
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4.  CONCLUSION 

 

We have presented visualizations of the shear layer instability developed on a rotating 

disk with a free surface. Despite the different flow medias (gas, water, plasma) and the 

different forcing mechanisms producing the shear layer, the qualitative behavior of the flow is 

remarkably similar. For low Reynolds numbers, the flow is axisymmetric and becomes 

unstable above a first threshold  with a well-defined azimuthal mode number m. The 

instability appears as a sharp-cornered polygonal pattern with m vortices.  

NMRe

The number of vortices of the first polygonal mode can be scaled by the Ekman number 

based on the water depth at rest to the power –1/4, showing that the shroud boundary layer is 

of Stewartson type (Schaeffer & Cardin, 2005). The instability sets in at a well defined value 

of the Reynolds number based on the thickness of the shear layer: . This supports 

the validity of the quasi-geostrophic approximation used in the theoretical work of Niino and 

Misawa (1984). The critical radial location for the appearance of the polygonal patterns is also 

constant and equal to . At a given aspect ratio, when the Reynolds number Re is 

increased (spin-up), these m vortices transform into new arrangements with a decreasing 

number of vortices (until (m-2) in particular cases). For decreasing values of Re (spin-down), 

the flow demonstrates a noticeable hysteresis for the modes and a slight hysteresis for the 

thresholds, as already mentionned by Rabaud and Couder (1983). At a given rotation rate, the 

number of vortices increases for decreasing values of the water depth (or the aspect ratio). 

Note that modes up to  have been obtained. 

62Re ≈NM

73.0* ≈cr

8=m

Finally, the influence of the radius ratio has been investigated. The development of the 

shear layer instability is constrained by the geometry of the system. When the size of the hub 

increases, the fluid rotates slightly faster, which shifts the values of the thresholds. Above the 
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critical value of the radius ratio, new patterns are observed and develop along the hub as small 

stationary cells. 

 

The authors would like to thank Dr Patrice Le Gal and Dr Nathanaël Schaeffer (IRPHE) 
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G Re (spin-up) Re (spin-down) n ε (°) r* 

0.0714 24630 – 43102 16420 – 36945 28 – 30 23 – 25 0.85 – 0.89 
0.0429 30788 – 57470 24630 – 45155 38 – 40 14 – 19 0.88 – 0.92 
0.0179 - - - - - 

 
Tab. 1. Characteristics of the SRJ2 spirals. 

 

 

 

 

 

Fig. 1  Schematic of the experimental set-up with relevant notation. 
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Fig. 4  Stability diagram for 0=s  and 0429.0=G . 

 

 

Fig. 5  Stability diagram for 0=s  and 0179.0=G . 
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Fig. 6  Shear-layer instabilities f
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(d) 348Re,0429.0,6 === Gm

(f) 615Re,0429.0,4 === Gm

(h) 1026Re,0714.0,1 === Gm
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or 0=s : (a) ,38998Re,0179.0,0 === Gm   

, (c) 13 43101Re,0286.0,7 === Gm ,  

, (e) 93 45155Re,0429.0,5 === Gm ,  

, (g) 75 49260Re,0714.0,3 === Gm ,  

 (i) ,25 .24630Re,0714.0,5 === Gm  
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Fig. 7  Marginal stability diagram of the first observed  polygonal mode in the plane (Re,G) 

for  and increasing values of Re. 0=s

 

 

Fig. 8  Evolution of the number of vortices with the Ekman number based on the water depth 

for  and increasing values of Re. 0=s
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Fig. 9  Evolution of the critical Reynolds number with the rate of rotation for . 0=s

 

 

Fig. 10  SRJ2 spiral rolls for , 0=s 24630Re =  (increasing values of Ω) and  

coexisting with the mode 

0714.0=G

5=m . 
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Fig. 11  Space-time diagram for , 0=s 24630Re =  (spin-up) and 0714.0=G  in terms of a 

fixed circle ( ) at . *θ 95.0* =r

 

Fig. 12 Space-time diagram for , 0=s 24630Re =  (spin-up) and 0714.0=G  in terms of a 

radius *r . 
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Fig. 13  Stability diagram for 286.0=s  and 0429.0=G . 

 

 

Fig. 14  Stability diagram for 536.0=s  and 0429.0=G . 
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Fig. 16  Influence of the radius
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Fig. 17  Shear-layer instabilities on the hub for 75.0=s  and

, (b) , (c) 10263Re = 16420Re = 20525Re = , (d) 24Re =

34893Re = . 
 0714.0=G  (spin-up): (a) 

630 , (e) , (f) 28735Re =

30
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