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 based on both the water depth at rest and the rotating disk radius. For large values of s, the instability patterns appear along the hub as small stationary cells.

INTRODUCTION

The stability of rotating disk flows has been addressed for a long time, mostly in the case of a single infinite rotating disk [START_REF] Faller | Instability and transition of disturbed flow over a rotating disk[END_REF]) and more recently in the rotor-stator configuration (Cros et al. 05, Poncet & Chauve 05). The present work considers an experimental system where steady modes of a shear-layer instability are obtained over a finite rotating disk with a free surface. Shear layers in rapidly rotating systems (called Stewartson layers) are of primary importance from a geophysical point of view, as they can be observed in oceans or in planetary atmospheres. For examples, the Great Red Spot on Jupiter and the Blue spot on Neptune result from differential rotation with sharply sheared zonal flows.

Rotating shear layer instabilities have been seen also in flows enclosed in computer hard drives. The instability that affects a circular shear-zone has then been widely studied in various configurations. [START_REF] Stewartson | On almost rigid rotations[END_REF] considered the stationary linear problem in the case of a split rotating cylinder. He showed, using an asymptotical method, that the flow generated by a slight differential rotation of one part of the shell is composed by two cylindrical shear layers aligned with the axis of rotation and located at the split radius. The largest one is geostrophic and its width scales like (where is the Ekman number based on the cylinder radius b , 

E

Hide and Titman (1967) investigated experimentally the linear stability of the Stewartson layers, which develop on a differentially rotating disk suspended in a rotating tank. The instability appears as non-axisymmetric patterns of m waves in planes perpendicular to the rotation axis above a well-defined threshold. The number m is maximum at the threshold and decreases with the amplitude of the differential rotation. In their experiments, the Coriolis force plays an important role in the development of the vortices proving that this is more than a simple Kelvin-Helmholtz instability. [START_REF] Rabaud | A shear-flow instability in a circular geometry[END_REF] performed experiments on the destabilization of a thin layer of air between two plates. The instability is of Kelvin-Helmholtz type and induces regular, steady patterns of m vortices. Neither the centrifugal nor the Coriolis forces are involved in the motion. The same configuration has been considered later by [START_REF] Chomaz | Experimental and numerical investigation of a forced circular shear layer[END_REF], who compared the results presented in [START_REF] Rabaud | A shear-flow instability in a circular geometry[END_REF] with new experiments and numerical simulations. They showed in particular the dependence on the aspect ratio of the cell on the dynamical behavior of the flow. In large cells, transitions from a mode with m vortices to a mode with (m-1) vortices occur through localized processes. On the contrary, in small cells, transitions occur after a series of bifurcations corresponding to successive breakings of all the symmetries of the flow. The same configuration has been studied numerically by [START_REF] Bergeron | Dynamical properties of forced shear layers in an annular geometry[END_REF]. They compared the results of their numerical simulation code with the experimental data and the linear stability analysis of [START_REF] Rabaud | A shear-flow instability in a circular geometry[END_REF] and [START_REF] Chomaz | Experimental and numerical investigation of a forced circular shear layer[END_REF] with a reasonable agreement between the different approaches, although [START_REF] Bergeron | Dynamical properties of forced shear layers in an annular geometry[END_REF] found a clear dependence of the critical Reynolds number on the aspect ratio of the shell. [START_REF] Niino | An experimental and theoretical study of barotropic instability[END_REF] considered a flow driven by a thin disk at the bottom of a tank to study the barotropic instability of horizontal shear flows. They compared their experimental results with a linear stability analysis applied to an initially circular shear-layer, including viscous diffusion and Ekman pumping. They found that the number of vortices should decrease with increasing Reynolds number. In a laboratory experiment, [START_REF] Früh | Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices[END_REF] studied also the barotropic shear layer in a rotating fluid. Above a critical shear, the shear layer breaks up through barotropic instability, which appears as a string of vortices along the shear zone. They showed that the transition from the axisymmetric mode to regular vortices occurs through a Hopf bifurcation. They obtained modes m in the range 2-8. Van The reader is referred also to the review paper of [START_REF] Dolzhanskii | Stability and vortex structures of quasitwo-dimensional shear flows[END_REF] and to the work of [START_REF] Bergeron | Self-organization in circular shear layers[END_REF] for discussion about the analysis of the shear layer with weakly nonlinear theory, which accounts for phenomena such as hysteresis and saturation of the amplitude of the unstable wave mode. images per second using a CCD video camera situated one meter above the cavity. The camera can rotate to study instabilities in their reference frame.

EXPERIMENTAL SET-UP AND FLOW CONTROL PARAMETERS

The apparatus

A

The parameters

The flow is mainly controlled by three control parameters: the rotationnal Reynolds number based on the outer radius b of the rotating disk, the aspect ratio G of the cavity and the radius ratio defined as followed: and , where is the local water depth (see next section). corresponds to the rotating disk surface and to the free surface.
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For future discussions, the Ekman number based on the water depth e at rest is introduced:

. It measures the viscous dissipation compared to the Coriolis term. Numerous authors introduced also a Rossby number Ro based on the differential rotation of their system.

In the present work, the shear layer is produced by the differential rotation between the rotating fluid (

) and the fixed shroud (
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). The Rossby number Ro based on the differential rotation
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and does not appear to be a relevant parameter to study the stability of this flow.

The experimental procedure

We have observed that the stability of the basic flow is very sensitive to the initial conditions (in particular to the initial shear stress), but also to the time history of the rotation rate as it is the only varying flow control parameter during a sequence of observations. Thus, the thresholds and the sequence of the instabilities depend strongly on the experimental procedure, which must be always the same. In order to impose a "continuous" shear between the rotating fluid and the shroud, we have chosen to increase the rotation rate Ω by step of one rpm between two observations. According to the linear Ekman dynamics [START_REF] Greenspan | The Theory of Rotating Fluids[END_REF]), the time evolution in rotating flow systems is characterized by the Ekman time: 

Shape of the free surface for 0 s =

The experiments were performed in a shallow layer of water over a rotating disk. The radial and axial pressure gradients are respectively given by the centrifugal force and the gravity. Thus, the shape of the free surface is parabolic and the water depth depends on the radial location r. The local water depth can be expressed for ) (r
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where is the acceleration of gravity. The fluid velocity [START_REF] Manin | Characteristics Size of Vortices in Developed Quasi-Two-Dimensional Flows[END_REF] and Van de Konijnenberg et al. (1999) reported that it does not affect the dependence of the number of vortices on the Reynolds number. The vortical structures are responsible for the deformation of the inner region, which produces the polygonal boundary. As showed by the straight arrows in figure 2, the portion of the vortex that flows outward induces the lobes of the polygon by pulling the inner region fluid away from the center of the rotating disk. In the same way, the portion of the vortex that flows inward (dashed arrows) flattens the boundary by forcing it radially inward. Thus, the shape of the boundary moves with the vortices. The inner region fluid moves with the vortices too. In response to the passing train of vortices, it moves slightly in cyclic orbital motion.

RESULTS AND DISCUSSION

Structure of the flow for

0 = s
At the periphery of the rotating disk, a boundary layer develops along the fixed cylindrical shroud. This shroud boundary layer is three-dimensional according to the observations of Abrahamson et al. (1989).

Transition diagram for 0 = s

The main results concern a cavity where no hub is attached to the rotating disk ( 0 = s

).

The two only flow control parameters are the water depth e

( b e G / =
) and the rotation rate Ω (figure 5). Moreover for this aspect ratio, the transition process during the spin-down does not continue until the same number of vortices obtained at the threshold is reached. This result is in contrast with the numerical simulations of [START_REF] Bergeron | Dynamical properties of forced shear layers in an annular geometry[END_REF], which is probably due to both the configuration and especially to the experimental procedure. The first observed polygonal mode m (during spin-up) can be scaled by: as already mentioned by [START_REF] Schaeffer | Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers[END_REF] in their study of the instabilities of the Stewartson layer in flat and depth-varying containers or by [START_REF] Moisy | Experimental and numerical study of the shear-layer instability between two-counter-rotating disks[END_REF] in the flow between counter-rotating disks, where is the Ekman number based on the water depth e at rest. The reader is referred also to the brief review of [START_REF] Manin | Characteristics Size of Vortices in Developed Quasi-Two-Dimensional Flows[END_REF] for similar behaviors and to the pioneering work of [START_REF] Stewartson | On almost rigid rotations[END_REF]. Figure 8 showed indeed that, in the present case, . It confirms that the boundary layer along the shroud is a Stewartson boundary layer, whose thickness is given by .
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From figures 6b to 6g, we can deduce the critical radius location for the appearance of the polygonal patterns:
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(see figure 2). It appears from all the observations that this critical radius is almost constant whatever the number of vortices m:

. Note that it is not the case for the minimum radial location of the polygonal boundary and for the maximum radial location of the vortical structures . . Note that [START_REF] Manin | Characteristics Size of Vortices in Developed Quasi-Two-Dimensional Flows[END_REF] mentionned that the value of depends on the axial profile of the radial velocity. In the present case, V is defined by as the shear is produced at the periphery of the rotating disk, and the thickness L of the shear layer is given by [START_REF] Niino | An experimental and theoretical study of barotropic instability[END_REF]. Thus, can be expressed as: 

ν

  the kinematic viscosity of the fluid, Ω the rate of rotation of the cylinder and Re the rotationnal Reynolds number), whereas the width of the thinner ones scales like .

  de Konijnenberg et al. (1999) investigated experimentally and numerically the instability of a forced, circular shear layer in a rotating fluid. They applied a radial pumping to a shallow layer of water in a parabolic tank to model a geophysical β -effect. The instability appears as a sequence of vortices, the number of which decreases with increasing strength of the shear. The radial pumping of fluid from the periphery to the center of the cavity induces an azimuthal flow, which stabilizes the shear flow if it is opposite to the rotation or destabilizes it otherwise. A β -effect may prevent the formation of a steady vortex chain. Dolzhanskii et al. (1992) considered a MHD device for the generation of both a circular shear flow and a Kolmogorov flow. They compared their experimental results to the stability theory of quasi-two-dimensional flows with a close agreement between the different approaches. In the circular geometry, the modes 3 = m , 5 and 6 of the shear layer instability have been observed. The flow between an enclosed corotating disk pair (ECDP) offers a well-known configuration to observe polygonal patterns. Abrahamson et al. (1989) studied experimentally this type of flow for a radius ratio 5 b are respectively the inner and outer radii of the rotating disks and h is the interdisk space). They observed three distinct regions: a solid body inner region near the hub, an outer region dominated by large counter-rotating vortices and a boundary layer along the shroud, the last one is three-dimensional (3D) contrary to the two others. They considered two flow control parameters: the Ekman number and the aspect ratio of the cavity G . When decreases or G increases, the number of vortices m decreases but they become larger. Herrero et al. (1999) established numerically the bifurcation diagram in the ECDP case in the plane (Re,G) for corresponding respectively to axisymmetric steady flow with interdisk midplane symmetry, to 3D unsteady flow with shift-and-reflect symmetry and to 3D unsteady flow with symmetry breaking with respect to the midplane. In the last case, the observations of Abrahamson et al. (1989). Randriamampianina et al. (2001) presented a numerical investigation of the flow in the that the transition to unsteady 3D flow occurs after the pitchfork bifurcation. The flow structure is then characterized by a shift-and-reflect symmetry, which is consistent with the experiments of Abrahamson et al. (1989). For smaller values of the aspect ratio, the 3D flow shows a symmetry breaking. For and increasing values of the rotation rate, The shear layer instability in the flow between two counter-rotating disks enclosed by a cylinder has been investigated experimentally and numerically by Moisy et al. as a sharp-cornered polygonal pattern with m sides, already observed by Lopez et al. (2002), surrounded by a set of spiral arms. The lower modes are observed essentially for large aspect ratios and the number of sides increases for decreasing values of the aspect ratio. No hysteresis is reported for the instability threshold but a noticeable one is present for the onset mode. The authors believe that the bifurcation remains supercritical for the whole range of the flow control parameters. The reader is referred to the work of Moisy et al. (2004) for a more extensive literature survey on such a flow configuration.

  sketch of the experimental cell is presented in figure 1. It consists of a smooth rotating stainless-steel disk of radius enclosed by a fixed cylindrical shroud of radius ( rotating disk. The disk drive shaft is going through the bottom of the tank and is connected to an electric engine by means of a belt, so that the disk can rotate with an angular velocity Ω varying from 0 to 200 rpm. A servo-contro system for the rotation rate permits to maintain Ω constant with an accuracy of 0.2%. Note that both the disk and the hub rotate clockwise. The heights of the cylinder and the hub are fixed to . The cavity is filled up by water at constant working temperature (kinematic viscosity of water water depth at rest is denoted e and can vary between 0 and . mm 15 In order to visualize the hydrodynamic structures, which develop in the flow, the water is seeded with reflective anisotropic particles of ``kalliroscope'' (size m orientation depends upon the shear stress of the flow. We illuminate the flow with an annular neon and the surface of the stainless steel rotor is painted black to improve the visualizations. Images ( 576 768 × pixels) are taken at a video frequency of 25
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  to the case where no hub is attached to the rotating disk. These dimensionless numbers appeared to be the more common ones as they contain only one radial dimensionless coordinate are defined as followed:

  as the symmetry (the number of vortices) is constant, the adjustment of the flow to changes in Re is almost instantaneous (Bergeron et al. 2000) but the time scale related to the transition between two modes is much longer and close to rpm 10 = Ω E τ . As soon as the last pattern is obtained for large values of the rotation rate, the same procedure is applied for decreasing values of Ω until the last mode disappears. The shear is supposed to be constant along the axial direction as the water depth e remains small. All results reported in the next section were found to be repeatable. For future discussions, as already introduced by Bergeron et al. (2000), spin up (resp. spin down) refers to a sequence of observations where the values of the Reynolds number Re are increased (resp. decreased).

Ω

  has been measured by laser Doppler anemometry (LDA). It rotates almost as a solid body with a tangential velocity directly proportionnal to the rotating disk speed: depending slightly on both the spatial location and the radius ratio. This value of K is close to the one obtained by Herrero et al. (1999) in the ECDP case: . We have experimentally verified equation (1) for different values of . For the range of parameters considered in the present work ( that the centrifugal and Coriolis forces may have an influence on the flow. The gradient in the depth of the fluid layer induces a similar effect to the β -effect encountered in atmospheric and oceanic flows (see Van de Konijnenberg et al. 1999), with . As already mentionned, the Rossby number Ro being equal to one, the topographic is weak in the present case. Moreover,
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 2 Figure 2 illustrates an example of the flow structure (mode 5 = m) observed for 0 = s ,
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 ) figure3), only the modes and 0 are successively obtained. The sequence has then
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 7 Figure 7 presents the marginal stability diagram of the first observed polygonal mode in the plane (Re,G) for 0 = s and increasing values of the Reynolds number Re. For large aspect
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 2 [START_REF] Niino | An experimental and theoretical study of barotropic instability[END_REF] proposed a Reynolds number, denoted here ν which governs the stability of the basic flow, where V and L are the characteristic velocity and length of the basic flow. They found a critical Reynolds number
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 3341 Figures 4, 13 and 14 present the stability diagrams of the flow for and three
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 122789 Fig. 1 Schematic of the experimental set-up with relevant notation.
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 141617 Fig. 14 Stability diagram for 536 . 0 = s and 0429 . 0 = G .

critical value of the radius ratio, new patterns are observed and develop along the hub as small stationary cells.
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