
HAL Id: hal-00085930
https://hal.science/hal-00085930v1

Preprint submitted on 17 Jul 2006 (v1), last revised 26 Mar 2007 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rigorous Asymptotics For The Elecric Field In TM
Mode At Mid-Frequency In A Bidimensional Medium

With Thin Layer
Clair Poignard

To cite this version:
Clair Poignard. Rigorous Asymptotics For The Elecric Field In TM Mode At Mid-Frequency In A
Bidimensional Medium With Thin Layer. 2006. �hal-00085930v1�

https://hal.science/hal-00085930v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

85
93

0,
 v

er
si

on
 1

 -
 1

7 
Ju

l 2
00

6

RIGOROUS ASYMPTOTICS FOR THE ELECTRIC FIELD IN TM

MODE AT MID-FREQUENCY

IN A BIDIMENSIONAL MEDIUM WITH A THIN LAYER

CLAIR POIGNARD

Abstract. Consider an ambient medium and a heterogeneous entity com-
posed of a bidimensional material surrounded by a thin membrane. The elec-
tromagnetic constants of these materials are different. By analogy with bio-
logical cells, we call this entity a cell. We study the asymptotic behavior of
the electric field in the transverse magnetic (TM) mode, when the thickness
of the membrane tends to zero. The membrane is of thickness of hf(θ), with
θ a curvilinear coordinate. We provide a rigorous derivation of the first two
terms of the asymptotic expansion for h tending to zero. In the membrane,
these terms are given explicitly in local coordinates in terms of the boundary
data and of the function f , while outside the membrane they are the solutions
of a scalar Helmholtz equation with appropriate boundary and transmissions
conditions given explicitly in terms of the boundary data and of the above
function f . We prove that the remainder terms are of order O(h3/2). In addi-
tion, if the complex dielectric permittivity in the membrane, denoted by zm,
tends to zero faster than h, we give the difference between the exact solution
and the above asymptotic with zm = 0; it is of order O(h3/2 + |zm|).

Introduction

We study in this paper the behavior of the solution of Helmholtz equation in a
bidimensional medium in transverse magnetic (TM) mode (see Balanis and Con-
stantine [3]). The medium is made out of three materials: a central region sur-
rounded by a thin membrane of thickness hf(θ), with θ curvilinear coordinate and
a third material, which is not assumed to be thin; see Fig. 1. This assemblage
is submitted to a field of pulsation ω; after proper scalings, ω is included in the
complex dielectric permittivity, which may be different in the three materials. By
analogy with the biological cell, we call this entity a cell in an environment. In
this article, we show that as the thickness of the membrane tends to zero, i.e as h
tends to zero, the electric field tends to the solution of a Helmholtz equation with
an appropriate transmission condition at the boundary between the cell and the
ambient medium. This work is a sequel to the author’s former article in the static
case [10].

Let us give now the precise notations. Let Ω be a bidimensional bounded do-
main composed of three subdomains: a bounded domain Oc surrounded by a thin
membrane Oh with small thickness hf , and an exterior domain Oe,h:

Ω = Oc ∪ Oh ∪Oe,h.

Date: ...
1991 Mathematics Subject Classification. 34E05, 34E10,35J05.

1



2 CLAIR POIGNARD

qc
µc

qm
µm

qe
µe

h
Oc

Oh

Oe,h

Γ0

Γh

Ω

Figure 1. Geometric and dielectric data.

We suppose that the cell is strictly embbeded in the ambient domain, that is:

(Oc ∪ Oh) ∩ ∂Ω = ∅.

The closed curves Γ0 and Γh are supposed to be of class C∞. We denote by Γ0 and
Γh respectively the boundaries of ∂Oc and of ∂Oh ∩ ∂Oe,h:

Γ0 = ∂Oc,

Γh = ∂Oh ∩ ∂Oe,h.

Let µe, µm and µc be the magnetic permittivities: they are constant and strictly
positive. Let qe, qm and qc be three complex numbers with strictly negative imagi-
nary part; they are non dimensionalized complex permittivities ( see [10] or [11] for a
description of the non dimensionalization). We define piecewise constant functions
µ and q on Ω as follows:

µ =





µe, in Oe,h,

µm, in Oh,

µc, in Oc,

q =





qe, in Oe,h,

qm, in Oh,

qc, in Oc.

To simplify, we denote by z the product µq, and ze, zm and zc designate the
restrictions of z respectively to the domains Oe,h, Om and Oc. We summarize our
hypotheses in Fig 1.

Let φ be a given function of ∂Ω. Its regularity will be chosen later on. We con-
sider the electric field u solution of the following Helmholtz equation with Neumann
boundary condition:

div

(
1

µ
gradu

)
+ qu = 0, in Ω,(1a)

∂nu|∂Ω = φ, in Ω,(1b)

where ∂n denotes the exterior normal derivative. Let us denote by ue, uh and uc the
restrictions of u respectively to the domains Oe,h, Om and Oc. These restrictions
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satisfy the following transmission conditions:

1

µc
∂nuc|Γ0

=
1

µm
∂nuh|Γ0

,(2a)

1

µe
∂nue|Γh

=
1

µm
∂nuh|Γh

,(2b)

uc|Γ0
= uh|Γ0

,(2c)

ue|Γh
= uh|Γh

.(2d)

We would like to understand the behavior for h tending to zero of the solution u
of Problem (1).

In our proof, it suffices to assume that µm and qm are given constants; µc, µe, qc

and qe could be continuous functions of the spatial coordinates with the imaginary
part of qc and qe bounded away from zero.

Beretta and Francini have worked on a similar problem in [4]. They consid-
ered the thin dielectric material Oh in an ambient medium, and they dealt with
a Helmholtz equation with Dirichlet boundary condition. They compared, on the
boundary of the domain ∂Ω, the exact solution to the so-called background solution
defined by replacing the material of the membrane by the interior material. The
difference between these two solutions restricted to the boundary ∂Ω has then been
given through an integral involving the polarization tensor defined for instance in
[1], [2], [5], [6], [7], plus some remainder terms. The remainder terms are estimated
in terms of the measure of the inhomogeneity. In this paper, we do not use this
approach since we are definitely interested in the transmembranar potential (see
Fear and Stuchly [8]), and in the behavior of the field in the whole domain. We
work with bidimensional domains and we expect that the same analysis could be
performed in higher dimensions.

The heuristics of this work are the same as these performed in [10]. A change
of coordinates in the membrane Oh is performed, so as to parameterize it by local
coordinates (η, θ), which vary in a domain independently of h; in particular, if we
denote by L the length of ∂Oc, the variables (η, θ) belong to [0, 1] × R/LZ. This
change of coordinates leads to an expression of the Laplacian in the membrane,
which depends on h. Once the transmission conditions of the new problem are
derived, we perform a formal asymptotic expansion of the solution of (1) in terms
of h. It remains to validate this expansion.

This paper is structured as follows. First, we suppose that the electromagnetic
constants qc, qm, qe, µc, µm and µe are given constants such that zc, zm and ze

have strictly negative imaginary parts. In Section 1, we make precise our geometric
conventions. We perform the change of variables in the membrane described above.
We refer the reader to [10] for more information on the local coordinates. In Section
3, we derive formally the first two terms of the asymptotic expansion of the solution
of our problem in terms of h. Section 5 is devoted to estimating the error.

In addition, in Remark 5.4, we give the first two terms of the asymptotic ex-
pansion of the electric field for a thin inhomogeneity attached to the boundary of
the domain, and in Remark 5.6, we consider the case zm = 0. We do not give the
proofs of these asymptotics since they are very close to the one we performed in
Section 5.

In the case of a biological cell, µ is identically equal to 1 and the ratio |zm/zc|
and |zm/ze| are very small, while |ze/zc| is of order 1. In Section 6, we show that if
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the ratio |zm|/|zc| and |zm|/|ze| are small compared to h , we just have to replace
zm by 0 in the asymptotics found in Section 3 to obtain the electric field in the
whole domain Ω with an error in O(h3/2 + |zm|).

1. Geometry Statement

The boundary of the domain Oc is assumed to be smooth. The boundary Γ0 is
counterclockwise oriented, and we denote by ∂t the tangential derivative along Oc.
To simplify, we suppose that the length of Γ0 is equal to 2π. We denote by T the
flat torus:

T = R/2πZ.

Since Γ0 is of class C∞, we can parameterize it by a smooth function Ψ from T to
R2 satisfying:

∀θ ∈ T, |Ψ′ (θ)| = 1.

We suppose that there exists a function f of class C∞(T) strictly positive, such
that the membrane is of thickness hf .

The following identities hold:

Γ0 = {Ψ(θ), θ ∈ T},

and

Γh = {Ψ(θ) + hf(θ)n(θ), θ ∈ T}.

Here n(θ) is the unitary exterior normal at Ψ(θ) to Γ0. We parameterize the
membrane Oh as follows:

Oh = {Ψ(θ) + hf(θ)ηn(θ), (η, θ) ∈]0, 1[×T}.
We define now:

Φ(η, θ) = Ψ(θ) + hf(θ)ηn(θ).

We denote by κ the curvature of the Γ0. Let h0 ∈ (0, 1) satisfy:

h0 <
1

‖fκ‖∞
.(3)

Then, for all h in [0, h0], there exists an open interval I containing (0, 1) such
that Φ is a diffeomorphism of class C∞ from I × R/2πZ to its image, which is a
neighborhood of the membrane. The metric in Oh is:

h2f(θ)2dη2 + (1 + hf(θ)ηκ(θ))
2
dθ2.(4)

For convenience, we denote by f the following function corresponding to f written
in Euclidean coordinates on ∂Oc:

∀x ∈ ∂Oc, f(x) = f o Ψ−1(x).

We use two systems of coordinates, depending on the domains Oe,h, Oc and Oh: in
the interior and exterior domains Oe,h and Oc, we use Euclidean coordinates (x, y)
and in the membrane Oh, we use local (η, θ) coordinates with metric (4).
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2. Statement of the problem

In this section, we write Problem (1) in local coordinates. It is convenient to
write:

∀θ ∈ T, Φ0 (θ) = Φ (0, θ) , Φ1 (θ) = Φ (1, θ) .

Let us denote by ue and uc the electric field in Oe,h and in Oc respectively, written
in Euclidean coordinates, and by um the electric field in Oh in the local coordinates:

ue = u, in Oe,h,

uc = u, in Oc,

um = u oΦ, in [0, 1]× T.

We have shown in [10] that the Laplacian is given in the local coordinates (η, θ) by:

∆|Φ(η,θ) =
1

hf(1 + hfηκ)

(
∂η

(
1 + hfηκ

hf
∂η

)
+ ∂θ

(
hf

1 + hfηκ
∂θ

))
.(5)

Therefore, we rewrite Problem (1) as follows:

∆ue + zeu
e = 0, in Oe,h,(6a)

∆uc + zcu
c = 0, in Oc,(6b)

∀ (η, θ) ∈ [0, 1]× T,

∂η

(
1 + hfηκ

hf
∂ηum

)
+ ∂θ

(
hf

1 + hfηκ
∂θu

m

)
+ zmhf(1 + hfηκ)um = 0,(6c)

with the transmission conditions (2) expressed in local coordinates at η = 0:

1

µc
∂nuc oΦ0 =

1

hfµm
∂ηum

∣∣∣∣
η=0

,(6d)

uc oΦ0 = um|η=0 ,(6e)

at η = 1:

1

µe
∂nue o Φ1 =

1 + hfκ

hfµm
∂ηum

∣∣∣∣
η=1

,(6f)

ue o Φ1 = um|η=1 ,(6g)

and with the boundary condition

∂nue|∂Ω = φ.(6h)

3. Formal asymptotic expansion

In this section, we derive asymptotic expansions of the electric field (ue, uc, um)
solution of (6) in terms of the parameter h. We multiply (6c) by hf(1+hfηκ)2 and
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we order in powers of h in order to obtain the partial differential equation satisfied
by um:

∀(η, θ) ∈ [0, 1] × T,

∂2
ηum + hfκ

{
3η∂2

ηum + ∂ηum
}

+ h2f
{
3η2fκ2∂2

ηum

+ 2ηfκ2∂ηum + f∂2
θum + zmfum + f ′∂θu

m
}

+ h3f3
{
η3κ3∂2

ηum + η2κ3∂ηum + ηκ∂2
θum

− ηκ′∂θu
m + 3zmηκum

}
+ 3h4f4zmη2κ2um + h5f5η3κ3zmum = 0

(7)

We write the following ansatz:

ue = ue
0 + hue

1 + · · · ,(8a)

uc = uc
0 + huc

1 + · · · ,(8b)

um = um
0 + hum

1 + · · · .(8c)

We are now ready to derive the first two terms of the asymptotic expansions of ue,
uc and um by identifying the terms of the same power in h.

We want to obtain transmission conditions on Γ0 between ue and uc so as to
replace the membrane. Therefore, we extend formally ue to Ω \ Oc.

Moreover, we suppose that φ is as regular as we need, so that we can apply
Taylor formulae at any orders to the function ue oΦ:

∀θ ∈ T, ∀η ∈ [0, 1],

ue oΦ(η, θ) = ue oΦ0(θ) + hf∂nue oΦ0(θ) + · · · ,

∂nue oΦ(η, θ) = ∂nue o Φ0(θ) + hf∂2
nue oΦ0(θ) + · · · .

In particular, transmission conditions (6f)–(6g) are rewritten formally as follows:

hf

µe

(
∂nue oΦ0 + hf∂2

nue oΦ0 + · · ·
)

=
1 + hfκ

µm
∂ηum

∣∣∣∣
η=1

,(9a)

ue o Φ0 + hf∂nue oΦ0 + · · · = um|η=1 .(9b)

First step. Substituting into (7) the potential um by its expansion (8c), and using
the transmission conditions (6d) and (9a), we obtain:

{
∂2

ηum
0 = 0,

∂ηum
0 |η=1 = ∂ηum

0 |η=0 = 0,

thus,

∀(η, θ) ∈ [0, 1] × T, um
0 (η, θ) = um

0 (θ).(10)

In particular, we have :

uc
0 oΦ0 = ue

0 o Φ0.(11)

We will determine um
0 later on.
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Second step. Substituting into (7) the potential um by its expansion (8c), and
using the transmission conditions (6d)–(9a) and equality (10), we obtain:

∂2
ηum

1 = 0,

∂ηum
1 |η=0 =

fµm

µc
∂nuc

0 oΦ0,

∂ηum
1 |η=1 =

fµm

µe
∂nue

0 oΦ1.

According to transmission conditions (6e), by integrating by parts with respect to
η, the following equality must hold:

um
1 = ηf

µm

µc
∂nuc

0 oΦ0 + uc
1 oΦ0.(12)

thus

1

µc
∂nuc

0 o Φ0 =
1

µe
∂nue

0 oΦ0.(13)

Remark that we must have also :

um
1 = (η − 1)f

µm

µc
∂nuc

0 oΦ0 + ue
1 oΦ0 + f∂nue

0 oΦ0.

Therefore, according to (11)–(13) and substituting into (6a)–(6b) respectively the
potentials ue and uc by their expansion (8b), we infer that they satisfy the following
PDE in Oc ∪ Oe,h:

{
∆ue

0 + zeu
e
0 = 0, in Oe,h,

∆uc
0 + zcu

c
0 = 0, in Oc,

(14a)

with the transmission conditions

uc
0|Γ0

= ue
0|Γ0

,(14b)

1

µc
∂nuc

0|Γ0
=

1

µe
∂nue

0|Γ0
,(14c)

with Neumann boundary condition:

∂nue
0|∂Ω = φ.(14d)

According to the transmission condition (6e), um
0 is equal to:

∀ (η, θ) ∈ [0, L] × T, um
0 (η, θ) = uc

0 oΦ0(θ).(15)

We have determined ue
0, uc

0 and um
0 .

Third step. As in the previous paragraph, substituting into (7) the potential um

by its expansion (8c), we obtain:

∂2
ηum

2 + fκ∂ηum
1 + f2∂2

θum
0 + zmf2um

0 + f ′f∂θu
m
0 = 0,(16)

and hence integrating (16) with respect to η and using the transmission conditions
(6d) the following equality holds

∂ηum
2 = − ηf

(
κ∂ηum

1 + f∂2
θum

0 + zmfum
0 + f ′∂θu

m
0

)
+ f

µm

µc
∂nuc

1 oΦ0.(17)
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We also have

∂ηum
2 =(1 − η) f

(
κ∂ηum

1 + f∂2
θum

0 + zmfum
0 + f ′∂θu

m
0

)

+ f

(
µm

µe

(
∂nue

1 o Φ0 + f∂2
nue

0 oΦ0

)
− κ∂ηum

1 |η=1

)
.

(18)

By the transmission condition (6d) and equality (12), ue
1 and uc

1 are the solution
of:





∆ue
1 + zeu

e
1 = 0, in Oe,h,

∆uc
1 + zcu

c
1 = 0, in Oc,

∂nue
1|∂Ω = 0,

(19a)

with transmission conditions

µm

µc
∂nuc

1|Γ0
− µm

µe
∂nue

1|Γ0
= f∂2

t uc
0|Γ0

+ zmfuc
0|Γ0

+ f′∂tu
c
0|Γ0

+
µm

µe
f∂2

nue
0|Γ0

,
(19b)

uc
1|Γ0

− ue
1|Γ0

=

(
1 − µm

µe

)
f∂nue

0|Γ0
.(19c)

Therefore, um
1 given by equality (12) is entirely determined.

Let us summarize the first two terms of the asymptotics we obtained formally.

• The 0thorder terms. The electric fields ue
0 and uc

0 are solution of the follow-
ing problem in Ω:

{
∆ue

0 + zeu
e
0 = 0, in Ω \ Oc,

∆uc
0 + zcu

c
0 = 0, in Oc,

(20a)

with transmission conditions

uc
0|Γ0

= ue
0|Γ0

,(20b)

1

µc
∂nuc

0|Γ0
=

1

µe
∂nue

0|Γ0
,(20c)

and with Neumann boundary condition:

∂nue
0|∂Ω = φ.(20d)

In the membrane, the field um
0 is equal to:

∀(η, θ) ∈ [0, 1] × T, um
0 = uc

0 oΦ0(θ).(21)

• The first order terms. The fields ue
1 and uc

1 are solution of the following
problem in Ω:





∆ue
1 + zeu

e
1 = 0, in Ω \ Oc,

∆uc
1 + zcu

c
1 = 0, in Oc,

∂nue
1|∂Ω = 0,

(22a)
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with the following transmission conditions

1

µc
∂nuc

1|Γ0
− 1

µe
∂nue

1|Γ0
=

1

µm

(
f∂2

t uc
0|Γ0

+ zmfuc
0|Γ0

+ (∂tf)∂tu
c
0|Γ0

)

+
f

µe
∂2

nue
0|Γ0

,

(22b)

uc
1|Γ0

− ue
1|Γ0

=
µe − µm

µc
f∂nuc

0|Γ0
.(22c)

In the membrane, we have:

∀(η, θ) ∈ [0, 1] × T, um
1 = ηf

1

µc
∂nuc

0 oΦ0 + uc
1 oΦ0.(23)

Remark 3.1. Remark that we can write ∂2
nue

0|Γ0
in terms of ∂nue

0|Γ0
, of ue

0|Γ0
and

of its tangential derivatives. Actually, we perform the change in local coordinates

in a neighborhood of ∂Oc.

according to (20), the following identity holds along Γ0:

∂2
nue

0|Γ0
= −κ oΦ−1

0 ∂nue
0|Γ0

− ∂2
t ue

0|Γ0
− zeu

e
0|Γ0

,

thus we can rewrite transmission condition (22b) as follows:

1

µc
∂nuc

1|Γ0
− 1

µe
∂nue

1|Γ0
=

(
f

µm
∂2

t uc
0 −

f

µe
∂2

t ue
0

)
+ f (qmuc

0 − qeu
e
0)

+
∂tf

µm
∂tu

c
0 −

κ oΦ−1
0

µe
f∂nue

0|Γ0
.

(24)

We have given the first two terms of the asymptotic expansion of ue, uc and um.
It remains to prove that the remainder terms are small. First we need to study the
regularity of ue

0 and ue
1 in a neighborhood of Γ0.

4. Regularity Result

In this section, we study the regularity of the solution of Helmhotz equation with
non usual transmission condition. This result is required to prove our main theorem
in Section 5, which gives the errors estimates between the exact solution and the
asymptotics. The following result is well-known, and such a work has already been
done by Y.Li and M.Vogelius in [9] in the Appendix page 147. However, they do
not give exactly the result we need. We thanks very warmly Michael Vogelius for
his suggestions on the reflection principle.

Theorem 4.1. Let G be in Hs(Γ0), s ≥ −1/2. Let (Ue, U c) be the solution of the

following problem:

div

(
1

µc
gradU c

)
+ qcU

c = 0, in Oc,

div

(
1

µe
gradUe

)
+ qeU

e = 0, in Ω \ Oc,

with the following transmission condition:

Ue|Γ0
= U c|Γ0

,

1

µe
∂nUe|Γ0

− 1

µc
∂nU c|Γ0

= G,
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with the Neumann boundary condition on ∂Ω

∂nUe|∂Ω = 0

Then we have:

Ue ∈ Hs+3/2(Ω \ Oc), Us ∈ Hs+3/2(Oc).

Proof. Since Γ0 is smooth, we use local coordinates in a neighborhood of Γ0. Ac-
tually, as in Section 1, there exists h0 such that:

V0 = {Ψ(θ) + h0ηn, (η, θ) ∈] − 1, 1[×T} ,

is an open neighorhood of Γ0. We denote by g the function G written in local
coordinates:

∀θ ∈ T, g(θ) = G oΨ(θ).

We denote by D the unit disc [0, 1]×T and by H1
m (D) the space of the functions

α defined on D such that:
∫ 1

0

∫ 2π

0

hf(1 + hfηκ)|α(η, θ)|2 dη dθ

+

∫ 1

0

∫ 2π

0

(
1 + hfηκ

hf
|∂ηα(η, θ)|2 +

hf

1 + hfηκ
|∂θα(η, θ)|2

)
dη dθ < +∞.

By partition of the unity, to prove Theorem 4.1, it is obvious that it suffices to
prove that the solutions (V e, V c) of the following problem:

∀(η, θ) ∈ [−1, 0]× T,

∂η

(
1

(1 + h0ηκ)µc
∂ηV c

)
+ ∂θ

(
1 + h0ηκ

µc
∂θV

c

)
+ qc(1 + h0ηκ)V c = 0,

∀(η, θ) ∈ [0, 1]× T,

∂η

(
1

(1 + h0ηκ)µe
∂ηV e

)
+ ∂θ

(
1 + h0ηκ

µe
∂θV

e

)
+ qe(1 + h0ηκ)V e = 0,

with Dirichlet boundaries conditions

V c|η=−1 = 0, V e|η=1 = 0,

with transmission conditions

V c|η=0 = V e|η=0,

1

µe
∂ηV e|η=0 −

1

µc
∂ηV c|η=0 = g,

have the same regularity respectively as the functions U c and , Ue restricted to
V0. We use the reflection principle, suggested by Vogelius, which comes from an
idea of Nirenberg (see [9] page 147). With this principle, we transform transmission
conditions in boundary conditions.

We define V r in [0, 1] × T by:

∀(η, θ) ∈ [0, 1]× T, V r(η, θ) = V c(−η, θ).
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The functions V e, V r satisfy the following problem in [0, 1] × T:

∀(η, θ) ∈ [0, 1] × T,

∂η

(
1 + h0ηκ

µe
∂ηV e

)
+ ∂θ

(
1

(1 + h0ηκ)µe
∂θV

e

)
+ qe(1 + h0ηκ)V e = 0,(25a)

∂η

(
1 − h0ηκ

µc
∂ηV r

)
+ ∂θ

(
1

(1 − h0ηκ)µc
∂θV

r

)
+ qc(1 − h0ηκ)V r = 0,(25b)

with Dirichlet boundary conditions in η = 1

V r|η=1 = 0, V e|η=1 = 0,(25c)

with boundary conditions in η = 0:

V r|η=0 − V e|η=0 = 0,(25d)

1

µc
∂ηV r|η=0 +

1

µe
∂ηV e|η=0 = g,(25e)

By multiplying (25a) by V e and (25b) by V r and by integrating by parts and by
summing, we obtain:
∫ 1

0

∫ 2π

0

(
1 + h0ηκ

µe
|∂ηV e|2 +

1 − h0ηκ

µc
|∂ηV r|2

+
1

(1 + h0ηκ)µe
|∂θV

e|2 +
1

(1 − h0ηκ)µc
|∂θV

r|2 − qc(1 − h0ηκ)|V r|2

− qe(1 + h0ηκ)|V e|2
)

dη dθ =

∫ 2π

0

(
1

µe
∂ηV e|η=0V

e|η=0 +
1

µc
∂ηV r|η=0V

r|η=0

)

Using boundary conditions (25d)–(25e), we obtain easily

∫ 2π

0

(
1

µe
∂ηV e|η=0V

e|η=0 +
1

µc
∂ηV r|η=0V

r|η=0

)
=

∫ 2π

0

gV edθ.

This implies directly the uniqueness and then the existence of (V e, V r) in H1
m(D).

To obtain the regularity result, we just have to apply the method of freezing
coefficients. Let θ0 ∈ T, and denote by κ0 the value of κ in θ0. Actually, it
is obvious that V e and V r have the same regularity respectively as V ′ and V ”
solutions of:

∀(η, θ) ∈ [−1, 0]× T,

∂2
ηV ′ +

h0κ0

1 + h0ηκ0
∂ηV ′ +

∂2
θV ′

(1 + h0ηκ0)2
= 0,

∀(η, θ) ∈ [0, 1]× T,

∂2
ηV ” − h0κ0

1 − h0ηκ0
∂ηV ” +

∂2
θV ”

(1 − h0ηκ0)2
= 0,

with Dirichlet boundaries conditions

V ′|η=1 = 0, V ”|η=1 = 0,
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with transmission conditions

V ′|η=0 = V ”|η=0,

1

µe
∂ηV ′|η=0 +

1

µc
∂ηV ”|η=0 = g,

Then, writing this problem in Fourier coefficients, we obtain easily the result. �

5. Error Estimates

We give an error estimate, which proves that the first two terms found in Section
3 by a formal argument are indeed the first terms, in the sense that the remainder
is smaller.

Remark 5.1. Let us denote by D the unit disc [0, 1] × T. We remember that the

L2 norm of a 0-form α in D with the metric (4), denoted by ‖α‖Λ0L2
m(D), is equal

to:

‖α‖2
Λ0L2

m(D) =

∫ 1

0

∫ 2π

0

hf(1 + hfηκ)|α(η, θ)|2 dη dθ,

= ‖α o Φ−1‖2
L2(Oh),

and the L2 norm of the exterior derivative dα of α, denoted by ‖dα‖Λ1L2
m(D) is

equal to

‖dα‖2
Λ1L2

m(D) =

∫ 1

0

∫ 2π

0

1 + hfηκ

hf
|∂ηα(η, θ)|2 +

hf

1 + hfηκ
|∂θα(η, θ)|2 dη dθ,

= ‖ grad
(
α oΦ−1

)
‖2

L2(Oh).

We have the following theorem.

Theorem 5.2. Let f be in C∞(T), such that

∀θ ∈ T, f(θ) > 0,

and let h0 be in (0, 1) such that:

h0 <
1

‖fκ‖∞
.

Let h be in (0, h0) and let φ be in H5/2(∂Ω).
We denote by u the solution of Problem (1), and (ue

0, u
c
0) and (ue

1, u
c
1), are defined

in Section 3 by equalities (20)–(23). Let (ve, vc) be the functions defined on Ω by:

ve = ue
0 + hue

1, in Ω \ Oc,

vc = uc
0 + huc

1, in Oc.

Then, there exists a constant C > 0 independant of h but depending on the domain

Oc, on the function f and on the dielectric parameters µe, µc, qe, qm and qc of the

material such that

‖u − vc‖H1(Oc) ≤ Ch3/2‖φ‖H5/2(∂Ω),

‖u − ve‖Λ0L2
m(D) + ‖ 1

µm
du − 1

µe
dve‖Λ1L2

m(D) ≤ Ch3/2‖φ‖H5/2(∂Ω),

‖u − ve‖H1(Oe,h) ≤ Ch3/2‖φ‖H5/2(∂Ω).
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Proof. First, remark that since φ is in H5/2(∂Ω), it is clear, by the results of Section
4, that ue

0 is in H4(Ω \ Oc). Thus, for almost all θ ∈ T, ue
0 oΦ(·, θ) is in H7/2([0, 1]).

We infer also that ue
1 is in H3(Ω \ Oc).

To prove theorem (5.2), we need the following lemma.

Lemma 5.3. Let h be in (0, h0).
Let ue

0, ue
1, um

0 and um
1 be defined by (20) and (22). We denote by v and ṽ the

following functions:

∀x ∈ Ω \ Oc, ve(x) = ue
0(x) + hue

1(x),

∀(η, θ) ∈ [0, 1]× T, ṽ(η, θ) = um
0 + hum

1 .

Then, there exists a constant C > 0 independant of h but depending on the domain

Oc, on the function f and on the dielectric parameters µe, µm, µc, qe, qm and qc

of the material such that

‖ve oΦ − ṽ‖Λ0L2(D) ≤ Ch3/2‖φ‖H5/2(∂Ω),(26)
∥∥∥∥

1

µe
d (ve oΦ) − 1

µm
dṽ

∥∥∥∥
Λ1L2(D)

≤ Ch3/2‖φ‖H5/2(∂Ω)(27)

and

‖ve o Φ1 − ṽ|η=1‖Λ0L2(T) ≤ Ch2‖φ‖H5/2(∂Ω).(28)

Proof. Since for almost all θ ∈ T, ue
0 oΦ(·, θ) is in H7/2([0, 1]), we can apply Taylor

formula. Let (η, θ) be in [0, 1]× T, we have:

ve o Φ(η, θ) = ue
0 oΦ0(θ) + hfη∂nue

0 o Φ0(θ) + hue
1 oΦ0(θ)

+ h2f

∫ η

0

(η − t)

(
∂nue

1 o Φ(t, θ) +
(η − t)

2
∂2

nue
0 oΦ(t, θ)

)
dt,

and

∂η

(
ve o Φ

)
(η, θ) = hf∂nue

0 oΦ0(θ) + h2f

(
∂nue

1 oΦ(η, θ)

+ f

∫ η

0

(η − t)∂2
nue

0 o Φ(t, θ) dt∂nue
1 oΦ

)
.

Since we have:

ṽ(η, θ) = uc
0 oΦ0(θ) + hηf

µm

µc
∂nuc

0 o Φ0(θ) + huc
1 oΦ0(θ),

∂ηṽ(η, θ) = hf
µm

µc
∂nuc

0 oΦ0(θ),

using transmission condition (20b) we obtain:

ve oΦ − ṽ = h

(
ηf(θ)

(
1 − µm

µe

)
∂nue

0 oΦ0(θ) + ue
1 o Φ0(θ) − uc

1 oΦ0(θ)

+ hf(θ)

∫ η

0

(η − t)

(
∂nue

1 o Φ(t, θ) +
(η − t)

2
∂2

nue
0 oΦ(t, θ)

)
dt

)
.
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This equality implies directly estimate (26). Moreover, using transmission condi-
tions (22b) and (22c), we obtain:

ve oΦ1(θ) − ṽ(1, θ) = h2f

∫ 1

0

(1 − t)

(
∂nue

1 oΦ(t, θ) +
(η − t)

2
∂2

nue
0 oΦ(t, θ)

)
dt,

which implies (28). We also have:

1

µe
∂η

(
ve oΦ

)
(η, θ) − 1

µm
∂ηṽ(η, θ) =

h2f

µe
(θ)

(
f(θ)

∫ η

0

(η − t)∂2
nue

0 oΦ(t, θ) dt

+ ∂nue
1 oΦ(η, θ)

)
,

which implies (27). This ends the proof of Lemma 5.3 �

Now, we prove Theorem 5.2.
Denote by W e, W c and Wm the following functions:

W e = ue − (ue
0 + hue

1) , in Oe,h,(29a)

W c = uc − (uc
0 + huc

1) , in Oc,(29b)

Wm = um − (um
0 + hum

1 ) , in [0, 1] × T.(29c)

In order to simplify the notations, we introduce Lη,θ, the Helmholtz operator writ-
ten in the local coordinates (η, θ) given by

Lη,θ =∂η

(
1 + hfηκ

hf
∂η

)
+ ∂θ

(
hf

1 + hfηκ
∂θ

)
+ zmhf(1 + hfηκ).

Let us write the problem satisfied by (W e, W c, Wm). We use the expressions of ue
0,

ue
1, uc

0, uc
1, um

0 and um
1 found in Section 3 to obtain, by a simple calculation:

∆W e + zeW
e =0, in Oe,h,(30a)

∆W c + zcWc =0, in Oc,(30b)

∀(η, θ) ∈ [0, 1]× T,

Lη,θW
m = −

{
h
(
κ∂ηu1

m + f∂2
θum

0 + zmfum
0 + f ′∂θu

m
0

)

+ h2f

(
− ηκf

1 + hfηκ
∂2

θum
0 − f ′

(
ηκ + hfη2κ2

)

(1 + hfηκ)
∂θu

m
0

− ηκ′f

(1 + hfηκ)2
∂θu

m
0 + ∂θ

(
f∂θu

m
1

1 + hfηκ

)

+ zmηfκum
0 + zm(1 + hfηκ)fum

1

)}
.

(30c)
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with the transmission conditions coming from (2)

1

µc
∂nW c o Φ0 =

1

hfµm

(
∂ηWm|η=0 − h2f

1

µc
∂nuc

1 oΦ0

)
,(30d)

W c o Φ0 = Wm|η=0 ,(30e)

1

µe
∂nW e o Φ1 =

1 + hfκ

hfµm

(
∂ηWm|η=1 + h∂ηum

1 |η=1

)

− 1

µe
∂nue

0 oΦ1 −
h

µe
∂nue

1 oΦ1,

(30f)

W e o Φ1 = Wm|η=1 + um
0 |η=1 + hum

1 |η=1 − ue
0 oΦ1 − hue

1 oΦ1,(30g)

and the boundary condition

∂ηW e|η=1 =0.(30h)

Using (22b) and (23), and applying Taylor formula, we rewrite (30f) as follows:

1

µe
∂nW e o Φ1 =

1 + hfκ

hfµm

{
∂ηWm|η=1 −

h2f

1 + hfκ

µm

µe

(
−κf∂nue

0 oΦ0

+ f∂2
nue

0 oΦ0 + ∂nue
1 o Φ0

+ hf

∫ 1

0

(1 − t)
(1 − t

2
f∂3

nue
0 oΦ(t, θ)

+ ∂2
nue

1 oΦ(t, θ)
)
dt

)}
,

(31)

moreover, according to Lemma 5.3, we rewrite (30g) as:

W e o Φ1 = Wm|η=1 − (v oΦ − ṽ) |η=1.(32)

The trick of the proof consists in building a function Bm defined on [0, 1] × T and
in introducing the function Am defined on [0, 1]× T by:

Am = Wm − h2Bm,

such that the term in h of the right-hand side of (30c) disappears. Let us define in
[0, 1]× T the function bm as follows:

bm = −η2f

2

(
κ∂ηum

1 + f∂2
θum

0 + zmfum
0 + f ′∂θu

m
0

)
+

ηfµm

µc
∂nuc

1 oΦ0,(33a)

and let Bm be such that:

Bm(η, θ) = bm(η, θ) − bm(1, θ) + (v oΦ1 − ṽ|η=1) /h2.

(33b)

According to Lemma (5.3), there exists a constant C depending on Oc, on the
function f and on µe, µm, µc, qe, qm and qc such that the following estimate holds:

∀η ∈ [0, 1], ‖Bm(η, ·)‖H2(T) ≤ C‖φ‖H5/2(∂Ω).(34)
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A simple calculation gives the following equalities in [0, 1]× T:

∂ηBm = −ηf
(
κ∂ηum

1 + f∂2
θum

0 + zmfum
0 + f ′∂θu

m
0

)
+

fµm

µc
∂nuc

1 oΦ0,

∂2
ηBm = −f

(
κ∂ηum

1 + f∂2
θum

0 + zmfum
0 + f ′∂θu

m
0

)
.

In particular, according to (22b), we have in η = 1:

∂ηBm|η=1 =
fµm

µe

(
∂nue

1 oΦ0 + f∂2
nue

0 o Φ0 − κ∂nue
0 o Φ0

)
.

We define Am in [0, 1] × T as follows:

Am = Wm − h2Bm.

It is obvious that Am satisfies the following equalities:

∂ηAm|η=0 = ∂ηWm|η=0 −
h2fµm

µc
∂nuc

1 oΦ0,

(35a)

∂ηAm|η=1 = ∂ηWm|η=1 −
h2fµm

µe

(
∂nue

1 oΦ0 + f∂2
nue

0 o Φ0 − κf∂nue
0 oΦ0

)
,

(35b)

Am|η=0 = Wm|η=0 − h2Bm|η=0,(35c)

Am|η=1 = Wm|η=1 − (v oΦ − ṽ) |η=1.(35d)

Therefore, according to (30)–(31) and to (35), (W e, Am, W c) satisfies the following
transmission conditions respectively in η = 0 and in η = 1:

1

µc
∂nW c oΦ0 =

1

hfµm
∂ηAm|η=0 ,(36a)

W c oΦ0 = Am|η=0 + h2 Bm|η=0 ,(36b)

1

µe
∂nW e oΦ1 =

1 + hfκ

hfµm

(
∂ηAm|η=1 −

h3f2

1 + hfκ

µm

µe

(
fκ
(
κf∂nue

0 oΦ0

− ∂nue
1 o Φ0 − f∂2

nue
0 oΦ0

)
+

∫ 1

0

(1 − t)
(
∂2

nue
1 oΦ(t, θ)

+
(1 − t)f

2
∂3

nue
0 o Φ(t, θ)

)
dt

))
,

(36c)

W e oΦ1 = Am|η=1 ,(36d)

We denote by b the right-hand side of (36c):

b =
f

1 + hfκ

µm

µe

(
fκ
(
κf∂nue

0 oΦ0 − ∂nue
1 oΦ0 − f∂2

nue
0 oΦ0

)

+

∫ 1

0

(1 − t)
(
∂2

nue
1 oΦ(t, θ) +

(1 − t)f

2
∂3

nue
0 oΦ(t, θ)

)
dt

)
.

Let us now introduce Bc defined in Oc by:
{

∆Bc + zcB
c = 0, in Oc,

Bc|Γ0
= Bm|η=0 , on Γ0.

(37)
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We define in Oc the function Ac as follows:

Ac = W c − h2Bc.(38)

According to equalities (30)–(31), (36) and (37), we see easily that the three
functionsAc, Am and W e satisfy the following problem

∆W e + zeW
e = 0, in Oe,h,(39a)

∆Ac + zcA
c = 0, in Oc,(39b)

∀(η, θ) ∈ [0, 1]× T,

Lη,θA
m = − h2f

{
− ηfκ

1 + hfηκ
∂2

θum
0 − f ′

(
ηκ + hfη2κ2

)

1 + hfηκ
∂θu

m
0

− ηfκ′

(1 + hfηκ)2
∂θu

m
0 + ∂θ

(
f (∂θu

m
1 + hBm)

1 + hfηκ

)

+ zmfηκum
0 + zmf(1 + hfηκ)um

1

+ zmf

(
ηκum

0 + (1 + hfηκ) (um
1 + hBm)

)}
.

(39c)

with the following transmission conditions

1

µc
∂nAc o Φ0 =

1

hfµm
∂ηAm|η=0 −

h2

µc
∂nBc oΦ0,(39d)

Ac o Φ0 = Am|η=0 ,(39e)

1

µe
∂nW e oΦ1 =

1 + hfκ

hfµm

(
∂ηAm|η=1 − h3fb

)
,(39f)

W e oΦ1 = Am|η=1 ,(39g)

and the boundary condition

∂ηW e|η=1 = 0.(39h)

To simplify the notations, we denote by g the right-hand side of (39c):

∀(η, θ) ∈ [0, 1] × T,

g(η, θ) = − fηκ

1 + hfηκ
∂2

θum
0 − f ′

(
ηκ + hη2κ2

)

1 + hfηκ
∂θu

m
0

− fηκ′

(1 + hfηκ)2
∂θu

m
0 + ∂θ

(
f (∂θu

m
1 + hfBm)

1 + hfηκ

)

+ zmfηκum
0 + zmf(1 + hfηκ)um

1 .

(40)

Now we are ready to perform L2 estimates as it has been performed in [10].
In Oc parameterized by Euclidean coordinates, the L2 norm of a 0-form β,

denoted by ‖β‖L2(Oc), is equal to:

‖β‖Λ0L2(Oc) = ‖β‖L2(Oc),

and the L2 norm of its exterior derivative dβ, denoted by ‖du‖Λ1L2(Oc) is equal to

‖dβ‖Λ1L2(Oc) = ‖ gradβ‖L2(Oc).
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In Oe,h parameterized by Euclidean coordinates, the L2 norm of a 0-form γ, denoted
by ‖γ‖L2(Oe,h), is equal to:

‖γ‖Λ0L2(Oe,h) = ‖γ‖L2(Oe,h),

and the L2 norm of its exterior derivative dv, denoted by ‖du‖Λ1L2(Oe,h) is equal
to

‖dγ‖Λ1L2(Oe,h) = ‖ gradγ‖L2(Oe,h).

We multiply equalities (39a)–(39b)–(39c) respectively by the conjugates of W e, Ac

and Am. Using the transmission conditions (39), we integrate by part and we take
the imaginary part of the result. To simplify the notations, we define ‖A‖2

Λ0L2(Ω)

and ‖dA‖2
Λ1L2(Ω)as follows:

‖A‖2
Λ0L2(Ω) = ‖W e‖2

Λ0L2(Oe,h) + ‖Am‖2
Λ0L2

m(D) + ‖Ac‖2
Λ0L2(Oc)

,

‖dA‖2
Λ1L2(Ω) = ‖dW e‖2

Λ1L2(Oe,h) + ‖dAm‖2
Λ1L2

m(D) + ‖dAc‖2
Λ1L2(Oc)

,

we obtain:

min
(
ℑ(ze),ℑ(zm),ℑ(zc)

)
‖A‖2

Λ0L2(Ω) ≤
h2

µc

∣∣∣∣
∫

Γ0

∂nBcA
c
dvolΓ0

∣∣∣∣

+
h2

µm

∣∣∣∣
∫ 2π

0

bA
e
o Φ1 dθ

∣∣∣∣

+ h2f

∣∣∣∣
∫ 1

0

∫ 2π

0

gA
m

dη dθ

∣∣∣∣ .

Therefore, there exists a constant C depending on Oc, on f and on the dielectric
constant µc, µe, qc, qm and qe such that:

‖A‖2
Λ0L2(Ω) ≤

Ch3/2

ℑe,m,c

(
√

h
(
‖∂nBc‖H−1/2(Γ0)

+ ‖b‖L2(T)

)

+

(∫ 1

0

∫ 2π

0

|g|2dη dθ

)1/2
)
(
‖A‖Λ0L2(Ω) + ‖dA‖Λ1L2(Ω)

)
.

(41)

One more time, we multiply equalities (39a)–(39b)–(39c) respectively by the con-
jugates of W e, Ac and Am. Using the transmission conditions (39), we integrate
by part and we take the real part of the result. We infer:

‖dA‖2
Λ1L2(Ω) ≤ max {ℜ(ze),ℜ(zm),ℜ(zc)} ‖A‖2

Λ0L2(Ω) +
h2

µc

∣∣∣∣
∫

Γ0

∂nBcA
c
dvolΓ0

∣∣∣∣

+
h2

µm

∣∣∣∣
∫ 2π

0

bA
e
oΦ1 dθ

∣∣∣∣+ h2f

∣∣∣∣
∫ 1

0

∫ 2π

0

gA
m

dη dθ

∣∣∣∣ .

Using (41) we infer easily that there exists a constant C depending on the domain
Oc, on f and on the dielectric paraleters µc, µe, qc, qm and qe such that:

‖A‖Λ0L2(Ω) + ‖dA‖Λ1L2(Ω) ≤ Ch3/2

(
√

h
(
‖∂nBc‖H−1/2(Γ0)

+ ‖b‖L2(T)

)

+

(∫ 1

0

∫ 2π

0

|g|2dη dθ

)1/2
)

.
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According to the estimate of Bm given in (34) and according to the definition of
Bc given in (37), it is obvious that there exists a constant C depending on Oc and
the dielectric constants such that the following estimates hold:

(∫ 1

0

∫ 2π

0

|g|2dη dθ

)1/2

≤ C‖φ‖H5/2(∂Ω),

‖∂nBc‖H−1/2(Γ0) ≤ C‖φ‖H5/2(∂Ω).

Therefore, there exists a constant C depending on the domain Oc, on f and on the
dielectric constants such that:

‖A‖Λ0H1(Ω) ≤ Ch3/2‖φ‖H5/2(∂Ω).

�

Remark 5.4. Now we consider the domain Ωh defined by:

Ωh = Oc ∪ Oh.

Let γ be in H5/2(∂Ωh), and we denote by g the following function defined on the

torus:

∀θ ∈ T, g(θ) = γ oΦ1(θ).

Let u be the solution of the following problem:

div

(
1

µ
gradu

)
+ qu = 0, in Ωh,

∂nu|∂Ωh
= γ, in Ωh,

Then, we have the following theorem:

Theorem 5.5. We remember that h0 and f are defined in Theorem 5.2. Let γ be

in H5/2(∂Ωh).
We denote by uc

0, um
0 , uc

1, and um
1 the functions defined as follows:

{
∆uc

0 + zcu
c
0 = 0, in Oc,

∂nuc
0|Γ0

= (µc/µm)g o Φ−1
0 , on Γ0.

In the membrane, the field um
0 is equal to:

∀(η, θ) ∈ [0, 1] × T, um
0 = uc

0 oΦ0(θ).

The field uc
1 is the solution of the following problem in Oc:
{

∆uc
1 + zcu

c
1 = 0, in Oc,

(µm/µc) ∂nuc
1|Γ0

= f∂2
t uc

0|Γ0
+ zmfuc

0|Γ0
+ f′∂tu

c
0|Γ0

, on Γ0.

In the membrane, we have:

∀(η, θ) ∈ [0, 1] × T, um
1 = fηγ + uc

1 oΦ0.

Let W be the function defined on Ωh by:

W =

{
u − (uc

0 + huc
1) , in Oc,

u −
(
um

0 o Φ−1 + hum
1 oΦ−1

)
, in Oh.
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Then, there exists a constant C > 0 independant of h but depending on the domain

Oc, on the function fand on the dielectric parameters zm and zc of the material

such that

‖W‖H1(Ωh) ≤ Ch3/2‖g o Φ−1
0 ‖H5/2(∂Oc).

Remark 5.6. In Theorem 5.2, we can replace zm by zero. The proof is then very

similar, except that we need the following inequality.

Proposition 5.7. Let h and f be as in Theorem 5.2. Let u be a function of class

C1([0, 1]×T). On the domain [0, 1]×T, we use the metric h2f2dη +(1+hfηκ)dθ.
Then, there exists a constant C depending on O and on f and independant of h

such that

‖u‖2
Λ0L2

m(D) ≤ C

(
‖du‖2

Λ1L2
m(D) +

∫ 2π

0

|u(0, θ)|2dθ

)
.(42)

Proof. Actually, according to the definition of h0 in (3) there exists two constants
C1 and C2 depending on the domain O and on f such that the following inequalities
hold:

‖u‖2
Λ0L2

m(D) ≤ C1h

∫ 1

0

∫ 2π

0

|u(η, θ)|2 dθ dη,(43a)

‖du‖2
Λ1L2

m(D) ≥ C2

(∫ 1

0

∫ 2π

0

|∂ηu(η, θ)|2
h

+ h |∂θu|2 dθ dη

)
.(43b)

Let us denote by (û)k for k ∈ Z the kth-Fourier coefficient (with respect to θ) of u:

ûk =

∫ π

0

u(θ) e−2iπk/L dθ.

Since
(
∂̂θu
)

k
= 2iπkûk, it is easy to see that:

∀k 6= 0,

∫ 1

0

|ûk(η)|2 dη ≤ 4π2

∫ 1

0

∣∣∣
(
∂̂θu
)

k
(η)
∣∣∣
2

dη.

Using the following equality

û0(η) =

∫ η

0

(
∂̂ηu

)
0
(s)ds + û0(0),

we infer
∫ 1

0

|û0(η)|2 dη ≤ 2

∫ 1

0

∣∣∣
(
∂̂ηAm

)
0
(η)
∣∣∣
2

+ 2|û0(0)|2 dη.

We deduce easily inequality (42). �

6. Application to the biological cell

In the biological cells, the membrane is insulating (see Fear and Stuchly [8]).
This means that at mid frequencies, the ratio |zm|/|zc| and |zm|/|ze| are small
compared to h. Actually, the thickness is of order 10−3, while |zm|/|zc| is about
10−5 (see [10]). We say that we work at mid frequency since we suppose that zc

and ze are of order 1. The following results show that the asymptotics obtained by
replacing zm by zero in the expansions of Theorem 5.2 give a good approximation
of the electric field in the biological cell. We have the following proposition.
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Proposition 6.1. Let zc and ze be complex constants with strictly negative imag-

inary part.

We suppose that |zm| tends to zero and that there exists a constant c > 0 such

that:

0 < − |zm|
ℑ(zm)

< c.(44)

Let z and z̃ be such that:

z =





ze, in Oe,h,

zm, in Oh,

zc, in Oc,

z̃ =





z̃e, in Oe,h,

0, in Oh,

z̃c, in Oc.

Let φ in H1/2(∂Ω). Let u the solution of the following problem:

∆u + zu = 0, in Ω,(45a)

∂nu|∂Ω = φ, in Ω,(45b)

and let v be such that

∆v + z̃v = 0, in Ω,(45c)

∂nv|∂Ω = φ, in Ω.(45d)

Then, there exists a constant C depending on Oc, c and on the function f such

that:

‖u − v‖H1(Ω) ≤ C|zm|‖φ‖H1/2(∂Ω).

Proof. To prove this theorem, first, using hypothesis (44), we prove that there exists
a constant C depending on Oc,and on the constants c, zc and ze such that:

‖u‖H1(Ω) ≤ C‖φ‖H1/2(∂Ω).

Then, we just have to write the problem satisfies by u − v in local coordinates in
the membrane. As usual, we multiply in by u − v and we integrate by parts. Then,
using inequality (42), we show easily the following inequality:

‖u − v‖H1(Ω) ≤ C|zm|‖u‖H1(Ω),

which ends the proof of the theorem. �

Using Proposition 6.1 and Remark 5.6, we obtain easily the following theorem.

Theorem 6.2. Let f be in C∞(T), such that

∀θ ∈ T, f(θ) > 0,

and let h0 be in (0, 1) such that

h0 <
1

‖fκ‖∞
.

Let h be in (0, h0).
Let zc and ze be complex constants with strictly negative imaginary part.

We suppose that |zm| = o(h) and that there exists a constant c > 0 such that:

0 < − |zm|
ℑ(zm)

< c.
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Let z and z̃ be such that:

z =





ze, in Oe,h,

zm, in Oh,

zc, in Oc,

Let φ be in H5/2(∂Ω).
We denote by u the solution of the following problem:

{
∆u + zu = 0, in Ω,

∂nu = φ, on ∂Ω.

We define (ue
0, u

c
0), um

0 , (ue
1, u

c
1), and um

1 are defined as follows.

• The 0thorder terms. The electric fields ue
0 and uc

0 are solution of the fol-

lowing problem in Oe,h ∪Oc:
{

∆ue
0 + zeu

e
0 = 0, in Oe,h,

∆uc
0 + zcu

c
0 = 0, in Oc,

(46a)

with the transmission conditions

uc
0|Γ0

= ue
0|Γ0

,(46b)

∂nuc
0|Γ0

= ∂nue
0|Γ0

,(46c)

with Neumann boundary condition:

∂nue
0|∂Ω = φ.(46d)

In the membrane, the field um
0 is equal to:

∀(η, θ) ∈ [0, 1] × T, um
0 = uc

0 oΦ0(θ).(47)

• The first order terms. The fields ue
1 and uc

1 are solution of the following

problem in Oe,h ∪ Oc:




∆ue
1 + zeu

e
1 = 0, in Oe,h,

∆uc
1 + zcu

c
1 = 0, in Oc,

∂nue
1|∂Ω = 0,

(48a)

with the following transmission conditions

∂nuc
1|Γ0

− ∂nue
1|Γ0

= f∂2
t uc

0|Γ0
+ f′∂tu

c
0|Γ0

+ f∂2
nue

0|Γ0
,(48b)

uc
1|Γ0

− ue
1|Γ0

= 0.(48c)

In the membrane, we have:

∀(η, θ) ∈ [0, 1] × T, um
1 = ηf∂nuc

0 oΦ0 + uc
1 oΦ0.(49)

Let W be the function defined on Ω by:

W =





u − (ue
0 + hue

1) , in Oe,h,

u − (uc
0 + huc

1) , in Oc,

u −
(
um

0 oΦ−1 + hum
1 oΦ−1

)
, in Oh.
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Then, there exists a constant C > 0 independant of h but depending on the domain

Oc, on the function f and on the dielectric parameters ze and zc of the material

such that

‖W‖H1(Ω) ≤ C
(
h3/2 + |zm|

)
‖φ‖H5/2(∂Ω).
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