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Abstract

Given a set I of word, the set L{, of all words obtained by the shuffle
of (copies of) words of I is naturally provided with a partial order: for
u,v in LE , u k7 v if and only if v is the shuffle of u and another word of

£, In [B[], the authors have opened the problem of the characterization
of the finite sets I such that -7 is a well quasi-order on L . In this paper
we give an answer in the case when I consists of a single word w.
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1 Introduction

A quasi-order on a set S is called a well quasi-order (wqo) if every non-empty
subset X of S has at least one minimal element in X but no more than a
finite number of (non-equivalent) minimal elements. Well quasi-orders have
been widely investigated in the past. We recall the celebrated Higman and
Kruskal results [fl, [.4]. Higman gives a very general theorem on division orders
in abstract algebras from which one derives that the subsequence ordering in
free monoids is a wqo. Kruskal extends Higman’s result, proving that certain
embeddings on finite trees are well quasi-orders. Some remarkable extensions of
the Kruskal theorem are given in [[L1], g

In the last years many papers have been devoted to the application of wqo’s
to formal language theory [fl, B, H, B, [.d, [.3, B, @, .d).

Recently, in the theory of language equations, remarkable results based on
wqo’s have been obtained by M. Kunc [E} These results have been culminating
in the negative solution of the famous conjecture by Conway stating the regu-
larity of the maximal solutions of the commutative language equation XL = LX
where L is a finite language of words [@]

In [E], a remarkable class of grammars, called unitary grammars, has been
introduced in order to study the relationships between the classes of context-free
and regular languages. If I is a finite set of words then we can consider the set
of productions

{e—u|luel}

and the derivation relation =7 of the semi-Thue system associated with I. The
language generated by the unitary grammar associated with I is L = {w €
A* | e =% w}. Unavoidable sets of words are characterized in terms of the wqo
property of the unitary grammars. Precisely it is proved that I is unavoidable
if and only if the derivation relation =7 is a wqo.

In [§], Haussler investigated the relation 3 defined as the transitive and
reflexive closure of 7 where, for every pair w, v of words, v F; w if

UV ="01V2" " Unti,

w = viaivag - - - vnanvn+1,

where the a;’s are letters, and aias - --a, € I. In particular, a characterization
of the wqo property of -7 in terms of subsequence unavoidable sets of words
was given in [E] Let L{  be the set of all words derived from the empty word
by applying 7.

A remarkable result proved in [E] states that for any finite set I the derivation
relation k7 is a wqo on the language L¢. It is also proved that, in general, =7 is
not a wqo on L7 and 7 is not a wqo on L . In [B] the authors characterize the
finite sets I such that =7 is a wqo on L5. Moreover, they have left the following
problem open: characterize the finite sets I such that =7 is a wgo on L{ . In
this paper we give an answer in the case when I consists of a single word w.

In this context, it is worth noticing that in @ the authors prove that wa}

is not a wqo on Lﬁ{w} if w = abe. A simple argument allows one to extend the



result above in the case that w = a’b/c", 4, j,h > 1. By using Lemma P.11], this
implies that if a word w contains three distinct letters at least, then F*w} is not
a wqo on Lﬁ{w}. Therefore, in order to prove our main result, we can focus our

attention to the case where w is a word on the binary alphabet {a,b}. Let E be
the exchange morphism (E(a) = b, E(b) = a), and let w be the mirror image of
w.

Definition 1 A word w is called bad if one of the words w, @, E(w) and E(w)
has a factor of one of the two following forms

akbh with k,h > 2
akbalb™  with k>1>1,m>1 (2)

—~
—_
~

A word w is called good if it is not bad.

Although it is immediate that a word w is bad if and only if one of the words w,
W, E(w) and E() contains a factor of the form a?b? or a*+'ba*b, with k > 1
it will be useful to consider the definition as above. Morever we observe that,
by Lemma B.]] a word is good if and only if it is a factor of (ba™)* or (ab™)* for
some n > 0. The main result of our paper is the following.

Theorem 1.1 Let w be a word over the alphabet {a,b}. The derivation relation

£ if and only if w is good.

.
F{w} i$ a wqo on Lk{w}

We assume the reader to be familiar with the basic theory of combinatorics
on words as well as with the theory of well quasi-orders (see also [f, [l]). Now
let us recall the following theorem which gives a useful characterization of the
concept of well quasi-order.

Theorem 1.2 Let S be a set quasi-ordered by <. The following conditions are
equivalent:

i. < 1s a well quasi-order;

1. if S1,82,...,8n,... 15 an infinite sequence of elements of S, then there exist
integers i,j such that ¢ < j and s; < s;.

Let o = (s;);>1 be an infinite sequence of elements of a set S. Then o is called
good if it satisfies condition ii of Theorem [.9 and it is called bad otherwise,
that is, for all integers 4, j such that ¢ < j, s; £ s;. It is worth noting that, by
condition ii above, a useful technique to prove that < is a wqo on S is to prove
that no bad sequence exists in S.

For the sake of clarity, the following well-known notions are briefly recalled.
If u is a word over the alphabet A, then, for any a € A, |u|, denotes the number
of occurrences of a in u.

Given a word v = ay---ag, with a1,...,ax € A, v is said to be a sub-
sequence (or subword) of w if there exist words wq,...,ugt1 such that u =
upay - - - UEAQpUg+1-



Given two words u, v over the alphabet A, the symbol u1uv denotes the set
of words obtained by shuffle from u and v, that is the set of all words

Uv1 * * - UKV,

where k > 1 and u =uy -+ up,v =v1 - - - V.

2 Bad words

In this section, we prove the “only if” part of Theorem @ We find convenient
to split the proof into three sections. In the first two, we prove the claim in the
case that w has one of the forms considered in Definition ﬂ

2.1 Words of form [I]

Denote by w a word of the form

a"b*,  with h, k> 2,

)

and consider the sequence (Sy,),>1 of words of A* defined as: for every n > 1,

S’n, _ ah(a2hb2k)(abah71bkfl)n(a2hb2k)bk

€

Proposition 2.1 (S,),>1 s a bad sequence of Lk{w}

: with respect to F{w}. In

. .
particular F{w} is not a wqo on L,_{w}.

In order to prove Proposition R.1, we prove some technical lemmas. The follow-
ing lemma is easily proved.

Lemma 2.2 For everyn >1, S, € Lf_{w}.

Now we recall a remarkable characterization of the words of LE, - Letu be

a word over {a,b}. Then we can consider the following integer parameters

4z = llula/h], @ = [lulo/k], and

re =|ule mod h, 1y = |ulp, mod k.

Proposition 2.3 [ Let u be a word over the alphabet A = {a,b}. Then

u e Lf
€ Lk

U
a

if and only if the following condition holds: q; = g, o =1 and, for every
0.

prefix p of u, either g > qi or qf = q and ry =

Now we recall some useful results proved in [B.



Definition 2 Letu=a;---as andv = by -- - by be two words over A with s < t.
An embedding of v in v is a map f: {1,...,s} — {1,...,t} such that f is
increasing and, for everyi=1,...,s, a; = byi)-

It is useful to remark that a word w is a subsequence of v if and only if there
exists an embedding of u in v.

Definition 3 Let u,v € A* and let f be an embedding of u in v. Let v =
by---be. Then (v —u)y is the subsequence of v defined as

(v —u)p =i by

where {i1,12,...,4¢} is the increasing sequence of all the integers of {1,...,m}
not belonging to Im(f). The word (v — u)s is called the difference of v and u
with respect to f.

It is useful to remark that (v — u); is obtained from v by deleting, one by
one, all the letters of v according to f. Moreover, an embedding f of v in v is
uniquely determined by two factorizations of v and v of the form

U= ajaz---ag, V =711a10202 - VsQsVg+1
with a; € A, v; € A*.

Lemma 2.4 [f] Let u,v € Lﬁ{ such that w =%, v. Then there exists an

w} {w
embedding f of u in v such that

€
(v—u)y € LE .,
The following lemma is crucial.
Lemma 2.5 For everyi,j > 1,
if and only if i = j.
Proof. By contradiction, suppose that the claim is false. Hence there exist two

positive integers i < j such that S; I—?w} S;. By Lemma @, there exists an
embedding f of S; into S; such that

<Sj — Sz>f S Lf_{w}.

We divide the proof of the lemma in the following two steps. Let us set
P = ah(a%b%)(abah_lbk_l)i,

and remark that P is a prefix of S; and S;.
Step 1. Let Q = a"(a®"b?*). The embedding f is the identity on Q.
Let us first prove that the following condition is true:

3se{l,....2k} with f(3h+s)=3h+s. (3)



By contradiction, deny. Hence we have f(3h+2k) = « > 3h+ 2k. Moreover
we have o < |S;| — (3k+2h) since, otherwise, there would be no room to embed
the remaining right part of S;. Therefore, since a”a?"b i s a prefix of S;, the
prefix a"a?" of Q must be embedded in a prefix of S;, that we call T,

T — a/h(thka)(abahilbkil)LP,
where
p € {a, aba" ™'},

with L > 0. Set u = (T — a"a®");. Since h,k > 2, it is easily checked that
gy < gy, so contradicting Proposition .. Hence () is proved.

Now the previous condition obviously implies that, for every s < 3h, f(s) =
s. Consequently, if there exists a positive integer s with 1 < s < 2k and
f(Bh+s) > 3h + s, we would have

<Sj — Sz>f S bA*,

which contradicts Proposition @ Hence the embedding f is the identity on Q.
o

Step 2. The embedding f is the identity on P.
By Step 1, it suffices to prove the claim for all indexes s > |Q|. Since h,k > 2,
it is easily checked that

Vs=1,....h+k f(QI+s)=1Q| +s.

Indeed, suppose that the condition above does not hold. This implies the exis-
tence of a non empty prefix p of (S; — S;) s which does not satisfy Proposition
. By iterating the argument above, one completes the proof. ¢

Finally, Step 2 and the fact that Pa? is a prefix of S; implies that
fUPI+1) > [P|+1 or f(P[+2)>|P|+2,

whence
(Sj — Si)r € {ab,b} A,

which contradicts Proposition @ Hence the embedding f cannot exist and
thus S; )L?w}Sj. The proof of the lemma is thus complete. O

Now we are able to prove the announced proposition.
Proof of Proposition @: The claim immediately follows from Lemma E
and Lemma E O

2.2 Words of form

Now denote by w a word of the form

a®ba’d™,  with k>¢>1, m>1.



and consider the sequence (Sy,),>1 of words of A* defined as: for every n > 1,
S, = afba’a*bav™ (aF o) aFbat ™.
We prove the following result.

Proposition 2.6 (S,,),>1 is a bad sequence of L, with respect to 7., In
particular F?w} is not a wqo on Lf_{w}.

The following lemma is easily proved.

Lemma 2.7 For everyn>1, S, € Lﬁ{w}.

Let us define the map v : AT — Q U {oo}, as: for every u € A*,

|ul
v(u) = |u|:

The following two lemmas are easily proved by induction on the length of the
derivation used to obtain wu.

Lemma 2.8 Let u € Lf_{w}. For every non empty prefix p of u, we have
k+7
> —.
v(p) 2

Lemma 2.9 Let u be a word of Lﬁ{w}. If a®b is a prefiz of u, then a > k. If

a®b? is a prefiz of u, then a > 2k.
The following lemma is crucial.
Lemma 2.10 For every i,j > 1,
if and only if i = j.

Proof. By contradiction, suppose that the claim is false. Hence there exist two
positive integers ¢ < j such that S; F?w} S;. By Lemma @, there exists an
embedding f of S; into S; such that

<Sj — Sz>f S Lﬁ{w}.
We divide the proof of the lemma in the following two steps. Let us set

P = d*ba’aFvatv™,

and remark that P is a prefix of S; and S;.



Step 1. The embedding f is the identity on P.
Set Q = a*bata’b. We first show that:

3 se{l,..., 0}, where f(|Q]+s) =|Q| + s. (4)
By contradiction, suppose that ({f) does not hold. Consequently f(|P|) > |P|.
Since aFba’b™b™ is a suffix of S;, f(|P|) < |P(akb™*1a?)?|. Since P ends with

b and Pa is a prefix of S;, the prefix P of S; must be embedded (according to
f) in a prefix of S;, we call T,

T — F)ak(berlalJrk)Bberl7

where 3 is such that 0 < 8 < j. Therefore, the word (I' — P); is a prefix of
(S; — Si)s. On the other hand, an easy computation shows that

(T —P)fla  BUL+E)+E

AT =P = 1Tyl ~ W B+ 1)
and thus -
v((T = P)y) < mal

so contradicting Lemma @ Thus condition (E) is proved: it means that f
is the identity on (). Finally this condition implies that f is the identity on
P. Indeed, otherwise, (S; — S;)y € a®bA*, with 0 < a < [ which contradicts
Lemma @ since [ < k. ©

Step 2. The embedding f is the identity on P(a®b™+1a’)’.
By Step 1, it suffices to prove the claim for all indexes s > |P|. It is easily
checked that, for every s=1,...,m+ 1+ ¢ + 2k,

f(P|+s)=|P|+s.

Indeed, otherwise, we would have (S; — S;); € a“b*A*, with o < 2k or (S; —
Si)f € a®bA*, with o < k, so contradicting Lemma @ By iterating the
argument above, one completes the proof. ¢

We have already proved that S; = P'R, S; = P'(a*v™*'a’)’~*R where P’ =
P(a*b*1a?)" and R = a*ba’b™b™, and that f is the identity on P’. It follows
that (S; — S;) s begins with a prefix which is a*b? (if f(|P'|+1) > f(|P'| +k +
m+1)) or a®b where a < k so contradicting Lemma P.g. Hence the embedding
f cannot exist and thus 5; )‘f{w}Sj. The proof of the lemma is thus complete.

o

Now we are able to prove the announced proposition.
Proof of Proposition @: The claim immediately follows from Lemma E
and Lemma . O



2.3 Proof of the “only if” part of Theorem [.1]

As pointed out in the previous paragraph, Propositions E and @ permit to
prove that if w is of the forms (1) or (2) of Definition [], then Fi.py is n0t a wqo
on Lf_{w}. This does not suffice to prove the “only if” part of Theorem E In
order to complete the proof, the following lemma (and its symmetric version,
say Lemma ) provides a key result: indeed it shows that the property ?w}

is not a wqo on Lﬁ{w}” is preserved by the factor order.

Lemma 2.11 Let b be a letter of an alphabet A and let u be a word over A not
ending with b. Assume F?u} is not a wqo on Lf_{u}. Then, for every k > 1,
Flupky 8 Mot a wqo on Lﬁ{ubk}.

Proof. Let (wp)n>0 be a bad sequence of Lf_{u} with respect to F?u} and, for
every n > 1, let us denote £,, the positive integer such that

e Foy wn. (5)

Since (wp)n>0 is a bad sequence, by using a standard argument, we may choose
the sequence (wy,)n>0 so that (¢,)n>0 is a strictly increasing sequence of pos-
itive integers. Let k be a positive integer and define the sequence of words
(wy, (V%)) 0. Tt is easily checked that, for every n > 1,

€ F?&bk} W, (bk)e" ,

so that all the words of the sequence defined above belong to the language Lf_{u} .
Now we prove that this sequence is bad with respect to F?ubk}. By contradiction,
suppose the claim false. Thus there exist positive integers n, m such that

W (B Flupey W (0F) 77 (6)
Since, for every n > 1,
|wn (B°)" | = ok + |wn| = Lok + Jul),
we have that the length L of the derivation () is
L="Lpim —ln. (7)

Now it is useful to do the following remarks. First observe that, since u does
not end with the letter b, for every n > 1, (b*)*" is the longest power of b which
is a suffix of w, (b*)*. Second: at each step

v F{ubk} ’Ul,

of the derivation (E), the exponent of the longest power of b which is a suffix
of the word v’ increases of k at most (with respect to v). Moreover this upper
bound can be obtained by performing the insertion of ub* in the word v only

10



if its suffix b* is inserted after the last letter of v which is different from b. By
the previous remark and by (f]), all the insertions of the derivation ([) must be
done in this way. This implies that the derivation (ﬁ) defines in an obvious way
a new one with respect to the relation l—ffu} such that

Wnp, l_ifu} ’LUnJ’_g.

The latter condition contradicts the fact that the sequence of words (wy,)n>0 is
bad. O

By using a symmetric argument, we can prove the following.

Lemma 2.12 Let b be a letter of an alphabet A and let u be a word over A not
beginning with b. Assume F’Eu} is not a wqo on Lf_{u}. Then, for every k > 1,
Flpkyy 8 MOt @ wqo on Lﬁ{bku}.

We are now able to prove the sufficiency of Theorem @

Theorem 2.13 If w is a bad word then F’Ew} is not a wqo on the language

L¢ .
Flwy

Proof. If w has a factor of the form a*b" with h,k > 2, or a*ba’b™, with
k>/¢>1, m > 1, then the claim is a straightforward consequence of Lemma
, Lemma , Proposition EI, and Proposition @

In the general case, that is whenever w or E(w) or E(w) has a factor of the
previous two forms, the proof is similar since the property of wqo is preserved
under taking exchange morphism and mirror image of the word w. O

3 Good words

In this section we present the proof of the “if” part of Theorem . We find
convenient to split it into the following seven sections. In the first a characteri-
zation of good words and that of the languages of words derivable from a good
word are given.

3.1 Form of good words

Lemma 3.1 A word w is good if and only if w = € or there exist some integers
n,e,i, f such that w = a*(ba™)®baf or w = b*(ab™)abf, e > 0, 0 < i, f < n,
and if e = 0 then n = max(i, f).

Proof. Clearly if w is a bad word, then w cannot be decomposed as in the
lemma.

Assume now that w is a good word. This means that w has no factor of
the form aabb, bbaa, a™ttba™b, ba™ba™ 1, bt lab"a, ab™ab” T with n > 1 an
integer.

11



If |w|, = 0, then w = € or w = a*(ba™)®bal with i =n = f = 0. If |w|, = 1,
w = aPba? with max(p,q) = 1, that is w = a*(ba™)®ba’ with i = p, f = q,
n = max(p, q), e = 0. Similarly if |w|, < 1, w is a good word.

Assume from now on that |w|, > 2 and |w|y > 2. If both aa and bb are not
factors of w, then w is a factor of (ab)* and so w = a’(ba™)ba’ with n = 1.

Let us prove that aa and bb cannot be simultaneously factors of w. Assume
the contrary. We have w = wjaawsbbws (or w = wibbwsaaws which leads to
the same conclusion) for some words w1, wa, ws. Without loss of generality we
can assume that aa is not a factor of aws and bb is not a factor of wyb. This
implies that ws = (ba)™ for an integer m > 0. This is not possible since aabab
and aabb are not factors of w.

Assume from now on that bb is not a factor of w (the case where aa is not
a factor is similar). This implies that w = a®ba’ ba®?b...ba'»ba'»+! for some
integers 4o, 41, ..., ip+1 such that ¢; # 0 for each j € {1,...,p}. Let j be an
integer such that 1 < j < j 4+ 1 < p. Since a%+'*T1ha’+1b and ba® ba’t! are
not factors of w, we have i; = i;41. Thus set n = i; = --- = 4, and write
w = a®(ba™)Pba’»+'. Since a"Tba"b and ba"ba"T! are not factors of w, we
have ig < n, ip41 < n. This ends the proof. O

For X aset of words and n an integer, let X=" = (J!_ ) X*. Then Lemma
can be reformulated: the set of good words w is the set

{e}U U as"(ba™)*ba=" U U bS"(ab™)*ab=".

n>0 n>0

3.2 A fundamental characterization

In this section we prove the next proposition that characterizes words in Lf_{w}
when w is a good word. The construction which is made in order to prove it
also allows us to prove k7, ,’s properties (see Lemma B.9) on some prefixes of
elements of Lf_{w}.
Proposition 3.2 Let w be a word over {a,b} and let n.,, ey, iy, fu be integers
such that |w|, > 1, |w|y > 1, w = a™ (ba™ ) bal>, where 0 < iy, fu < N,
ew > 0 and if ey, = 0 then Ny = max(iy, fu)-

A word u belongs to € Lf_{w} if and only if the following conditions are

satisfied:

[ulp .

©wla [wlp’

2. for all words p, s, if u= ps then

2.1) [pla > dwlply + max(0, [ply — L48)(ny — iw);

[wle

2.2) |8la = folsls +max(0, |s|y — L42)(ny — fu).

[wle

12



In order to prove Conditions 1, 2.1 and 2.2, we now introduce a numbering of
the letters which has very good properties (see in particular Lemma ) when
the word verifies the three conditions above.

Let w, ny, €w, 1w and f,, be as in Proposition @ Let u be a word verifying
Condition 1 of Proposition and let x = |‘Z||Z = % We observe that if
u € Lf_{w} then v is the shuffle of x occurrences of w.

For any « € {a,b}, let m, be the function defined on {1,..., |u|} as follows:
7o (i) is the index of the i*" occurrence of the letter o in .
FErample. Let w = abaaabaa and let © = abaaababaabaaabaabaaaaabaaaabaaa.
We have z = 4, mp(1) = 2, m(2) = 6, m(3) = 8, mp(4) = 11, mp(5) = 15,
mp(6) = 18, mp(7) = 24, mp(8) = 29.

In order to find x occurrences of w in u, for every 1 < i < x, we define the
following set of integers:

Pi) = Ama((i = Diw+7) [ 1 <j <iw}
U {ma (@i + kxzng + (6 — D)ng +7) | 1 <7 <, 0 < k < ey}
U A{ma(ziw + ewtne + (i = 1) fu+7) [ 1 <5 < fu}
U{mp(i +kx) | 0<k<ey}.

Note that the idea for introducing the sets P(i) is to try to mark (when
u € Lf_{w}) some possible occurrences of w as subsequences of u (see also words
u(i) below).
Ezample (continued). We have :

P(1) = {1,2,7,9,10,15,23,25},

P(2) = {3,6,12,13,14,18,26,27},
P(3) = {4,8,16,17,19,24,28,30},
P4) = {5,11,20,21,22,29,31,32}.

The following properties easily follow from the definition of the sets P(%)
above:

1. The family {P(i)}1<i<z is a partition of the set {1,..., |u|}.
2. For each ¢ with 1 <14 < z, the set P(¢) has exactly |w| elements.

Let i be an integer with 1 < i < 2. Assume that P(i) = {i1,..., 0w}
with i1 < iz < ... < i),. We denote by u(i) the word w;, u;, ... u;,, . (In the
example, u(1) = ujuguruguipuisuasuss = abaaabaa = w).

Let us observe that, from an intuitive point of view, it could be useful to
consider the word over the alphabet {1,...,2} defined as follows: for any i €
{1,...,|u|}, the i*" letter of the word is the integer j such that i € P(j).
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Ezample (continued). In the first row, we write the word wu, while in the second,
we write the word defined above:
abaaababaabaaabaabaaaaabaaaabaaa
11234213114222133234441312234344 .

Some useful properties of the previous numbering are proved in the next
lemma.

Lemma 3.3 Let w (resp. u) be a word verifying the hypotheses (resp. Condi-
tions 1 and 2) of Proposition @ Let x = H:jl'“. Then the following conditions
hold:

1. For each 1 <i <z, u(i) =w. Consequently, u € LE .,

2. If p is a prefizx of u such that |plo = x(iy + kny) with 0 < k < ey, then
pE Lf_{p — where py, = a' (ba™ )",
w, k' Pw,k

Proof. Let i, 1 < i < z. The fact that u(i) = w follows immediately the
definition of u(¢) (and P(¢)) and the three following properties :

Property 1. If p is a word such that pb is a prefix of u and |pb|, = i then
|Pla = 4w|Pblp = 4w X i. This shows that 7, (i, (i — 1) + j) < 7p(¢) for each
1<) <iw.

Proof of Property 1. By Condition 2.1 of Proposition @, [pla = |pbla >
iw|pb|b.

Property 2. If p and s are the words such that uw = pbs and |pb|, = e,z + 14
(that is |s|p = @ — @) then |p|la < x(iw + ewnw) + (¢ — 1) fy,. This shows
that mp(ew2 + 1) < Ta(Tiw + €&y + (1 — 1) fo, + J) for each 1 < j < iy,

Proof of Property 2. By Condition 2.2 of Proposition B.9, |s|, = |bs|s >
fuwl|bs|p. Since |u|q = |$|la + |Pla and |uls = 2(iw + Pwew + fu), [Pla <
Z(lw + nwew) + fuwlx —10s]p) = (i + nwew) + fu(t —1).

Property 3. If p, v, s are the words such that u = pbvbs with |pb|, = i+ ka with
0 <k < ey, and |pbvb|y =i+ (k + 1)z, then |pbl, < ziy + (kx40 — 1)ny,
and xi,, + (kx 4+ i)ny < |pbvbl,. This means that |pbl, = mp(i + kz) <
Ta(Xiw + (kx 4+ 1 — 1)ng, + §) < mp(i + (k + 1)) for each 1 < j < ny,.
Proof of Property 3. First we observe that [pbub|, > 2 and so max(0, |pbvb|,—
z) = |pbub|, — z. Hence by Condition 2.1 of Proposition B.3, |pbvb|, >
Ty |[POUB|p+ (|pbvd|p — ) (N — Ty ) = @410 ([PbVB|p — ) = Gyx 410, (i 4k2).
Now we observe that |bvbs|, > = (Indeed |bvbs|y = |ulp—|plp = z(ew+1)—
(i+kzx—1)=x+x(ey —k—1)+ (z—i+1) > z) and so max(0, |bvbs|, —
x) = |bvbs|, — z. Hence by Condition 2.2 of Proposition B.3, |bvbs|, >
Suw|bvbsly + (|bvbs]y — ) (N — fu) = fwx + nw(Jbvbs|y — ). Since |ul, =
|p|a+|bvb5|a and |u|a = x(iw+nwew+fw)v we have |p|a < Ty +nw(:pew+
x—|bubs|p). But (ew+1)x = |ulp = |p|p+|bvbs|y = i+ kx—1+|bvbs]y, that
is we,, +x — [bobs|y = i+ kx — 1. Thus |pbl, = |pla < @iy + (kz+1i— 1)ny,.
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Let us now prove the second part of Lemma @

First we observe that zk < |p|p < x(k + 1). Indeed if |p|, < zk, then
considering the word s such that v = ps, [s|y > z(ew +1 — k) > z, and
by Condition 2.2 of Proposition B2, |sla > fulslo + (|s|p — 2)(nw — fu) >
fwr(ew +1 = k) + 2(ew — k)(nw — fu) = o(fuw + (ew — k)nyw), and so |p|, =
[t)g — |8l = 2(iw + ewnw + fuw) — |Sla < x(iw + kny) which contradicts the
hypotheses. Moreover if |ply > z(k + 1) > =z, by Condition 2.1, |pls > iw|pls +
(Iple — ) (N — 1) > dwx(k + 1) + kzng, — kxiy, = x(iw + kny) which also
contradicts the hypotheses.

Let p(i), 1 < i < x, be the prefix of u(i) constituted of the letters with
index in P(i) N {1,...,|p|}. From zk < |p|, < z(k + 1), we deduce that the set
{mp(i + €x) | 0 <1 < k} is included in the set P(3) N {1,...,[p|} Nn{m(j) | 1 <
J < |ulp} which itself is included in the set {mp(i + ¢x) | 0 < ! < k}. Hence
k < |p(i)]p < k+1. Moreover since |p|q = x(iw+kny,), the set P(:)N{1,...,|p|}N
{ma(4) | 1 < j < |ul,} equals the union of the sets {mq((i—1)iw+J) | 1 < j < iy}
and {m (@i + Lanyg + (0 — Dny +4) | 1 < j < ny,0 < £ < k}, so that
[p(i)|a = iw + kny. Since u(i) = w, we deduce that p(i) € {pg.w, Prwb} and so
pelLf (]

Fipk,wprwbt
Proof of Proposition @ The sufficiency of Conditions 1 and 2 is ensured by
Lemma B.3 (1).

It is immediate that Condition (1) is necessary. We prove that it is also the
case for Condition 2.1, the proof for Condition 2.2 being similar. Let u € L{
and let = be the integer such that e Ffw} u. If x = 0 then v = € and the claim
is trivially verified. Thus suppose x > 0.

We have |u|, = z|w|, and |ulp = z|w|p, so that x = |ulp/|w|p = |u|a/|w]a.

Since w is the shuffle of x occurrences of w, any prefix p of u is the shuffle of
x prefixes of w: there exist prefixes py, ..., p, such that

PEPL W - W Py,

pla= 3 Ipila.

i=1,...,x

Thus

Since p; is a prefix of w, if |p;|p # 0, [pila > tw + (Pilp — 1)ny. Assume without

loss of generality that pi,...,p,s contain at least one b and that py/y1,...,ps
contain no b. We get

|p|a Z z/iw + Ny Z |pz|b - xlnw-

i=1,...,a'

But |plp = >,y 4 |Pile. So

Pla 2 2"tw + 1nw(lpls — 2") = dwlple + (Ipls — ) (0 — iw)-
Since ' < z = |ulp/|wl|p, the latter inequality gives

. Ulp .
1Pla > dulpls + max(0, |ply — ﬁxnw ).
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The proof is thus complete. O

3.3 Some useful wqo’s
In this section, we present some useful wqo’s. First we recall the following result.

Proposition 3.4 [ﬂ] For any integer n > 0, if w € {a™b, ab™, ba™,b"a}, F?w}

s a wqo on Lﬁ{ , = Ls,.

This result allows us to state:

Lemma 3.5 Let n > 0 be an integer. Let I be one of the following sets:
{a"b,a}, {a™b,b}, {b"a,a}, {b"a,b}, {ba™, a}, {ba™, b}, {ab™, a}, {ab™,b}:

€ __TE€
< =1

Proof. Assume I = {a™b,a}. It is immediate that Ly C L . Let w be a word in
L>€—1' There exists a word w; such that e I—?anb} w1 l—?a} w. By Proposition @,
wy € L, and so w € L.

The proof for the other values of I is similar. O

Lemma 3.6 Let n > 1 be an integer. The three following assertions are equiv-
alent for a word w:

1. we Lf

}_{anb,a"’};
2. |lw|, = 0 mod n, and, for any prefir p of w, |pla = n|pls;
3. we Lianb,an}'

€

; —_ €
In particular, LF{anb,an} = L{anb,an}-

Proof. 3 =1 is immediate.
For any word w in Lf_{anb ny?
a prefix of a word in Lf . Thus 1 = 2 is a direct consequence of Propo-

obviously |w|, = 0 mod n. Moreover w is

sition @ Indeed taking w = a™b, ny = n = iy, and e, = f, = 0, Con-
dition 2.1 of Proposition @ says that for any prefix of a word in Lf_{anb},
|p|a > Z.w|p|b = n|p|b

We now prove 2 = 3 by induction on |w|y. Since |w|, = 0 mod n, the
result is immediate if |w|, = 0. Assume |w|, > 1. Assertion 2 on w implies
the existence of an integer ¥ > 0 and a word w’ such that w = aka"bw’. Let
p be a prefix of a*w’. If |p| < k, then n|pl, = 0 < |plo. If |p| > k, p = a*p’
for a prefix p’ of w’. Assertion 2 on w implies that |a*a™bp’|, > n|a*a™bp'|,

that is |a*p'|, > n|a¥p’|y. Thus a¥w’ verifies Assertion 2 and so by inductive

hypothesis, a™w’ € Lf{a"b,a"}' It follows that w € Lf{a"b,a"}' O
Similarly to Lemma [B.6, one can state that Lﬁ{ban,an} = Li{pan any (this
needs to exchange prefixes by suffixes), and, exchanging the roles of a and b,

€ R € € R €
L}—{bna’bn} - L{b"a,bn} a'nd L'_{ab",b"} - L{ab",b"}'

Let us recall that:
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Theorem 3.7 [, E] For any finite set I, -7 is a wqo on LS.

Hence from this theorem and the previous lemma, we deduce:

Proposition 3.8 Let n > 0 be an integer. Let I be one of the following
sets: {a"b,a}, {a™b,b}, {b"a,a}, {b"a,b}, {ba™, a}, {ba™, b}, {ab™, a}, {ab™, b},
{a"b,a™}, {ba™, a™}, {b"a,b™}, {ab™,b"}. The derivation relation 5 is a wqo
on Lf .

3.4 A decomposition tool

Lemma 3.9 Let m > 1 be an integer. Any word w over {a,b} can be factorized
as w = wiwows with wy € Lﬁ{bam’a}, Wy € Lﬁ{bam’b} and |ws|a < m.
Moreover, if w is the shuffle of x occurrences of ba™ and of a word w', then

z < |wi]p + |wala/m.

Proof. 'We prove the first part of this result by induction on |w|. The claim is
trivial if w = e. Assume |w| > 1, so that w = w’« with « € {a,b}. By inductive
hypothesis, v’ = wjwjws with w] € LE ) wh € LE sy and |wh]a < m.

If o =borif a=aand |wia|, < m, the result is true for w by setting
wy = wy, we = wh and wz = wha. Assume now that o = a and |wial, = m.
Two cases have to be considered. If wf ¢ LE ., then whwha € LE .,y and
thus we can set w1 = w}, wy = whwha and wh = e.
Consider now that w), € L{ ,.m,- By replacing wf (resp. wh) by wjwh (resp.
€), we can assume w) = e. If wj starts with b, then wha € Lf um,, and the
result is true for w with wy = w}, we = whw} and ws = €. If wj starts with a,
wh = ax for a word x. The result is true for w with w; = wia, we = wh =€
and ws = x.

The argument used in the induction above can be used for the proof of the

second part of the statement of Lemma @ O

3.5 A first inductive result

The aim of this section is to prove the next result which proof is based on the
characterization provided by Proposition .

Proposition 3.10 Let n,m be two integers such that n,m > 1 and let w be a
word in a="(ba™)*b U {e} szich that wa™ba™ is a good word. IfFY, . upy 15 @
€ o €
wqo on LF{wan,wanb} then l—{wanb,wanbam} s a wqo on LF{wanb,wanbam}'
Observe that the hypothesis “wa™ba™ is a good word” meansonly 1 < m <mn
when w # e.

Proposition 3.11 Let n,m be two integers such that n,m > 1 and let w be a
word in a="(ba™)*b U {e} such that wa"ba™ is a good word.

A word u over {a,b} belongs to Lf_{mnb b if and only if u = ujusuzUy
with 7
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1. up € Lf

}_{wa"b,wa"} ’

€
2. ug € L"{bam,a}’

€
3. usz € LF{ImM,b}’

4. |ugle < m,

5. |ugugle = 0 mod m,

6. lurfa(lwly + 1) = (Jwla + n)luls,

7. Laletltale oy |, < fuy| — Malaflelin),
Proof.

Proof of the “if part”. Assume that u = ujusuzus with uy, us, usz, ug verify-
ing Conditions 1 to 7 of the proposition. Let a1, 81, as, B2, as, 83 be the integers
(one can verify they are unique) such that:

e any derivation from € to u; by F?wanb wan} USES rewriting steps by
Ffwanpy and By steps by Frpeny;
e any derivation from € to us by 7

{ba™,a}

(a2 = |ualp) and fo steps by Fqy (B2 = |uala — m|uzls);

uses ap rewriting steps by F(pamy

e any derivation from € to ug by F?bam p} USes asg rewriting steps by Fypqm)
(a3 = |uz|a/m) and B3 steps by ).

By hypothesis, |usu4l, =0 mod m : let

By = |uzuala/m — |uzlp(= (B2 + |uala) /m). (8)
Let us observe some relations:

e We have |u1| = ai|wa"b| + f1|wa™| = a1 + (a1 + f1)(|w| + n) and
[ui|e = cxlwa™q + Brlwa™|q = (1 + B1)(Jwla +n). So

llajl + 7).

o = u] |lwle +n
a

(9)

e We also have |uly = (a1 + B1)|wp + a1 + az + a3z + B3 + |ualp = (a1 +
B1)(|lw]p+1)—p1+as+as+Ps+]|uslp. Since by hypothesis, |u|,(Jw|p+1) =

(|lw|qe +n)|ulp, and since ay + B1 = %, we have
B = az+az+ f3+ |uale (10)

We have defined the integers a1, 81, as, 85, as, 83 in such a way that:

e uq is a shuffle of ay words wa™b and 3, words wa”,
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e wusuy is a shuffle of ag words ba™, ) words a™ and |u4|p words b,
e ug3 is a shuffle of ag words ba™ and (B3 words b.

Since 81 = aa+az+F3+|ualp, the 81 occurrences of wa™ in uy can be associated
to the ag + ag occurrences of ba™ in usus and the [ + |ug|p occurrences of b in
usuy in order to obtain as+ s occurrences of wa™ba™ and [s+|u4|, occurrences
of wa™b as subwords of u. By Condition 7 and Relations (§) and (H) we have
B5 < «aj. Thus we can associate [3; occurrences of wa™b in ug with the /3
occurrences of a™ in uguy to construct B4 occurrences of wa™ba™ as subwords
in u. So w is the shuffle of 3} + ag + ag words wa™ba™ and (aq — 35) + B3 + |ualp
words wa™b and hence u € L

'_{wa"bcﬂ” wa”b}
Proof of the “only if” part.

Assume u € L¢ Let o and (8 be the integers (one can verify

F{wanb,wanbamy}”
they are unique) such that any derivation from € to u by F?wanb wanbam ) USES &
rewriting steps by b ggnpemy and 3 steps by Fyqnpy- An important remark is
that u(a™)? € LE anpamy -

We have |u|, = a|lwa™ba™|, + Blwa™b|, = (o + B)(Jw|s + n) + am and
|ulp = (o + B)(|w|p + 1). Thus

luly,  Jula am

o+ = — . 11

P T Teb+1 Telatn elatn .

In particular |ulp is divisible by |w|, + 1, and |ul|, > |$rli1(|w|a +n). Let ug
be a prefix of u such that |ui|, = |$ﬁlil(|w|a +n) = (a+ B)(|wla +n). By

Lemma B.3(2), since u(a™)? belongs to L,_{ wrpamy? W have u; € LF{wanb wany®

Let s be the word such that v = u;s. By Lemma @ $ = usuzuy with
up €L, . us€Llf  and |uglq < m.

Let us observe that |us|, = 0 mod m and |s|, = |u|s — |u1ls = am =
0 mod m. Thus |ugugl|q = |S|a — |uzle =0 mod m.

By Condition 2.2 of Proposition @ applied to n,, = max(n,m) and f,, = m,
and since u(a™)? € L unpamy» We have luzug(a™)%q > mlugug(a™)?|y =

m|usuylp, that is, -
Bm + uguala = mluzualy = m(|uly — luruzls) = m(lulp — Juzls — [ur] + uila)
The latter inequality can be rewritten as

Bm +|ula — |urugla = m (July — (jur| = |uafa) — |uals) ,

and so

usla = m|uzly < mlur| = (mlulp + (m + Durla — (Jula + Bm)) .

By recalling that |ul, = % and since
|U|b | lla
[ulat+Bm = (a+8)(|lwlatn+m) = m(|w|a+n+m) = W(M atntm),
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we have

|u1|a

mlulyt(m+1)ula—(julat-bm) = 2=

(m(Jwly +1) + (m + D(|lwla + 1) = (Jwla +n+m)),

which gives

|u1|a
1 - = m—dle .
mluly + (m + 1)uila = (Jula + Bm) m|w|a+n(|W|+n)
This shows that
|u2|¢l |U1|a
— — |uz2lp < |ur| — ————(|w| +n).
ualy < fur| = T (o] )
Now observe that |ui| — |1L7T;‘_f_‘n(|w| +n) = |ui| — (e + B)(Jw| + n) is an integer,
and since |uqlq < m and |ugug|, = 0 mod m, we have [%] = % This
implies that
|[uzla + [u4la U1 |a
P2la T Pdla _ < Jug| — ——Ho .
ety < furf - L )
The proof is thus complete (]

We are now able to prove Proposition .10,
Proof of Proposition . Let (ux)r>0 be a sequence of words in Lf_{mnb’wanbam} )

By Proposition , for any k& > 0, there exist words w1, w2k, U3k and uq
such that uy = w1 pu2 kU3 xus,, With

€
}_{wa"b,wa"} ’

° ul,k GL

€
® U € L’—{bam,a}’

€
usz g € L}_{bam',b} ,

L4 |u4,k|a <m,
o |u2 ks kle =0 mod m,
o |uskla(fwls +1) = (jwla + n)fuklo,

[u2.plat]ua.kla [u1,k]a(Jw|+n)
* ™ = Jug,klp < ur k| — (wlatn) °

Let us define the following integer sequence (dj)r>0: for every k > 0,

U1,k wl+n U2, k|a T |Ud,k
dk:|u1,k|7| 1 |U«(| | )(' 2 |a | 4 |a|u2,k|b)-

(lwla +n) m

By replacing (ug)r>0 with one of its subsequence, we can assume that the
sequence (di)g>o is non-decreasing.
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and by Proposition @,
). So still replac-

By hypothesis, - is a wqo on Lﬁ{wa ,

*
{wamb,wa™} npwany’

Flbam o) (€SP Flpum 3y) is @ wqo on LE ooy (resp. LE oy
ing (ug)k>0 by a subsequence, we can assume that, for all k£ > 0,

* * *
ULk Flwanbwan} ULk+1s U2k Flpgm o) U215 Us g Flpgm py U k1

Moreover, since |u4,k|q is bounded, we can assume that |u4 k|q = |t4,k+1]e and
since the subsequence ordering is a wqo on A*, we can assume that usy is a
subword of u4 fy1.

The previous arguments imply the existence, for any k > 0, of words vy x,
V2 ky U3,k V4.k such that

€ € € —
Uikl € Uik WO, VL €LE e e LE L s € LE L |va,kla = 0.

a}’
The equality |ve xvs,k|le = 0 mod m easily follows from |ug g4 kle = 0 mod m
and |uz k+1u4 k+1]e = 0 mod m. We have |v1 k|o = |1 k+1]a—|u1,k]0 and, taking
U = V1,5V2,kV3,kV4,ks |Vklo = [Ukt1ly — ugle. Since |uyjla(Jwle +1) = (Jwla +
n)|u;lp for j € {k, k+1}, we can deduce that |v1 g|o(|w|s + 1) = (|w|a + n)|vks.
By the fact that the sequence (di)r>0 is non-decreasing, we have

|U2 k|a+|v4 k|a |U1 k|a(|w| +7’L)
L2 e e v ,k b S v ,k [t i bt N
m | 2 | | 1 | (|w|a +TL)
Now, by applying Proposition to the words v, we have vy, € Lf_{wanb wanbam}
Since, for all k > 0, ug41 € ug vk, the latter condition gives ug 3

{wa™b,wa™ba™}
* : €
Uk+1- Therefore l_{wa"b,wa"bam}ls a wqo on L’_{wa"b,wanbam} ’

3.6 A second inductive result

The aim of this section is to prove the next result which proof is based on the
characterization provided by Proposition .

Proposition 3.12 Letn > 1 be an integer and let w be a word in a="(ba™)*. If
€ €

N .
F{wb,wba"} s 4 wqo on LF{wb,wban} Fi{wban,wbanb} ©

then F?wba",wba"b} is a wqo on L

Proposition 3.13 Let n > 1 be an integer and let w € a="(ba™)*. A word u
belongs to Lf_{wban bty if and only if u = uiususususUg With':

1. ’ulb‘uﬂb e Lf

F{wb,wban}’

2. |uruslp(jwla +n) = |ula(jw]p + 1),
3. ugus = € or |ugugl, =N,

4o |uala <m,

€
5. us € L"{anb,b}’

1the value of guzus,e is 0 if usug = € and 1 otherwise
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€
6. ug € L"{anb,a}’

7. Jusly < & [Juala — sl ol .

+ |U3U4|b < % [|U1|a - ‘|1;Ul|1:ilf |w|a +gu2u3,e;

|u5‘a
n

8. |U5|b —

Ula—|U1|a 5
9. % Z |u2|b +5u2u3,5-

Proof.

Proof of the “if” part. Assume first that u can be factorized in the product
of six words satisfying the properties of the proposition. Let oy, 31, as, 85, as,
B¢ be the integers (one can verify they are unique) such that:

*

e any derivation from € to u;bl“zl by l_{wban

wp} USES a1 rewriting steps by
Fiwbany and [y steps by Frupy;

e any derivation from e to us by l—?anb p) USes Qs rewriting steps by 4np)
(a5 = |us|a/n) and B5 steps by Fy (85 = |usly — as);

e any derivation from € to ug by F’{‘anb a} USEs 0 rewriting steps by F4np)
(a6 = |uglp) and Fg steps by Fiay (B6 = |ugla — nae).

Let us observe some relations:

e We have |uy|, = o |wba™|q + B1|wble = nay + (a1 + B1)|w]a and |ugusly, =
(a1 + B1)(Jw|p + 1). So we have

P20 ] 12
L ) (12)

Thus_Propertiesﬂ and f can be rephrased |us|, < ay and S5 + |usualy <
a1 + Gyyug,e Tespectively.

e We also have |ul, = a1(|Jw|q + n) + B1|w|a + |ugusuaugle + nas = (a1 +
B1)(|lwla +n) — Bin + |ugusugug|q + nas. Thus from Property 2 and the
equality |ujuslp = (a1 + B1)(Jw|p + 1), we have:

Oin = |ugusugugla + nas. (13)

We first consider the case where usus = €. The previous equality shows
that |ugugl, is @ multiple of n. Moreover the 8; occurrences of wb in u; can be
associated to the as 4+ ag occurrences of a™b in usug and to the |ugugly/n — ag
remaining occurrences of a in uqug to form as + ag occurrences of wba™b and
(lugugle — nag)/n occurrences of wba™. We have seen as a consequence of
Relation (@), that 05 + |ualp < 1. Thus G5 + |ua|p occurrences of wba™ in uy
can be associated to some corresponding b in uqus to form some occurrences of
wba™b in u. Finally we have shown that u is the shuffle of a5 + ag + G5 + |ualp
of wba"b and (|usug|la — nae)/n + oy — (Bs + |ualp) occurrences of wba”.
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We now consider the case where usus # €. We start exploiting PropertyE
[amlule > Jyy[, 4 1. We already know that [uiusly = (a1 + B1)(|w]y + 1), so
by Property 2, lula = (a1 + B1)(Jwlq 4 n). Moreover |uila = (a1 + f1)[wla +
an = |ul, — ﬂln. Thus Property E can be rewritten 1 > |ua|y, + 1. This
means that at least one occurrence of the 3y occurrences of wb in upblezls is
completely included as a subword in uy. There exists a subword x; of u; such
that abl"2lv € L¢ |z1le = |uile — |wdblp, |T1]le = |u1le — |w|a. Let

— u I
up = 21 bl 2|b, Uy = u3 =€

If |uglp # 0, let x4 be a subword of uy with |24], = |uala, |Talp = |ualp — 1
and let u) = blUslay,, ul = us, uf = ug. If |ugly = 0, let uy = blusha,. If

'_{wb wba™ b}

|ualp = 0 and |us|p — % # 0, let uf be the subword of us obtained by erasing
the first occurrence of b in us and let ug = ug. If |uglp = 0 and |us|p — % =0,
let uf = us, ug = ug. Finally let v’ = vwjubuiujulug.

By the previous construction, the word u is the shuffle of v/ and one of the
two words wba™ or wba™b (constituted with a subword wb in uy, the |ugug|e =n
occurrences of a in U2U3, and possibly a b occurring in uqus). We now verify that
the words ', uf, ub, ub, u}, u5, u6 satlsfy Properties 1 to E of the Proposition.
We have already said that w)bl*2lv = ) € L wowpanys VE have |ujubly =
|uruslp — (Jw|p + 1) and |u'|, = |u|e — (Jw|a + 1) which gives |ujub|p(Jw|e +n) =
|u/|a(Jw]y + 1). The verification (left to the reader) of Properties 3 to f] and |
are immediate.

Let us prove Property 8.

Let X = Jusly — 81 1 ugualy, ¥ = 1 {|U1|a _ ‘ﬁﬁ?i'i’lwla}’ X' = |ully —

\urla

+ |ufulylp, YV = 1 [|u’1|a — |‘1;/1‘7:i‘f|w|a] By Property [ for u, we have
X <Y + 1 and we want to prove that X’ < Y’. As a consequence of the

definition of the words !, it is easily seen that
X=X+lorX=X"
Moreover, one can easily verify that the last equality occur only if

|u5|a _ 0,

[ualp = [us|p —
which gives
X = |U3|b.

On the other hand, since |ui|q = |u)|a + |w]a and |uius|s = |ujubls + (Jw|s + 1),
we have
Y=Y

By the latter equality, X = X'+ 1 immediately gives X’ <Y’ while, if X = X',
by Property 7, X <Y, that is X' <Y".

Thus the words «’, uf, u), uf, uj, uk, ug satisfy Properties 1 to E of the
Proposition with ubus = e. By the previous case, v’ € L and so
u € L

F{wban wbam b}

F{wbam wbanb}
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Proof of the “ only if” part. Let us first note that, by definition of w, there
exists an integer i,, between 0 and n such that wba™b = a’»b(a"b)!*b+1,

Assume u belongs to Lﬁ{wban’wbanb}. There exist unique integers a and (3
such that any derivation from € to u by F?wba",wba"b} uses « derivation steps

by F{wbanpy and B derivation steps by Fiypan). We have:
lula = (a+ B)(|wla +n), and

lulp = (a4 B)(|w|p + 1) + .

In particular, |ul, is divisible by |w|, +n and |ul, > Wlml‘%
Let p be a prefix of w such that |p|, = %(: (a+0B)(|w|p + 1)), and

let s be the word such that u = ps. Since i,, < n, the (a+ )" occurrence of the
letter b is preceded by at least (a+ ()i, occurrences of the letter a. Let u; be the
longest prefix of p such that |u1], > (a4 5)iy and |ug|q — (0 + B)iyw mod n =0,
and let us be the word such that p = ujus: by construction us = €, or, us begins
with the letter a and 0 < |us|, < n. Observe |u|, — (a + §)iy, = 0 mod n. So
we can consider the shortest prefix us of s such that |usus|, = 0 mod n. We
observe that if us = e then ug = €, and otherwise uz # € and |ugus|, = n.

By Lemma @, there exist words w4, us, ug such that § = ugusug with

1 € 1 € > J—
Ug € LF{ban,a}’ U5 € LF{ban,b} and |t4|qa < n. Thus s = uwgusue, |ugle < n,
Us € Lﬁ{a"b,b}’ Ug € Lﬁ{a"b,a}.

Up to now, we have constructed words uq, ..., ug verifying required Prop-

erties 2 to 6. We have |u1|, mod n = |u], mod n = (a+ B)iy, mod n, |usus|, =
0 mod n and |us|, = 0 mod n: thus |usuel, = 0 mod n. We now concentrate

our efforts on Properties 1 and ] to . The word ub? belongs to LE
{wba™b}

and |ub®| = (a + B)|wba™b|. Let us recall that wba™ = a**b(a™b)l®lb+1,
Condition 2.1 of Proposition @ shows that, taking x = a + 3 = [ub?]

|wba™b|’
pla > dwz + n(lply — ). But |pla = |[ub’ly — |sla = @|wba™b|, — |s|la =
(i + (Jwlp + 1)) = |8|a = Tty + nlply — |8|a. Thus |sr‘l“ <.

By Proposition d and Lemma é, we know that ub® is the shuffle of the
(a + B) words (ub®)(i) (1 <i < a+ ) defined just before Lemma B.d. Let us
recall that (ub®)(i) is the subword of ub® constituted by the letters in position
in P(4). Let p(¢) be the subword of p constituted by the letters in position in
P@i)N{1,...,|p|}, and let s(i) be the words such that (ub®)(i) = p(i)s(i).

The proof is divided into the following two cases according to the value of
[s]e mod n = |usg|q.

Case |s|q =0 mod n. In particular us = usz = e. In this case, Properties ﬁ
and E are trivially satisfied.

Let y = % By the construction of the (ub®)(i)’s (and in particular of the
values of elements of P(i)) we have that:

e p(i) = wba™, s(i) =b, for 1 <i<ax—y,

e p(i) =wbd, s(i) =a™b, forz —y+1<i<uax.
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This implies p = u;bl“2l € L
have Property 1.

There exist unique integers as and G5 such that any derivation from e to us
by F*anb’b} uses a5 derivation steps by Fy4npy and S5 derivation steps by 3y,
and there exist unique integers ag and (¢ such that any derivation from e to ug
by F?anb’a} uses ag derivation steps by t(4np) and g derivation steps by Fyq).

, and sb? € L¢ In particular we

{wba™,wb }_{anb,b}.

‘U‘Sla

In particular, we have 35 = |us|p — >

Let us prove that 85 + |u4]p < z —y. By Lemma E, the value of as + ag
is the greatest number z such that uwsusug can be viewed as the shuffle of z
occurrences of a™b with some occurrences of a and some occurrences of b. Due
to the fact that sb® = ususugb? is the shuffle of y occurrences of a™b and (x —1y)
occurrences of b, we get y < a5+ ag + 3. It follows: = = |sb®|, = |ugusueh®|, =
lualo + a5 + Bs + a6 + B = |ualy + 85 +y. Sox —y > 5 + |ualy.

Since p = uq, p is the shuffle of x — y occurrences of wba™ and y occurrences
of wb. We have |p|l, = (z — y)(Jwls + n) + ylw|s = z|w|s + n(z — y) and

Iplo = (2 = y)|wbls + ylwbly = (|w], +1). Thus n(z —y) = [plo — L4k Since
uz =uz = €, p=uiuz, B + lualp <@ —y and B5 = [usp — |ufl‘”7 we have
[us|a 1 luiusaly
— ol < = e .
us b " + Juguglp < " [u1]a )y + 1| la

Hence Propertyﬂ is proved.

Case |s|a # 0 mod n. We still have a + 3 = = > li”. Let y = | L]
0 <y < x. By construction of the (ub?)(i)’s,

o p(i) =wba™, s(i) =b,for 1 <i<z—y—1;
o p(x —y) =wba", s(x —y) =a™ b for an integer r, 1 <r < n;
o p(i) =wd, s(i) =abforx —y+1<i<uz.

It follows that |us|, = r and upbluzl Lg
Property 1.

Let us recall that s = uzususug and sb® is the shuffle of the 2 words s(i).
Since bl“slouyusugh? is the shuffle of y occurrences of a™b and (x —y) occurrences
of b, by using an argument similar to that of the previous case, we have that
lus|y — 2le 4+ jugugly < 2 —y.

Here p is the shuffle of x — y — 1 occurrences of wba™, one occurrence of
wba” and y occurrences of wb. Thus |ujuz|e, = [pla = (2 —y — 1)(|w|a +n) +
(lwle + r) + ylw|a with 7 = |uz|e. So |ui]le = z|w|s + (x — y)n — n. Since

z = furuslp/(lwlp + 1), we get n(z —y) = |uila

Cubar o) Hence we have proved
wba™ ,w

— lwmuahplwle | Apg S0, we

|w]p+1
have Property E:
sl — 2212 4 fugugly < 2 [furla — 22208 p, | 41
5 3 = n a |w|b + 1 a .



By construction of the words s(i)’s, for all ¢ such that z —y +1 < i < «x,
the occurrences of the letter a in s(i) appear in ub® after the occurrences of the
letter @ in s(z — y). More precisely, for an integer ¢ > x — y + 1, if the letter a
occurs in ub® at two positions j and k with j € P(x —y)N{|p| +1,...,|ul}, and
ke P(i)Nn{lp|+1,...,|ul}, then j < k. On the other hand, by definition of us,
the last letter of ugz is a. Hence for any ¢ > = — y, each letter b in s(i) cannot
occur in ug, so that |us|, <  — y. Therefore, we have

1 |U11L2|b
U < — R ek el
| 3|b n |U1|a |’LU|b + 1

lwla| +1,
and Property ﬁ is proved.

By construction, us starts with the letter a. It follows that u; contains all
the b’s occurring in the p(4)’s for 1 < i < x —y, and those occurring in the prefix
w of the p(i)’s for x —y+ 1 < i < x, that is, |u1|p > (2 — y)|wd|py + ylw|y =
x|wdb|y —y = |urus|p —y and, hence, y > |ualp. But |u1]e = z|w|s+(x—y—1)n =
z(|wla +n) — (y + 1)n = |uls — (y + 1)n. Consequently, we have Property Pl

|u|a — |“1|a

- > |U2|b +1= |U2|b +gu2w3.76'

O
Proof of Proposition . The proof follows the same scheme of that of
Proposition but the arguments used here are more technical.

Let (ug)r>0 be a sequence of words in LE  svan wpanyy - BY Proposition B.13,
for any k > 0, there exist six words u; k, ..., Uekr such that up = ui ... usk
with

° luz,klo €
ULkb € L}_{wb,wba"},

lur kuz klp(|wla +n) = |ukla([w]p + 1),

® Ug U3 = € OF |Ug kU3 k|o = N,

|U4,k|a < n,

€
Us,k € L"{anb,b}’

€
® Ug Lk € L}_{anb,a}’

s klo < & [Jur ula — Mt ul, ),

s iy — L2kl g g gy < 1 |:|u1,k|a - %%’f‘”wh} + O g e

|ugla—|u1k]a <
b n > |U2,k|b +6u2,ku3,k75'
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Now let us define the following three sequences of integers: for every k > 0,

dlk:l |1 ] 7w|w| — luspls
s n Jkla |w|b+1 a 3, )

1 lu1 kuz ko < |us k|
da k= - U1 kla — m|w|a R R Ta + |uz kuaklp | 5
Ulg — (UK —
ds 1 = w — (Jua,klb + Bus pus poc) -
By hypothesis, l—?wban’wb} is a wqo on Lf_{wba",wb}’ and by Proposition @,

F?anb’b} (resp. F?a"b,a}) is a wqo on Lf_{a"b,b} (resp. Lf_{anb,a}).

By the fact that the subsequence ordering is a wqo on A* and by taking a
suitable subsequence of (ux)x>0, we can assume that, for all k& > 0, the following
conditions are satisfied:

® ULk Flppan,wb YLk,

® u; ) is a subword of u; 41, for 1 = 2, 3,4,
[ ] |ui7k|a = |ui,k+1|a, for ¢ = 2, 3,4,

® U5k Fgnppy U5 k41

® UGk Fgnp a) U6k+1;

e d;; is non-decreasing for ¢ = 1,2, 3.

We have |u2,ku37k|a = |u271€+1u371€+1|a and so 6u2,ku3,k7€ = 6u2,k+1u3,k+175'
From the previous conditions, for any k > 0, we can easily deduce the
existence of words v k,v2.k, V3.k;s V4,k, Us &, V6,k, Such that
. . . U2,k (b € . —
Ui, k41 S Ui,k L U5k, 'Ul,kb‘ | € L}_{wa"b,wa"}, |Uz,k|a - Oa
for i = 2,3,4 and
€ €
Us g € L pnyyr Vo € L -

Let U’Lk = vlﬁkb|”2vk‘|”, U/2,k = ¢, ”é,k = ¢, vﬁl’k = b‘”3v’€‘bv4ﬁk, Ué,k = v5 and
”é,k = Ug k-

By using an argument similar to that of the proof of Proposition , we
can deduce that, for all £ > 0, the words vy = v1 k... V65 = vik .. .vé7k satisfy

all the properties of Proposition , and therefore v}, € Lﬁ{wban bty This
implies that, for all £ > 0, vy € Lf Since, for all £k > 0, ugy1 €

F rwbam whambl
{wba™ wba™b}
ug, LW v, the latter implies that uy l_ifu)ba"',wba"’b} Uk+1, that is l_ifu)ba"',wba"’b} is

€
a wqo on L'-{wban,wbanb}'

27



3.7 Proof of the “if” part of Theorem [.]]

From the results of the previous section we can deduce:

Theorem 3.14 For any integers n,m > 1, and for any word w in a="(ba™)*bU
{€} such that wa™ba™ is a good word, one has:

1. 7

y €
{wan wanp} 18 0 WGO 0N L

{wa™,wa™b}’

€

'_{wanb,wa"bam'} .

2. F?wa”b,wa"bam} is a wqo on L
Proof. We act by induction on |wlp.

When |w|, = 0, w = € and we know by Proposition @ that F’Ean anb} is a
w(qo on Lﬁ{an’anb}. By Proposition , we deduce that F?a"b,a"bam} is a wqo

€
on Lk{a

np,amba™}
Assume now |w|, > 1. Then w = a"b with 0 < h < n or w = w'a™b
with w’ € a="(ba™)*b. If w = b, then by Proposition E, l_?b,ba"'} %s a wqo

*

on Lf_{b by In the other cases, by inductive hypothesis, l—{w wan} 18 @ WQO
on Lﬁ{w wan}” So in all cases by Proposition , F?wan wanp} 1S @ Wqo on
Lﬁ{wan wann)? and by Proposition , we deduce that l—*{‘wanb wanbam} is a wqo
on Lf O

'_{wa"',wa"banl} '

Corollary 3.15 Let n > 1 be an integer. For any word w in a="(ba™)*ba=",

* o €
l—{w} 18 a wqo on L,_{w}.
Proof. 'The result is immediate if |w|, = 0. Assume from now on |w|, > 0.
First we consider the case where w ends with b. Two cases are possible:
w = a™b with 1 < m < n or w = w'ba"b with w’ in a="(ba")*. If w = a™b, the
result is stated in Proposition .4
Assume w = w’ba™b. By Theorem , we know that F?w/banﬁw,banb} is a wqo
e . Since
{w'ba™b}
and so we can replace the

on Lf .
{w’'ba™,w’ba™b}

€ € €
}_{w’ba"b} - '_{w’ban,w’ba"'b}’ '_{w’ba",w’banb}
sequence (ux)r>0 by a subsequence such that ug F?w’ba"

k > 0. For any k this means there exists a word v in L

Let (ug)r>0 be a sequence of words in L
ur € L
wbanb} Wkt for each
£ , such
{w’ba™,w'ba™b}
that ugy1 € ugpwwvg. The word vy is the shuffle of oy occurrences of w'ba™
and [ occurrences of w'ba™b, and the words wup and wugy; are the shuffle of
v and 7,41 occurrences of w'ba™b respectively. From |vi|q = |ur+1]a — |Ukla
and |vglp = |uk+1lp — |ukls, we deduce respectively ax + Br = Y41 — Y and
(Ve+1 — Ye)|w'ba™bly = (o + Bk)|w'ba™bly — o which imply ai = 0, that

] € * * .
is, v € L,_{w,banb}. Hence ug F{w/ba"b} Uk+1, SO that F{w,banb} is a wqo on

€
}_{w’ba"b} ’
Now we consider the case where w ends with a so that w = w'ba™ with

w' € a="(ba™)* U{e} and n > m > 1. By Theorem B.14(2), {wbwbamy 18 &
(]

Wqo on Lﬁ{ oo bar The proof ends as in the previous case.

We are now able to prove the “if” part of Theorem .

28



Proof of the “if” part of Theorem D Assume w is a word such that w, W,
E(w) and E(w) have no factor of the two possible forms 1 and 2 of Definition
ﬂ. By Lemma Ell, we know that

w e {e} U U a="(ba")*ba=" U U b="(ab™)* ab=".

n>0 n>0

The result is trivial if |w|, = 0 or |w|, = 0 and stated by Corollary if
w € a="(ba™)*ba=" with n > 1. The case w € b="(ab™)*ab<" with n > 1 is
treated as the previous case by exchanging the role of a and b. O
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