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Abstract

The hyperdeteminants considered here are the simplest analogues of determi-
nants for higher rank tensors which have been defined by Cayley, and apply
only to tensors with an even number of indices. We have shown in a previous
article that the calculation of certain multidimensional integrals could be re-
duced to the evaluation of hyperdeterminants of Hankel type. Here, we carry
out this computation by purely algebraic means in the cases of Selberg’s and
Aomoto’s integrals.
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1 Introduction

Selberg’s integral and its generalizations are multiple integrals encountered
in many fields such as mathematical statistics, random matrices, statistical
mechanics, special functions, integrable systems, and can be interpreted as
generalized moments, correlation functions or partition functions.

Such integrals appear naturally in the computation of the normalization
constants for various random matrix ensembles. For example the normal-
ization of the eigenvalue probability density function for Gaussian, circular,
Laguerre, Jacobi and Cauchy ensembles are limit cases of Selberg integrals
(see [31, 14, 15]). Generalizations appear in the calculation of the partition
functions of log-potential Coulomb systems [16]. Such multiple moment in-
tegrals are also connected with the problem of expanding even powers of the
Vandermonde determinant

∆(x) = det(xj−1
i ) =

∏

1≤i<ji≤n

(xj − xi) (1)

in various bases of symmetric functions. Expansion of these powers in terms
of Schur functions is still an open problem (see [32, 39, 21]), whose solution
would find important applications to calculations related to some aspects of
the fractional quantum Hall effect (see [32, 40]) described by Laughlin’s wave
function [26]

Ψm(z1, . . . , zn) =

N∏

i<j

(zi − zj)
2m+1 exp

{

−
1

2

N∑

i=1

|zi|
2

}

(2)

The same expansion would allow one to compute many more interesting
integrals (see [14, 16, 27, 28]).

Selberg’s integral is a generalization of Euler’s Beta integral, introduced
by himself in 1944 (see [33]), in view of proving a generalization of a theorem
of Gelfond. Selberg found that his integral could be written as a product of
quotients of gamma functions

Sn(a, b; γ) =

∫ 1

0

· · ·

∫ 1

0

|∆(x)|2γ

n∏

i=1

xa−1
i (1 − xi)

b−1dxi

=

n−1∏

j=0

Γ(a+ jγ)Γ(b+ jγ)Γ((j + 1)γ + 1)

Γ(a+ b+ (n+ j − 1)γ)Γ(γ + 1)
. (3)

This identity was subsequently proved in many different ways by other au-
thors, such as Anderson [1], Aomoto [3] and Dotsenko and Fateev [12]. These
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proofs are all interesting, as they involve generalizations of Selberg’s integral
or techniques which can be useful in other contexts. However, Selberg’s orig-
inal proof has the specificity that it is almost elementary, in the sense that
he computed the integral in the case where γ is an integer k, using only
arguments on the degrees of the polynomials appearing after integration of
the terms obtained by expansion of ∆(x)2k, and a very simple change of
variables. Then, he concluded by involving a classical theorem of Carlson to
extend it to complex values of γ (see [31] or [36]). As we shall see below, the
elementary part of this proof comes out naturally if we consider this object
for γ = k ∈ N not as an integral but as a special case of a hyperdetermi-
nant, a notion originally due to Cayley but whose only available textbook
presentations seem to be Refs. [34, 35] (in Russian).

The hyperdeterminant is a polynomial invariant of tensors of even order
(i.e., with an even number of indices). In the case of matrices, its definition
gives back the classical determinant.

We have explained in [28] that Selberg’s integral could be rewritten as a
hyperdeterminant of Hankel type (i.e., whose entries depend only on the sum
of the indices) built from the moments of the beta distribution. In this paper,
we give a complete translation of Selberg’s proof in the hyperdeterminantal
formalism, using only very simple tools. The hyperdeterminantal aspects of
multiple integral computations look very promising. At present, we know
only a few tools to handle such polynomials, but this is already sufficient
to deal with some interesting cases. To illustrate this point, we sketch a
hyperdeterminantal proof of Aomoto’s integral

Aa,b;k
n (y) =

∫ 1

0

· · ·

∫ 1

0

∆(x)2k

n∏

i=1

(y − xi)x
a−1
i (1 − xi)

b−1dx1 · · · dxn (4)

= (−2)−nSn(a, b; k)P
a
k
−1, b

k
−1

n (1 − 2y) (5)

where P a,b
n are the monic Jacobi polynomials. Aomoto has proved this iden-

tity in [3] by means of differential equations. The main interest of Aomoto’s
original proof is its relation with the Calogero model. Barsky and Carpentier
have given in [4] a different proof, based on Anderson’s method.

2 Elementary hyperdeterminant calculus

2.1 Definition

We shall find it convenient to use a set of n Grassmann (that is, anticom-
mutative, or fermionic) variables η = {η1, . . . , ηi, . . . }. A tensor of order k
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and dimension n , that is, an element of V ⊗k, where V is an n dimensional
vector space, will be represented as

M =
∑

1≤i1,··· ,ik≤n

Mi1···ikηi1 ⊗ · · · ⊗ ηik . (6)

That is, we identify V with the vector space spanned by η1, . . . , ηn. The
array (Mi1...ik) will be called a hypermatrix. The hyperdeterminant Det(M)
of M can be compactly defined as the coefficient of (η1 · · · ηn)⊗k in M

n

n!
:

Mn = n! Det(M)(η1 · · · ηn)⊗k (7)

where the power Mn is evaluated in the tensor product of k copies of the
Grassmann algebra over the n distinct ηi’s, so that the only surviving terms
are those involving (η1 · · · ηn)⊗k.

For convenience, we will use the notation

Detk(Mi1···ik)
n
1 = Det (M) . (8)

Note first that if M is a tensor of odd order k, one has Det(M) = 0. If M is
a tensor of even order 2k and dimension n, one has

Det(M) =
1

n!

∑

σ1,··· ,σ2k∈Sn

ǫ(σ1) · · · ǫ(σ2k)

n∏

i=1

Mσ1(i)...σ2k(i). (9)

Setting k = 1, we recover the classical definition of the determinant for
matrices.

2.2 The invariance property

Definition (7) is very useful for proving properties of hyperdeterminants. Let
us consider the natural action of the group GL(V )×2k on V ⊗2k

(g(1) ⊗ · · · ⊗ g(2k)) · v1 ⊗ · · · ⊗ v2k = (g(1)v1) ⊗ · · · ⊗ (g(2k)v2k) (10)

Then, for a general M ∈ V ⊗2k,

(g(1) ⊗ · · · ⊗ g(2k)) · M =
∑

1≤j1,··· ,j2k≤n

Mj1···j2k
×

×
n∑

i1=1

g
(1)
i1j1
ηj1 ⊗ · · · ⊗

n∑

i2k=1

g
(2k)
i2kj2k

ηj2k
. (11)

Hence,

Det
(
(g(1) ⊗ · · · ⊗ g(2k)) · M

)
= det

(
g(1)
)
· · ·det

(
g(2k)

)
Det(M). (12)
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2.3 Minor summation formula

Consider two tensors

M =
∑

1,≤i1...,i2k≤n

Mi1...i2k
ηi1 ⊗ · · · ⊗ ηi2k

(13)

and
N =

∑

1≤i1,...,i2k≤n

Ni1...i2k
ηi1 ⊗ · · · ⊗ ηi2k

. (14)

Remarking that MN−NM = 0 (in the 2kth tensor power of the Grassmann
algebra), one has

(M + N)n =

n∑

i=0

(n

i

)

MiNn−i. (15)

If I = (I1, · · · , I2k) is a 2k-tuple of subsets of {1, . . . , n}, we will denote by
M[I] the tensor

M[I] =
∑

i1∈I1,...,i2k∈I2k

Mi1···i2k
ηi1 ⊗ · · · ⊗ ηi2k

(16)

and by ηI the product

ηI =
−−→∏

i1∈I1

ηi1 ⊗ · · · ⊗
−−−→∏

i2k∈I2k

ηi2k
(17)

where the symbol
−→∏

i denotes the product taken in increasing order of the
subscripts.

Let Cr
n,k be the set of pairs (I, J) of 2k-tuples I = (I1, · · · , I2k) and

J = (J1, · · · , J2k) such that for each s ∈ {1, . . . , 2k}, (Is, Js) is a partition
of {1, . . . , n} into two blocks of sizes r and n − r. For each (I, J) ∈ Cr

n,k

we will denote by ǫ(I, J) the product of the signs of the permutations σs =
(i1, . . . , ir, j1, . . . , jn) (written as a word) where Is = {i1 < · · · < ir} and
Js = {j1 < · · · < jn−r}.

We can now write, for each p ≤ n,

Mp = p!
∑

I

Det(M[I])ηI (18)

where the sum is over the 2k-tuples I = (I1, · · · , I2k) of subsets of {1, . . . , n}
of cardinality p. Hence, by (15),

Det(M + N) =
n∑

r=0

∑

(I,J)∈Cr
n,k

ǫ(I, J)Det(M[I])Det(N[J ]) (19)
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Now, if we set

M′ =
∑

1≤i2,...,i2k≤n

M1,i2,...,i2k
η1 ⊗ ηi2 ⊗ · · · ⊗ ηi2k

(20)

and

M′′ =
n∑

i1=2

∑

1≤i2,...,i2k≤n

Mi1,i2,...,i2k
ηi1 ⊗ · · · ⊗ ηi2k

, (21)

remarking that M = M′ + M′′ we obtain from (19),

Det(M) =
∑

I=(i1=1≤i2,i3,...,i2k≤n)

sign(I)M1,i2,...,i2k
Det(M[I]) (22)

where sign(I) = (−1)i1+i2+···+i2k and I = ({1, . . . , n}−i1, . . . , {1, . . . , n}−i2k).
Equations (19) and (22) can be found in [5, 34, 35].

3 Hankel hypermatrices

For a sequence I = (i1, . . . , i2k), we will set |I| = i1 + · · · + i2k and ηI =
ηi1 ⊗ · · · ⊗ ηi2k

.

3.1 Heine’s integrals for Hankel determinants

Let µ be a measure on the real line, and cn =
∫
xndµ(x) be its moments.

Heine’s integrals below are evaluated as Hankel determinants whose entries
are the moments cn (see [19])

∫

· · ·

∫

∆(x)2dµ(x1) · · ·dµ(xn) = n! det(ci+j)
n−1
0 . (23)

It is easy to give a direct proof of this equality, but it can also be seen as a
very special case of de Bruijn’s integral

∫

· · ·

∫

a≤x1<···<xn≤b

det (φi(xj)|ψi(xj)) dx1 · · · dxn = Pf (Qij)1≤i,j≤2n
(24)

where Qij =
∫ b

a
[φi(x)ψj(x) − φj(x)ψi(x)]dx and (φi(xj)|ψi(xj)) denotes the

matrix whose ith row is [φi(x1), ψi(x1), φi(x2), ψi(x2), . . . , φi(xn), ψi(xn)] and
Pf (M) denotes the Pfaffian of the matrix M . In [27], we have obtained a
generalization of this identity, involving 2kn functions on the left hand side
and a hyperpfaffian (see [5]) on the right hand side. In the case where the
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determinant is an even power of the Vandermonde determinant, we obtain a
generalization of Heine’s theorem turning multiple integrals into Hankel hy-
perdeterminants. This generalization is discussed in [28] and will be recalled
in the following subsection.

3.2 Generalization: Hankel hyperdeterminants

We consider here the integral

Iµ
n,k =

∫

· · ·

∫

∆(x1, · · · , xn)2kdµ(x1) · · ·dµ(xn) (25)

Expanding the even power of the Vandermonde determinant, this integral can
be expressed as a Hankel hyperdeterminant whose entries are the moments
cn =

∫
xndµ(x):

Iµ
n,k = n!Det

(
c|I|
)n−1

0
. (26)

Consider now the following two tensors

Sn(a, b; k) =
∑

0≤i1,i2,...,i2k≤n−1

B(a + |I|, b)ηI (27)

and

Aa,b;k
n (y) =

∑

0≤i1,i2,...,i2k≤n−1

B(a+ |I|, b) ·

(

y −
a + |I|

a+ b+ |I|

)

· ηI , (28)

where B(a, b) denotes the Beta function B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx. Re-

marking that the B(a + n, b) are the moments of the Beta distribution, one
obtains after applying (26)

Sn(a, b; k) = n!Det (Sn(a, b; k)) (29)

and in the same way

Aa,b;k
n (y) = n!Det

(
Aa,b;k

n (y)
)
. (30)

3.3 Expansion of Hankel hyperdeterminants

In this section we consider the hyperdeterminant of a general Hankel tensor

Hn,k = Det2k (Xi1+···+i2k
)n−1
0 . (31)
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Expanding this as a polynomial in the Xi, one finds

Hn,k =
∑

λ

cn,k
λ Xλ1 · · ·Xλn

(32)

where the sum is over the n-tuples λ = (λ1, · · · , λn) such that |λ| = kn(n−1)
and such that for each i ∈ {1, · · · , n}, (i− 1)k ≤ λi ≤ k(n+ i− 2).

This expansion is derived in [28]. A special case appears in Selberg’s
proof (see [31, 33]).

Let dn,k be the coefficient of Xn
k(n−1) in (32):

dn,k = c(k(n−1))n . (33)

If we set Xi = 0 for i > k(n− 1), we obtain from (32) that

Det2k (Xi1+···+i2k
)n−1
0 = dn,kX

n
k(n−1). (34)

A closed form for dn,k follows from a well-known constant term identity (the
“Dyson conjecture”)1

Cn,k = C.T.







n∏

i,j=1
i6=j

(

1 −
xi

xj

)ai







=

(
a1 + · · · + an

a1, · · · , an

)

, (35)

where C.T. means “constant term”. On the other hand,

n∏

i,j=1
i6=j

(

1 −
xi

xj

)k

= (−1)k∆(x)2k

n∏

i=1

1

x
k(n−1)
i

. (36)

Expanding the power of the Vandermonde determinant, one finds that for
ai ≡ k,

Cn,k = (−1)kC.T.

{
∑

σ1,··· ,σ2k∈Sn

ǫ(σ1) · · · ǫ(σ2k)
n∏

i=1

x
σ1(i)+···+σ2k(i)−2k−k(n−1)
i

}

= (−1)kn!Det2k (δi1+···+i2k ,n)
n−1
0 (37)

where δi,j = 1 if i = j and 0 otherwise (Kronecker symbol). Using (34), we
obtain

Cn,k = (−1)kn!dn,k. (38)

Hence,

dn,k = (−1)k 1

n!

(
kn

k, · · · , k

)

. (39)

1This was conjectured by Dyson [13] in 1962. I. J. Good gave, in 1970, an elegant
elementary proof involving only Lagrange interpolation [18].
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3.4 Minors of a Hankel hyperdeterminant

We consider here a Hankel hyperdeterminant

M =
∑

I

M|I|ηi1 ⊗ · · · ⊗ ηi2k
(40)

and a family of 2k subsets J = (J1, . . . , J2k) of a fixed size m ≤ n with
J l = {jl

0 ≤ jl
1 ≤ · · · ≤ jl

m} ⊂ {0, . . . , n − 1}. We want to expand the
polynomial M [J ]m, where

M[J ] =
∑

I

Mj1
i1

+···+j2k
i2k

ηi1 ⊗ · · · ⊗ ηi2k
. (41)

One has

Det(M[J ]) =
1

n!

∑

σ1,...,σ2k∈Sm

ǫ(σ1) · · · ǫ(σ2k)

m∏

l=1

Mj1
σ1(l)

+···+j2k
σ2k(l)

. (42)

But for each 2k-tuple (σ1, . . . , σ2k), one has

m∏

l=1

Mj1
σ1(l)

+···+j2k
σ2k(l)

=

m∏

l=1

Mσ1(l)+···+σ2k(l)−2k+r1
σ1(l)

+···+r2k
σ2k(l)

(43)

with 0 ≤ ri
l ≤ n−m. Hence, by a computation similar to that of a complete

Hankel hyperdeterminant,

m∏

l=1

Mj1
σ1(l)

+···+j2k
σ2k(l)

=

m∏

l=1

Mλi+si
(44)

with k(i− 1) ≤ λi ≤ k(m+ i− 2) and 0 ≤ si ≤ 2k(n−m). And

Det(M [J ]) =
∑

λ̃

cn,k;J

λ̃

m∏

i=1

M̃λ̃i
(45)

where k(i− 1) ≤ λ̃i ≤ k(2n−m+ i− 2).

4 Selberg’s integral

4.1 From the Hankel form to the symmetric form

Selberg’s integral admits another hyperdeterminantal representation which
can be obtained directly from the previous one (without manipulating the
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integral). It suffices to remark the following property

n∑

i=0

(−1)i
(n

i

)

B(a+ i, b) = B(a, b+ n). (46)

Hence, we have from (refeq10)

Sn(a, b; k) = (

k
︷ ︸︸ ︷

I, · · · , I,

k
︷ ︸︸ ︷
g, · · · , g) · SSym

n (a, b; k) (47)

where I is the identity matrix, g is the n× n matrix

g =
∑

1≤i,j≤n

(−1)j

(
i

j

)

ηi ⊗ ηj, (48)

and
SSym

n (a, b; k) =
∑

I,J∈{0,...,n−1}k

B(a + |I|, b+ |J |)ηI ⊗ ηJ (49)

It follows from (12) that

det(g)kDet
(
SSym

n (a, b; k)
)

= Det (Sn(a, b; k)) (50)

and, since

det(g) = (−1)
n(n−1)

2 , (51)

we find
Det

(
SSym

n (a, b; k)
)

= (−1)
kn(n−1)

2 Det (Sn(a, b; k)) (52)

without the help of the integral representation.

4.2 Selberg’s original proof

Each step of Selberg’s proof can be viewed as a manipulation on a hyperde-
terminant (see [31] for example). It can be divided into two parts. In the
first part, Selberg proved that

Sn(a, b; k) = cn,k

n−1∏

i=0

Γ(a+ jk)Γ(b+ jk)

Γ(a+ b+ (n+ j − 1)k)
. (53)

where cn,k does not depend on a and b. In this proof, Selberg started from the
expansion of the Vandermonde determinant. In term of hyperdeterminants,
it is equivalent to the expansion (29). For our purpose, equation (53) reads

Det(Sn(a, b; k)) = αn,k

n−1∏

i=0

Γ(a+ jk)Γ(b+ jk)

Γ(a+ b+ (n+ j − 1)k)
(54)
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where αn,k = n!cn,k. To obtain it, we start from formula (32)

Det(Sn(a, b; k)) =
∑

λ

cn,k
λ B(a+ λ1, b) · · ·B(a+ λn, b) (55)

where the sum is over all n-tuples λ = (λ1, · · · , λn) such that |λ| = kn(n−1)
and for each i ∈ {1, · · · , n}, (i − 1)k ≤ λi ≤ k(n + i− 2). Then, extracting
common factors, we arrive at an expression of the form

Det(Sn(a, b; k)) =
Q(a, b)

R(b)

n−1∏

i=0

Γ(a + jk)Γ(b+ jk)

Γ(a+ b+ (n + j − 1)k)
(56)

where Q(a, b) is a polynomial of degree at most kn(n − 1)/2 and R(b) is a
polynomial of degree kn(n− 1)/2. But (52) implies that

Det(Sn(a, b; k)) = Det(Sn(b, a; k)) (57)

and then
Q(a, b)

R(b)
=
Q(b, a)

R(a)
(58)

which implies that αn,k = Q(a,b)
R(b)

is independent of a and b.

The second part of Selberg’s proof consists in establishing a recurrence
relation for αn,k:

αn,k =
(nk)!

n!
αn−1,k. (59)

This can be found from the limit

Lb;k,n = lim
a→0+

aDet(Sn(a, b; k)) (60)

Hence, one has
Lb;k,n = lim

a→0+
Det(Ta) (61)

where Ta is the tensor defined by

Ta =
∑

I∈{0}×{0,...,n−1}2k−1

aB(a+ |I|, b)ηI +

+
∑

I∈{1,··· ,n−1}×{0,...,n−1}2k−1

B(a + I, b)ηI (62)

Remarking that
lim

a→0+
aB(a + n, b) = δn,0 (63)
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where δi,j is the Kronecker symbol, one obtains

Lb;k,n = Det(T) (64)

where T is the tensor

T = η0 ⊗ · · · ⊗ η0 +
∑

I∈{1,··· ,n−1}×{0,...,n−1}2k−1

B(|I|, b)ηI (65)

Hence, expanding by (22) with respect to the first subscript, one has

Lb;k,n = Det(Sn−1(1, b; k)). (66)

Together with (54) this equality gives the recurrence relation (59) and proves
Selberg’s identity.

4.3 An alternative ending for Selberg’s proof

We shall now give a simpler proof of Selberg’s identity by reducing it to the
Dyson conjecture, which, as we have already seen, is by now a familiar and
elementary statement involving no more than Lagrange interpolation. Using
the functional equation of the Γ function and the linearity properties of the
hyperdeterminant, we can recast the Hankel hyperdeterminantal expression
of Selberg’s integral in the form

Det (Sn(a, b; k)) = B(a, b)nDet2k

(
(a)|I|

(a+ b)|I|

)n−1

0

. (67)

where (a)n = a(a+ 1) · · · (a+ n− 1) denotes the Pochhammer symbol. The
result will follow if we can obtain a closed form for the hyperdeterminant

Dn,k(a, b) = Det2k

(
(a)|I|
(b)|I|

)

. (68)

We start as in the previous proof, obtaining an analog of (54)

Dk,n(a, b) = α′
n,k

n∏

m=1

(a)k(m−1)(b− a)k(m−1)

(b)k(n+m−1)

(69)

where the constant α′
n,k is independent of a and b. Now, for every a′

Dk,n(a, b) =
n∏

m=1

(a)k(m−1)(b− a)k(m−1)

(b)k(n+m−1)(a′)k(m−1)

Det2k

(
(a′)|I|

)n−1

0
. (70)
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This means that Selberg’s integral can be deduced from the knowledge of
Det2k((a

′)|I|)
n−1
0 for any particular choice of a′. If we set a′ = −k(n− 1), one

has by (34)

Det2k

(
(−k(n− 1))|I|

)n−1

0
= (−1)kn(n−1)dn,k(k(n− 1))!n. (71)

But dn,k has already been evaluated by means of the Dyson conjecture (39)
and the closed form of Selberg’s integral follows.

5 Aomoto’s integral

5.1 Another hyperdeterminantal representation

On the integral representation (4), we obtain easily the following identity
through the substitution xi → 1 − xi

Aa,b;k
n (y) = (−1)nAb,a;k

n (1 − y). (72)

There is also a simple hyperdeterminantal proof of this assertion. We consider
the tensor

Ab,a;k
n (1 − y) =

∑

I∈{0,...,n−1}2k

(

1 − y −
b+ |I|

a+ b+ |I|

)

B(b+ |I|, b)ηI (73)

and the action of 2k copies of the matrix g defined before. Using equality
(46), one has

(g, . . . , g)Ab,a;k
n (1 − y) = −Aa,b;k

n (y) (74)

Hence,
Det(Aa,b;k

n (y)) = (−1)nDet(Ab,a;k
n (1 − y)). (75)

5.2 Minors of Selberg’s hyperdeterminant

To prove Aomoto’s identity, we need some preliminary results on Selberg’s
hyperdeterminant. Let us consider a family of 2k subsets I = (I1, . . . , I2k)
with Ij = {ij0 ≤ ij1, . . . ,≤ ijm−1} ⊂ {1, · · · , n} and the associated sub-tensor
of Selberg’s Hankel tensor:

Sn(a, b; k)[I] =
∑

0≤j1,...,j2k≤m−1

B(a+ i1j1 + · · ·+ i2k
j2k
, b)ηi1j1

⊗ · · · ⊗ ηi2k
jk

. (76)

One can write by (45)

Det(Sn(a, b; k)[I]) =
∑

λ

cn,k;I
λ

m∏

i=1

B(a+ λi) (77)
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where k(i− 1) ≤ λi ≤ k(2n−m+ i− 2). Hence,

Det(Sn(a, b; k)[I]) =

m∏

i=1

Γ(a+ k(i− 1))Γ(b)

Γ(a + b+ k(2n−m+ i− 2))
pI(a, b)

=
m∏

i=1

Γ(a+ k(i− 1))Γ(b)

Γ(a+ b+ k(2n− i− 1))
pI(a, b) (78)

where pI(a, b) is a polynomial. In the same way, we will use the following
identity

Det(Sn(a + 1, b; k)[I]) =

n∏

i=1

1

a + b+ k(2n− i− 1)

m∏

i=1

(a+ k(i− 1)) ×

×

n∏

i=m+1

(a + b+ k(2n− i− 1))

m∏

i=1

Γ(a+ k(i− 1))Γ(b)

Γ(a+ b+ k(2n− i− 1))
pI(a + 1, b). (79)

which follows immediately from (78).

5.3 A proof of Aomoto’s identity

We start from the hyperdeterminantal representation and we remark that

Aa,b;k
n (y) = S(a, b; k)y − S(a + 1, b; k). (80)

From (19), we obtain

Det(Aa,b;k
n (y)) =

n∑

r=0

(−1)n−ryr ×

×
∑

(I,J)∈Cr
n,k

ǫ(I, J)Det(S(a, b; k)[I])Det(S(a+ 1, b; k)[J ]). (81)

From (78) and (79), one has

Det(Aa,b;k
n (y)) =

n∏

i=1

1

a + b+ k(2n− i− 1)
×

×

n∑

r=0

yr

n∏

i=1

Γ(a+ k(i− 1))Γ(b)

Γ(a+ b+ k − 2n− i− 1)
× (82)

×

n−r∏

i=1

(a + k(i− 1))

n∏

i=n−r+1

(a + b+ k(2n− i− 1))Pr(a, b)
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where Pr(a, b) is a polynomial in a and b.
On the other hand, we expand the hyperdeterminantal representation of

Aomoto’s integral by (32) and obtain, after extracting common factors as
above,

Det(Aa,b;k
n ) = Det(Sn(a, b; k))

∑

λ

cn,k
λ

Q(b)

n∏

i=1

{

y(a)λi−1
k(i−1)(a+ b)

k(n+i−2)−1
λi

−(a)λi

k(i−1)(a+ b)
k(n+i−2)−1
λi+1

}

(83)

where Q(b) is a polynomial of degree kn(n−1) in b, (a)m
n denotes (a+n)(a+

n + 1) · · · (a +m) if n ≤ m and (a)m
n = 1 otherwise and the sum is over the

partitions λ = (λ1 ≤ · · · ≤ λn) verifying k(i− 1) ≤ λi ≤ k(n+ i− 1) for each
i ∈ {1, · · · , n}. After combining the coefficients of the yi’s, one obtains

Det(Aa,b;k
n (y)) = Det(Sn(a, b; k))

n∑

r=0

yr Qr(a, b)

Q(b)
(84)

where Qr(a, b) is a polynomial. Hence, comparing the coefficients of yi in the
expressions (82) and (84), we find

Det(Aa,b;k
n (y)) = Det(Sn(a, b; k))

n−1∏

i=0

1

a+ b+ k(n+ i− 1)
× (85)

×

n∑

i=0

yiPi(a, b)

Q(b)

n−i∏

j=1

(a+ k(n− j))

n∏

j=n−i+1

(a+ b+ k(2n− j − 1))

where Pi(a, b) is a polynomial. Remark that each Pi(a, b) is of degree in b at
most kn(n − 1). Now, we apply (75) and we equate the coefficients of yi in
the left and right hand sides. After simplification, one obtains for each i

n∑

j=i

(
j

i

)

Pj(b, a)Fj(b, a)Q(b) = (−1)n−iPi(a, b)Fi(a, b)Q(a)) (86)

where

Fi(a, b) =

n−i∏

m=1

(a+ k(n−m))

n∏

m=n−i+1

(a+ b+ k(2n−m− 1)). (87)

Remarking that Q(b) does not divide Fi(a, b), equality (86) implies

Pi(a, b) = Ri(a)Q(b). (88)
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Hence, setting as in the previous section, a = −k(n− 1) in
n∑

j=i

(
j

i

)

Rj(b)Fj(b, a) = (−1)n−iRi(a)Fi(a, b) (89)

and remarking that
Fi(−k(n− 1), b) = 0 (90)

and

Fi(b,−k(n− 1)) =

n∏

m=1

(b+ k(n−m)), (91)

one obtains the recurrence relation

Ri(b) = −
n∑

j=i+1

(
j

i

)

Rj(b). (92)

The starting point of the induction is Rn(b) = 1
n!

, which follows from the
fact that the coefficient of yn in the expansion of the hyperdeterminant is the
value of Selberg’s integral. Solving the recurrence relation, one finds that
each Ri(b) is in fact independent of b, and that

Ri(b) =
(−1)n−i

n!

(n

i

)

(93)

Hence,

Det(Aa,b;k
n (y)) = Det(Sn(a, b; k))

1

n!

n−1∏

i=0

1

a+ b+ k(n+ i− 1)
×

×

n∑

i=0

(−1)n−i
(n

i

) n−i∏

m=1

(a + k(n−m))

n∏

m=n−i+1

(a+ b+ k(2n−m− 1))yi(94)

= (−1)nDet(Sn(a, b; k))

(
a
k

)

n

n!
(

a
k

+ b
k

+ n− 1
)

n

n∑

i=0

(−n)i(
a
k

+ b
k

+ n− 1)i

(a
k
)i

yi

i!
.

We recognize a hypergeometric function of type 2F1 which can be evaluated
as a monic Jacobi polynomial (see [2] for details)

Det(Aa,b;k
n (y)) = (−1)nDet(Sn(a, b; k))

(
a
k

)

n

n!
(

a
k

+ b
k

+ n− 1
)

n

×

×2F1

(
−n, n + a

k
+ b

k
− 1

a
k

∣
∣
∣
∣
y

)

(95)

=
(−2)−n

n!
Det(Sn(a, b; k))P

a
k
−1, b

k
−1

n (1 − 2y)

Aomoto’s equality is therefore proved.
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6 Conclusion

The examples discussed in this article show that the hyperdeterminantal
calculus is a pertinent tool to handle an interesting class of multiple integrals.
The hyperdeterminant is a particular invariant of hypermatrices. In the case
of antisymmetric hypermatrices, another invariant has similar properties:
the hyperpfaffian [5, 27]. In the classical case of matrices, de Bruijn has
shown in [11] that multiple integrals of some determinants could be evaluated
as Pfaffians. In [27], we have found some generalizations to hyperpfaffians
of these identities. In fact, the generalized Heine theorem is a particular
case of the generalized de Bruijn integral, where the determinant can be
factored into a product of determinants of matrices whose dimension is the
number of integration variables. There exist other invariant polynomials
of hypermatrices [8, 9, 10, 17] which can be, in principle, computed using
Cayley’s Omega process or other methods of invariant theory (see [29, 6, 7]
for examples involving 2× 2× 2× 2 and 3× 3× 3 hypermatrices). A natural
question is whether there exist other integral identities involving some of
them.

Other generalizations of Selberg integral are encountered in the physical
litterature. For example the Dotsenko-Fateev (see [12]) and Kaneko integrals
(see [20]) give the partition functions of various systems.

Kaneko’s integral reads

Ka,b
n,γ(y1, · · · , ym) =

∫ 1

0

|∆(x)|2γ

n∏

i=1

(

xa−1
i (1 − xi)

b−1
n∏

j=1

(xi − yj)dxi

)

(96)

and is evaluated in terms of generalized orthogonal polynomials associated
with Jack polynomials (see [23, 24, 25]). By the generalized Heine theorem,
when γ is an integer, Kaneko’s integral can be evaluated as a hyperdetermi-
nant of moments (see [28]). Kaneko’s proof of his identity is related to the
Calogero-Sutherland model. Up to now, we have been unable unable to find
a hyperdeterminantal interpretation of this. In the same way, Anderson’s
(see [1]) and Aomoto’s (see [3]) proofs of Selberg’s integral seem to contain
information unrelated to the hyperdeterminantal representations.
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