\

On treewidth approximations
Vincent Bouchitté, Dieter Kratsch, Haiko Miiller, Ioan Todinca

» To cite this version:

Vincent Bouchitté, Dieter Kratsch, Haiko Miiller, loan Todinca. On treewidth approximations. Dis-
crete Applied Mathematics, 2004, 136, pp.183-196. hal-00085459

HAL Id: hal-00085459
https://hal.science/hal-00085459
Submitted on 12 Jul 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00085459
https://hal.archives-ouvertes.fr

Laboratoire d'Informatique Fondamentate d'Orléans
4, rue Léonard de Vinci, BP 6759

LIFO F-45067 Orléans Cedex 2
FRANCE

Faculté des Sciences

On treewidth
approximations

V. Bouchitté

LIP, Ecole Normale Supérieure de Lyon
D. Kratsch

LITA - Université de Metz

H. Miiller

School of Computing, University of Leeds
I. Todinca

LIFO, Université d’Orléans

Rapport N° 2001-04

www : http://www.univ-orleans.fr/SCIENCES/LIFO/

Rapport de Recherche

On treewidth approximations

V. Bouchitté!, D. Kratsch?, H. Miiller®, and I. Todinca*

! LIP - Ecole normale supérieure de Lyon, 46 Allée d'Ttalie, 69364 Lyon cedex 07,
France, Vincent.Bouchitte@ens-lyon.fr
2 LITA - Université de Metz, Ile du Saulcy, 57045 Metz Cedex 01, France,
kratsch@lita.univ-metz.fr
8 School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom,
hm@comp.leeds.ac.uk
4 LIFO - Université d’Orléans, BP 6759, 45067 Orléans Cedex 2, France,

Ioan.Todinca@lifo.univ-orleans.fr

October 17, 2001

Abstract. We introduce a natural heuristic for approximating the tree-
width of graphs. We prove that this heuristic gives a constant factor ap-
proximation for the treewidth of graphs with bounded asteroidal number.
Using a different technique, we give a O(log OPT) approximation algorithm
for the treewidth of arbitrary graphs.

1 Introduction

A graph is said to be chordal if each cycle with at least four vertices has a chord,
that is an edge between two non-consecutive vertices of the cycle. A triangulation
of a graph is a chordal supergraph having the same vertex set. The treewidth of a
graph G is the minimum cliquesize over all possible triangulations of G, minus one.

The notion of treewidth has been intensively studied in the last years, mainly
because many classical NP-hard problems become polynomial and even linear when
restricted to graphs with small treewidth. These algorithms often need an optimal
triangulation of the input graph. More precisely, given a graph G and a triangulation
H of G, the running time of these algorithms is polynomial in the size of the graph
and exponential in the cliquesize of the triangulation.

Computing the treewidth of arbitrary graphs is NP-hard. Nevertheless, the
treewidth can be computed in polynomial time for several well-known classes of
graphs, for example the chordal bipartite graphs, the circle and circular-arc graphs,
and the permutation graphs. All these algorithms use the minimal separators of the
graph and the fact that these classes of graphs have “few” minimal separators, in
the sense that the number of the separators is polynomially bounded in the size of
the graph. For a class of graphs having a polynomial number of minimal separators,
the treewidth is computable in polynomial time [5, 6].

The existence of a polynomial time approximation algorithm which is no more
than a constant times the optimal value is a question that still remains open. In [4],
we gave a 2-approximation algorithm for the treewidth of AT-free graphs. Here
we introduce a greedy heuristic for computing minimal triangulations of a graph.
The heuristic tries to minimize the cliquesize of the triangulation. We show that
our heuristic is a constant factor approximation for the treewidth of graphs with
bounded asteroidal number. Since AT-free graphs are graphs with asteroidal number
at most two, this generalizes the result of [4]. We prove that, unfortunately, the
heuristic does not give a constant factor approximation for the treewidth of arbitrary
graphs.

The best known result on the treewidth approximation of arbitrary graphs is a
O(logn) approximation algorithm by Bodlaender et al [3]. We modify here their al-
gorithm in order to obtain a O(log k) approximation factor, where & is the treewidth

of the input graph. To our knowlege, this is the first approximation result for the
treewidth problem, in which the approximation factor does not depend on the size
of the input graph.

2 Preliminaries

Throughout this paper we consider simple, finite, undirected graphs.
A tree-decomposition of a graph G = (V, E) is a pair (T, X), where T = (I, F)
is a tree and X = {X; | i € I} is a collection of subsets of V such that

L Ujer Xi=V.

2. Vzy € E, there is an ¢ € I such that X; contains both z and y.

3. For each vertex € V, the set of nodes {i € I | z € X;} forms a connected
subtree of T'.

We will say that the set X; is the label of the node i in T. The width of a tree-
decomposition (T = (I, F),X) is max;es |X;| — 1. The treewidth of the graph G is
the minimum width over all tree-decompositions of the graph.

It is well-known that a tree-decomposition of a graph G corresponds to a trian-
gulation of G. We restate the definition of treewidth in terms of triangulations. A
graph is said to be chordal or triangulated if each cycle with at least four vertices has
a chord, that is an edge between two non-consecutive vertices of the cycle. Given an
arbitrary graph G = (V, E), a triangulation of G is a chordal graph H = (V, F') such
that £ C F. We say that H is a minimal triangulation of G if no proper subgraph of
H is a triangulation of G. The treewidth tw(H) of a chordal graph is its maximum
cliquesize minus one. The treewidth of an arbitrary graph G is the minimum, over
all triangulations H of G, of tw(H).

When computing the treewidth of G we can clearly restrict to minimal trian-
gulations. The minimal separators play a crucial role in the characterization of the
minimal triangulations of a graph.

A subset S C V is an a, b-separator for two nonadjacent vertices a,b € V if the
removal of S from the graph separates a and b in different connected components.
S is a minimal a,b-separator if no proper subset of S separates a and b. We say
that S is a minimal separator of G if there are two vertices a and b such that S is
a minimal a, b separator. Notice that a minimal separator can be strictly included
into another. We denote by Ag the set of all minimal separators of G.

Let G be a graph and S a set of vertices of G. We note Cg(S) the set of connected
components of G\ S. A component C' € Cg(S) of G\S is a full component associated
to S if every vertex of S is adjacent to some vertex in C.

Let S be a minimal separator of G. If C' € C(S), we say that (S,C) =SUC is
a one-block associated to S. A one-block (S, C) is called full if C is a full component
associated to S. If (S, C) is a full one-block, then S = Ng(C). If (S, C) is not full,
then S* = Ng(C) is a minimal separator of G, strictly contained in S.

Let S be a minimal separator of G. We say that S crosses a set of vertices A if S
separates two vertices z,y € A (i.e. S is an z, y-separator). We say that S separates
two sets of vertices A and B if S separates each vertex of A\S from each vertex of
B\S.

Let S and T be two minimal separators. If S crosses T', we write S#7. Otherwise,
S and T are called parallel, denoted by S||T. It is easy to prove that these relations
are symmetric. Remark that S and T cross if and only if T intersects each full
component associated to S. Conversely, S and T are parallel if and only if T is
contained in some one-block (S, Cr) associated to S. In particular, if T C S, then
S and T are parallel.

Let S € Ag be a minimal separator. We denote by Gg the graph obtained
from G by completing S, i.e. by adding an edge between every pair of non-adjacent
vertices of S. If I' C Ag is a set of separators of G, G is the graph obtained by
completing all the separators of I". The results of [10], concluded in [12], establish
a strong relation between the minimal triangulations of a graph and its minimal
separators.

Theorem 1. Let I' € Ag be a mazimal set of pairwise parallel separators of G.
Then H = G is a minimal triangulation of G and Ag =T

Let H be a minimal triangulation of a graph G. Then Ay is a mazimal set of
pairwise parallel separators of G and H = G Ay, .

In other terms, every minimal triangulation of a graph G is obtained by con-
sidering a maximal set I" of pairwise parallel separators of G and completing the
separators of I'. The minimal separators of the triangulation are exactly the ele-
ments of .

3 The minimum cardinality separator strategy

By theorem 1, any minimal triangulation of G is obtained by completing a maximal
set of pairwise parallel separators of G. The following proposition ([12]) says that
we can complete these separators one by one.

Proposition 1. Let I'' be a set of pairwise parallel minimal separators of the graph
G and let H = Gpi. Then S is a minimal separator of H' if and only if S is a
minimal separator of G, parallel in G to each T € I".

This leads to the following algorithm computing minimal triangulation of graphs.

MinimalTriangulation

H+«G

while H is not chordal
choose S € Ay such that H[S] is not a clique
H + Hg

end_while

return H

Not only this algorithms always produces a minimal triangulation of G, but
any minimal triangulation of G can be produced by the algorithm, by choosing the
appropriate minimal separators.

Our aim is to obtain a triangulation H of minimum cliquesize. Since the minimal
separators S chosen in the while loop become cliques, a natural idea is to choose
a minimal separator S of minimum cardinality. This gives the following algorithm,
that we call the minimum cardinality separator strategy.

MCSep

H+G

while H is not chordal
choose the smallest S € Ay such that H[S] is not a clique
H <+ Hg

end_while

return H

4 Blocks

Given a graph H, we do not know how to compute a minimum size separator S of
H such that H[S] is not a clique. We present an alternative version of the minimum
cardinality separator strategy for which we only need to compute a minimum car-
dinality separator of a graph. Finding a minimum size separator of a graph can be
done in polynomial time by standard flow techniques [1].

Let us give first some further definitions, which are strongly related with the
blocking sets and the blocks introduced in [7].

Definition 1. Let G be a graph and S C Ag a set of pairwise parallel separators
such that for any S € S, there is a one-block (S, C(S)) containing all the elements
of S. Suppose that S, ordered by inclusion, has no greatest element. We define the
piece between the elements of S by

PS) = [(5.C(9))

SeS

Notice that for any S € S the one-block of S containing all the separators of S
is unique: if 7' € S is not included in S, there is a unique connected component of
G\S containing T\ S.

Definition 2. Let B be a vertex set of a graph G. We denote by Ci,...,C, the
connected components of G\B and by S; the neighborhood of C;. We will say that B
is a block of G if the sets S; are minimal separators of G and one of the following
conditions holds:

1. B=G.
2. There is an i € [1,p] such that B is a one-block (S;,C).
3. B=P(5,...,5p).

Definition 3. Let B be a block, let C1, ..., Cy be the connected components of G\ B
and S; = N(C;). We say the minimal separators S, ...,Sp border B. Let S(B) be
the set of minimal separators bordering B and let BS(B) be the inclusion-maximal
elements of S(B). Then BS(B) is called the blocking set of B.

Proposition 2 ([7]). Let B be a block of G. If B is a one-block (S,C), then the
blocking set of B is {S}. If B is the piece between some minimal separators, then
B is also the piece between the elements of its blocking set.

Definition 4. Let B be a block of G and let S(B) be the minimal separators border-
ing B. The graph R(B) = Gs(p)[B] obtained from B by completing each S € S(B)
into a clique is called the realization of B.

Any minimal separator of the realisation of some block B is also a minimal
separator of G:

Theorem 2 ([7]). Let B be a block of G and S be a minimal separator of its
realization R(B). Then S is a minimal separator of G.

Moreover, for each connected component C of R(B)\S, SUC is a block of G.
Each minimal separator bordering S U C is contained in S or belongs to S(B).

Conversely, a minimal separator S of G contained in some block B is either one
of the separators bordering B, or it is a minimal separator of R(B).

Theorem 3 ([7]). Let B be a block of G and S be a minimal separator of G,
contained in B. If S separates in G two vertices of B, then S is also a minimal
separator of R(B).

5 Implementation of the heuristic

In [2], an algorithm is given for computing a minimal triangulation of a graph, by
recursevely splitting blocks. We slightly modify it in order to abtain an implementa-
tion of our minimum cardinality separator strategy. The algorithm maintains a list
of blocks, called 1b. Initialy b = {G}. At each step, we split a block B by choosing a
minimum cardinality separator S of R(B). Then B is replaced in the list of blocks
by the smaller blocks S U C;, where C; are the connected components of R(B)\S.
The algorithm stops when the realizations of all blocks in Ib are cliques. The output
is the graph H = Gy, obtained from G by completing each block of [b into a clique.
Here is the pseudo-code of the M CSep algorithm:

MCSep
Input: G
Output: a minimal triangulation of G
Ib + {G} / = Ib is the list of blocks */
while there is B € Ib such that R(B) is not a clique do
S <+ a minimum cardinality separator of R(B)
compute the connected components Ci,...Cp of R(B)\S
in [b, replace B by the smaller blocks SUC;, 1 <i<p
end_while
return H = Gp;

Theorem 4 (|2], property 7.5). The algorithm MCSep outputs a minimal tri-
angulation H of G, and the maximal cliques of H are exactly the blocks of lb.

Actually, if instead of choosing a minimum cardinality separator S of R(B) we
just take an arbitrary minimal separator of R(B), we obtain an implementation of
algorithm MinimalTriangulation of section 3. A chordal graph with n vertices
has at most n minimal separators. Therefore, the algorithm performs at most n
splitting operations, where n is the number of vertices of G.

The complexity of the algorithm is clearly polynomial. We do not go into further
details, since for the graphs of bounded asteroidal number we will propose a slightly
different and more efficient algorithm.

6 Graphs with bounded asteroidal number

An asteroidal set of a graph G is a set of pairwise non adjacent vertices A such
that for each z € A, there is one connected component of G\N(z) containing all
the vertices of A\{z}. The asteroidal number an(G) of the graph G is the maximal
cardinality of an asteroidal set of G.

We show in this section that, for a class of graphs with bounded asteroidal
number, the minimum cardinality separator strategy gives a constant factor ap-
proximation for treewidth. More precisely, for any graph G, the algorithm MCSep
produces a triangulation such that tw(H) < 8an(G) x tw(G).

In any graph, the cardinality of a blocking set is bounded by the asteroidal
number [7].

Proposition 3. For any block B of G, |[BS(B)| < an(G).

In a graph of small asteroidal number, each blocking set is small. We use this
fact to show that, if the minimal separators in the blocking set of B are “small” and
the block is “large”, then the block can be splitted using a “small” minimal separator.
Thus, the MCSep heuristic will keep choosing small minimal separators (of size

at most 4tw(G)) until all the blocks become of size at most 8 an(G) tw(G). We
conclude that our strategy gives a good approximation for the treewidth of graphs
with small asteroidal number.

Definition 5. Let B be a block of G. We denote
Border(B) = {z € B | z has a neighbor in G\B} and Int(B) = B\ Border(B).

So Border(G) = 0, Border((S, C')) = S and Border(P(S1, ..., Sp)) = S1U- - -US,.

Proposition 4. Let G be a graph of treewidth at most k. Let B be a block of G
with |B| > 8k. If |Int(B)| > |B|/2, there is a minimal separator S C B of R(B)
such that |S| < 4k.

Proof. We show first that there is a vertex € Int(B) such that |Ng(z)| < 4k.
Let m(B) be the number of edges of G[B]. We count m(B) in two different ways.
Since G[B] is an induced subgraph of G, its treewidth is at most k. It is well-known
that in a graph of treewidth at most k, the number of edges is at most k times the
number of vertices. Therefore, m(B) < k|B|. Suppose now that each vertex z of
Int(B) has strictly more than 4k neighbors in G, we show that m(B) > k|B|. Since
z € Int(B), we have Ng(z) C B, thus the number of edges of G[B] incident to at
least one vertex of Int(B) is strictly greater than 4k|Int(B)|/2 = 2k|Int(B)|. But
|Int(B)| > |B|/2, so m(B) > 2k|Int(B)| > k|B|. This contradicts m(B) < k|B|.
We have proved that there is an z € Int(B) such that Ng(z) < 4k. Let y be
a vertex of B\Ng(z), different from z (y exists because |B| > 8k). Clearly Ng(z)
separates z and y in G, so there is a minimal separator S C Ng(x) separating
and y in G. Then |S| < 4k and, by theorem 3, S is a minimal separator of the
realization R(B) of B. O

Corollary 1. Let G be a graph and let k = tw(G). Consider a block B of G such
that all the minimal separators bordering B are of size at most 4k. If the blocking
set of B has at most a elements and |B| > 8ka, there is a minimal separator S of
R(B) such that |S| < 4k.

Proof. Let BS(B) = {S1,...,Sp} be the blocking set of B, by proposition 3 BS(B)
has at most an(G) elements. We have Border(B) = S; U---U Sp, and each S; has
at most 4k vertices, so | Border(B)| < 4ka. Thus, |Int(B)| = |B| — | Border(B)| >
|B|/2. The existence of the minimal separator S of R(B) of size at most 4k sepa-
rating follows directly from proposition 4. O

Theorem 5. Let G be a graph of treewidth k and of asteroidal number at most a.
The MCSep strategy gives a triangulation of G of width at most 8ak.

Proof. Suppose that, at the end of the algorithm, there is a bock B in the list Ib
such that |B| > 8ak. Notice that at least one of the minimal separators bordering
B is of size greater than 4k. Indeed, if all the minimal separators bordering B are of
size at most 4k, according to proposition 4, R(B) has a minimal separator of size at
most 4k. This contradicts the fact that, at the end of the algorithm, the realization
of each block in (b is a clique.

Consider the decreasing sequence of blocks By = G D By D --- D B, = B
containing B during the execution of MCSep. Let B; be the first block of the
sequence such that one of the minimal separators bordering B; is of size greater than
4k. Clearly, 1 < i < p. The block B;_; was split by using a minimum cardinality
separator S of R(B;_1). We show that |S| > 4k. The block B; is of form SUC, where
C is a the connected component of R(B; 1)\S. Let T denote a minimal separator
bordering B; such that |T'| > 4k (T exists by choice of B;). According to theorem 3,
T is one of the minimal separators bordering B; 1 or T' C S. By choice of B;, all

the minimal separators bordering B;_; are of size at most 4k, so the only possibility
is T C S. Thus, |S| > 4k.

Since B C B;_; and |B| > 8ak we have |B;_1| > 8ak. Since all the minimal
separators bordering B are of size at most 4k, by corollary 1 we know there is a
minimal separator S’ of R(B;_1) of size at most 4k. But |S| > 4k, contradicting the
fact that S is a minimum cardinality separator of R(B;_1). O

Computing the asteroidal number of an arbitrary graph is NP-hard [11], which
seems to be a major inconvenient for our algorithm. We can transform the algorithm
such that, given a graph G and a number a it correctly outputs one of the following:

1. a triangulation of width at most 8a X tw(G).
2. @ has asteroidal number strictly greater than a.

The algorithm should work the following way: we use the MCSep strategy and,
for each block B obtained during the algorithm, we count the size of its blocking set
BS(B). I |BS(B)| > a, we output an(G) > a. Otherwise, according to corollary 1,
|B| < 8atw(G) or R(B) has a minimal separator of size at most 4tw(G). Conse-
quently, the triangulation produced by the algorithm is of width at most 8a tw(G).

Now let us discuss a simpler and more efficient algorithm for approximating the
treewidth of graphs with bounded asteroidal number. The MCSep strategy chooses,
for each block B of the list of blocks, a separator S of R(B) of minimum size.
For our purpose, it is sufficient to find a minimal separator S of R(B) such that
|S| < 4tw(G). Observe that, in proposition 4, we have not only proved that there
is a minimal separator S of R(B) such that |S| < 4k, but we have also shown there
is a vertex x € Int(B) such that |[Np(p)(x)| < 4k. Thus, for finding a separator S of
R(B) of size at most 4k, it is sufficient to choose the vertex z of R(B) minimizing
|Nr(B)(z)| and to take a minimal separator S C Ng(p)(x). We use the following
lemma, :

Lemma 1 ([9]). Let G = (V,E) be a graph and z be a vertex of G. For each
connected component C of G\ (Ng(z) U {z}), its neighborhood Ng(C) is a minimal
separator of G.

Applying this lemma to the graph R(B), one can find a minimal separator S
of R(B) contained in Ng(g)(z) in time O(n +m(R(B)), where n is the number of
vertices of G and m(R(B)) is the number of edges of R(B). Clearly, m(R(B)) < n?.
Once we found the minimal separator S, we can split the block B into smaller blocks
in time O(n + m(R(B)), so O(n?).

The algorithm uses at most n splitting operations, so the global cost of the
algorithm is O(n?®). We have proved :

Theorem 6. Given a graph G = (V,E) and a number a, there is an algorithm
which correctly outputs that an(G) > a, or a triangulation of G of width at most
8atw(G). The complezity of the algorithm is O(n®), where n = |V|.

7 MCSep is not a constant factor approximation algorithm
for the treewidth problem

A natural question is to ask whether the MCSep strategy is a constant factor approx-
imation for the treewidth of arbitrary graphs. Unfortunately this is not the case.
We prove that, for any constant ¢, there is a graph G on which the MCSep strategy
yields a tree-decomposition whose width is more than ctw(G).

Consider a clique on g vertices I, I, ..., ;. Divide each edge of the clique by
a vertex M;;. Add a vertex C adjacent to I, ..., I;. Finally, replace C by a clique
of size 2p and each vertex I; by an independent set of size p. Take p “much bigger”
than g. This graph is denoted by G, 4, or simply G (see figure 1 for ¢ = 3).

I3

Fig.1. Gp 4

Proposition 5. The minimum cardinality separator strategy gives a triangulation
H, , of Gp,q such that tw(H,) > (¢ +2)p — 1.

Proof. The minimum size separators are exactly the separators of type I; UI;, which
have size 2p. Moreover, they are pairwise parallel. By proposition 1 our strategy
choses to complete all these minimal separators, obtaining a clique 2 = CUI; U
L U---UI,, of size (g + 2)p.]

Proposition 6. The treewidth of G, 4 is at most 2p + q(q — 1)/2.

Proof. Let 2 =CU{M;; |1 <1i<j<gq}. Then the graph H = G, obtained from
G by completing (2 into a clique is a triangulation of G. Indeed, {2 separates in H
any two vertices of V'\(2, so it is the only minimal separator of H. The cliquesize
of H graph is |2| + 1, s0 tw(G) < |2| =2p+¢(q—1)/2. O

For any p and ¢ such that p > ¢%, we have tw(H, 4) > 2 tw(Gp,q)- We conclude
that the minimum cardinality separator strategy is not a constant factor approxi-
mation for the treewidth problem.

8 A O(klogk) approximation algorithm for treewidth

We present in this section a polynomial algorithm that, given any graph G, outputs
a tree-decomposition of G of width O(klog k), where k is the treewidth of G.

In [3], Bodlaender et al. give an O(logn) approximation algorithm for the
treewidth of arbitrary graphs. Their algorithm uses the notion of p-separator.

Definition 6. Let G be a graph and W a set of vertices of G. Consider a number p,
0 < p<1. A pseparator of W in G is a set of vertices S such that each connected
component of G\S contains at most p|W | vertices of W.

Theorem 7 ([3]). Let G be a graph of treewidth at most k. For any set of vertices
W, there is a %—sepamtor of W of size at most k + 1.

If, for any graph G and any set of vertices W, we could compute a %—separator
of W of minimum size in polynomial time, this would lead to a 3-approximation
algorithm for the treewidth of arbitrary graphs. There exists several approximation
results for computing a p-separator of small size, one of them was used in [3] in
order to obtain the O(logn) approximation algorithm for the treewidth of graphs.
A recent result of Even et al. [8] allows us to improve the O(logn) factor to O(log k),
where k is the treewidth of the input graph.

Theorem 8. Let G be a graph and W a set of vertices of G. Let T be the size of
the smallest p separator of W in G, 1/2 < p < 1. Given p', p < p' < 1, there is
a polynomial algorithm computing a p'-separator of size at most ¢, 7 log T, where
Cp,pr 15 a constant depending only on p and p'.

In the paper of Even et al. the theorem is stated in terms of p-edge separators,
but, as they point out, a vertex separator in an undirected graph can be viewed as
an edge separator in an appropiate directed graph, so we refer directly to their result
concerning edge separators in directed graphs. The size of the separator computed

o (11+5) 7)
p'—p

by their algorithm is at most £ : (;,tlp/ 9) In(
value.

We use the algorithm of [3] and theorem 8 for computing a tree-decomposition
of G of width O(klogk), where k = tw(G).

The tree-decomposition of G = (V, E) is obtained by calling Makedec(G, 0, V).

T, where ¢ is an arbitrary positive

procedure Makedec(G, S, C)
Input: G and two disjoint sets of vertices S and C.
Output: a tree decomposition of Gg[S U C].

if |C] < p'|S| then
return a tree-decomposition with a single node, labeled S U C.
else
find a p'-separator S’ of S in G with the algorithm of theorem 8
if S’ =S then
let = be a vertex of C
Sl =SuU {.’L‘}, 01 = C\{QJ}
return Makedec (G, S1,C1)
end if
Compute the connected components Ci,...Cy of G[C\S']
forp=1togqdo
Sp + Ng (Cp)
call Makedec(G, S,, Cp)
end for
return a tree-decomposition having a root r labelled S U S’,
whose children are the tree-decompositions returned by the calls
of Makedec (G, Sp, Cp)
end if

Let ¢, = c1_,, the constant involved in the algorithm of theorem 8 for p = %

2 59, ’
Proposition 7. For any graph G = (V, E), Makedec (G, S,C) returns a tree-de-
composition of G[S U C], such that the root node contains all the vertices of S.

If|S| < lc_";, klogk, where k = tw(G) + 1, then the width of the decomposition
is at most }—f%cp/klog k.

Proof. Our algorithm is almost identical to the one of [3], so the proof of our propo-
sition is very similar to the proof of [3], Claim 5.1.

We prove our statement by induction on the recursive structure of the Makedec
procedure. The proposition is clearly true if |C| < p'|S|. Clearly, each vertex z €
SUC will appear in at least one label of the returned labelled tree. Let us show that
for each edge zy of G[S U C], there is a node of the returned labelled tree whose
label contains both x and y. If z,y € SUS’ then z and y will be in the label of the
root node. Otherwise, there is a connected component C, of G[C\S’] containing z

10

or y, so the edge zy is in G[S, U Cp]. By induction hypothesis, there is a node j in
the tree-decomposition returned by Makedec(G, Sy, Cp) such that z,y € X;.

We denote (T = (I, F), X) the labelled tree returned by our algorithm. We now
prove that, for any vertex z € S U C, the set of nodes {i € I | z € X;} forms a
connected subtree of T. If z ¢ S U S’, then z is in some component C), of G[C\S']
and the nodes of T' containing x are exactly the nodes of Makedec (G, Sp, Cp) con-
taining z, so the result holds by induction. Otherwise, for each component Cj, of
G[C\S'], the nodes containing z in the tree-decomposition (T}, X,) returned by
Makedec (G, Sy, Cp) form a subtree of T},. If this subtree is not empty, since z & Cj,
we have that € S, so x appears in the label of the root node of T},. Since the root
of T, is a son of the root of T', we conclude that {i € I | z € X;} forms a connected
subtree of T

Finally, we show that the labels of the returned tree-decomposition are of size at
most %cp/klog k. By induction, it is sufficient to show that the label of the root
is of size at most %cp/klogk and that each set S, is of size at most %klog k.

According to theorem 7, for any set of vertices S of G there is a %—separator
Sopt Of S in G such that |Sept| < k. By theorem 8, the p'-separator S’ of S is
of size at most ¢, klogk. Consider the case when S’ = S. Then |Si| = |S] + 1.
The constant ¢, is greater than one (see [8]) and 1/2 < p' < 1, so %klogk >
2¢cyklogk > cpklogk + 1, and therefore |S;| < 10_";, klogk. Suppose we are in the
case S' # S. For each connected component C, of G[C\S'], the neighborhood of
Cp in G is contained in S U S'. Let S, = S N Ng(Cp). Then all the vertices of

Sp are in a same connected component of G\\S’, and since S’ is a p'-separator of
S we have that |S,| < p'|S|. Therefore, |S,| < |S,| + |5| < (lf—lp, + ey klogk,
so |Sp| < l—cf;ﬁklog k. The label of the root node is S U S’, so its size is at most

1 U
:—Z,cl,/klog k. i

Thus, we have obtained:

Theorem 9. There is a polynomial algorithm that, given a graph G, computes a
tree-decomposition of G of width O(klogk), where k = tw(G) + 1.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and
applications. Prentice Hall, Englewood Cliffs NJ, 1993.

2. A. Berry. Désarticulation d’un graphe. PhD thesis, Université Montpellier II, 1998.

3. H. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth,
pathwidth, and minimum elimination tree height. J. of Algorithms, 18:238-255, 1995.

4. V. Bouchitté and I. Todinca. Approximating the treewidth of AT-free graphs. In
Proceedings 26th Workshop on Graph-Theoretic Aspects in Computer Science (WG
2000), volume 1928 of Lecture Notes in Computer Sciences, pages 59-70. Springer-
Verlag, 2000.

5. V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph. In Pro-
ceedings 17th Annual Symposium on Theoretical Aspects of Computer Science (STACS
2000), volume 1770 of Lecture Notes in Computer Science, pages 503-515. Springer-
Verlag, 2000.

6. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: grouping the minimal
separators. SIAM J. on Computing, 31(1):212 — 232, 2001.

7. H. Broersma, T. Kloks, D. Kratsch, and H. Miiller. A generalization of AT-free graphs
and a generic algorithm for solving triangulation problems. In Workshop on Graph-
theoretic Concepts in Computer Science WG’98, volume 1517 of Lecture Notes in
Computer Science, pages 88-99. Springer-Verlag, 1998.

11

8.

9.

10.

11.

12.

G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning
algorithms. SIAM J. on Computing, 28(6):2187-2214, 1999.

T. Kloks and D. Kratsch. Listing all minimal separators of a graph. SIAM J. Comput.,
27(3):605-613, 1998.

T. Kloks, D. Kratsch, and H. Miiller. Approximating the bandwidth for asteroidal
triple-free graphs. Journal of Algorithms, 32:41-57, 1999.

T. Kloks, D. Kratsch, and H. Miiller. On the structure of graphs with bounded
asteroidal number. Graphs and Combinatorics, 17:295-306, 2001.

A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal
graph embeddings. Discrete Appl. Math., 79(1-3):171-188, 1997.

12

