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M. Dambrine∗ and G.Vial†
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Abstract

In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the
asymptotic behavior of the solution uε of a second order elliptic equation posed in the perturbed domain
with respect to the size parameter ε of the deformation. We are also interested in the variations of the
energy functional. We propose a numerical method for the approximation of uε based on a multiscale
superposition of the unperturbed solution u0 and a profile defined in a model domain. We conclude with
numerical results.

1 Introduction.

Various physical situations involve materials with a two-scale structure. From the macroscopic point of
view, the considered body can usually be modeled by a smooth domain of R

2 or R
3, but this does not take

into account the microscopic design of the material. We are specially interested in small inhomogeneities
or inclusions on the border of the body. If they are arranged within a periodical network, homogenization
techniques (see [1], for example) apply and the macroscopic model is valid, provided the characteristic
properties of the material are modified accordingly. Such methods do not hold for local inhomogeneities,
which are in the applications usually either omitted (for the smallest ones) or integrated into the macroscopic
domain. Naturally, the numerical approximation of such problems requires a severe mesh refinement near
the inclusions, which sometimes prevents from taking them into account in the computations.

In this paper, we deal with an elliptic partial differential equation in a domain with a small local bound-
ary perturbation. We give the complete asymptotic expansion of its solution with respect to the size of
the perturbing pattern, derive the variation of the associated energy (topological derivative) and propose a
numerical method for the approximation of its solution based on the theoretical study.

Let us describe the geometrical setting we shall work within: Ω0 is an open bounded subset of R
2 with

smooth boundary containing the origin O. We assume that the boundary ∂Ω0 coincides with a straight line
near the origin, precisely for |x| < r∗. On the other hand, H∞ denotes an infinite domain of R

2, which
coincides with the upper half-plane at infinity, precisely for |x| > R∗. The perturbed domain Ωε is defined
for small ε by (see Figure 1)

Ωε = {x ∈ Ω0 ; |x| > εR∗} ∪ {x ∈ εH∞ ; |x| < r∗}. (1)

Let us mention that we make no assumption of inclusion of the perturbed domain into the original one (or
conversely). We will extend this framework to some curved smooth situations.

We define uε as the solution in H1(Ωε) of the equation −∆uε = f in Ωε, where f is some function in
L2(Ω0) vanishing in a neighborhood of the origin. We consider Dirichlet boundary conditions on ΓD ⊂ ∂Ωε

(which does not reach the origin) and Neumann boundary conditions elsewhere (other types of boundary
conditions can also be treated). The asymptotic analysis of similar problems have been investigated by
several authors in various special cases, see [9, 11, 6, 4], and more recently in [13]. It appears that the
solution uε can be approximated at first order by a superposition of the unperturbed solution u0 and a
profile, via cut-off functions in slow and rapid variables:

uε = ζ(x
ε )u0(x) + χ(x)W 1(x

ε ) +OH1(Ωε)(ε
2). (2)
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Figure 1: The original and pertubed domains.

The cut-off functions ζ and χ are chosen smooth, radial, and satisfying

• the function ζ(x) equals 1 for |x| > R∗, and vanishes for |x| < R∗/2 ;

• the function χ(x) equals 1 for |x| < r∗/2 and vanishes for |x| > r∗.
(3)

The profile W 1 is defined as the solution in the domain H∞ of an homogeneous model problem. In
the expansion (2), the term u0 only contributes away from the origin and the information concerning the
perturbing pattern is carried by the profile. These two contributions interact in the transition zone through
the cut-off functions.

We can base a numerical approach for the approximation of uε on formula (2). Indeed, the computation
of the term u0 does not involve the perturbation and may therefore be done on a coarse mesh of Ω0. If we
have a suitable approximation of the profile W 1, the superposition formula (2) gives a numerical solution
for uε. The cut-off functions are handled in the practical process by means of patch of elements.

Moreover, expression (2) allows to compute the topological derivative – see [7, 8, 12] – of the energy
j(ε):

j(ε) := −
1

2

∫

Ωε

|∇uε|
2 = j(0) + ε2|∇u0(0)|2AH∞

+ O(ε2), (4)

where the real numberAH∞
only depends on the geometry of H∞.

The paper is divided as follows. In a first section, we give the full asymptotic expansion of the state
function in the case of a straight boundary near the origin. This is based on a revisited multiscale asymp-
totic method. We extend then these results to a curved case. The third part is devoted to the numerical
method using patch of elements near the perturbation. Last, we derive the leading terms in the asymptotical
description of the energy functional. A numerical validation of our theoretical results is given.

2 Asymptotic expansion of the state function.

We consider uε solution of the following problem, posed in the geometry described by Figure 1:










−∆uε = f in Ωε,

uε = 0 on ΓD ,

∂nuε = 0 on ∂Ωε\ΓD.

(5)

The technique we use to build an asymptotic expansion of uε into powers of ε is adapted from the multi-
scale approach of [13].

We first write the Taylor expansion at a target precision K of the limit term u0 at point x = 0 (thanks to
standard elliptic regularity, u0 is a smooth function up to the boundary):

u0(x) = χ(x)
K
∑

k=0

uk(x) +RK(x) = χ(x)TK(x) +RK(x), (6)

the first terms of the Taylor polynomial TK being given by u0(x) = u0(0), u1(x) = |∇u0(0)|x1 (more
generally uk is an homogeneous polynomial of total degree k). The limit term u0 is not necessarily defined
in the whole domain Ωε, but its Taylor part may be extended to Ωε. For this reason a better start is given by
the truncated function

ũ0(x) = χ(x)TK(x) + ζ(x
ε )RK(x) ∈ H1(Ωε). (7)
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The difference between u0 and ũ0 is small since the remainderRK is flat in the cut-off region. Let us denote
by r0ε the difference between uε and ũ0, it naturally satisfies the following problem











−∆r0ε = ϕ0
ε in Ωε,

r0ε = 0 on ΓD,

∂nr
0
ε = −χ(x)∂nTK + ψ0

ε on ∂Ωε\ΓD,

(8)

where the data ϕ0
ε and ψ0

ε arise from the cut-off and are supported in the ring of size ε defined as {x ∈
Ωε ; εR∗/2 < |x| < εR∗}, they will contribute to the remainder since they are essentially of order εK .
Thus, the principal defect in equation (8) comes from the normal derivative of the Taylor expansion of u0,
whose leading term reads

−χ(x)|∇u0(0)|∂nx1 = −χ(x)|∇u0(0)|n1, (9)

which does not vanish only on the boundary part of Ωε which corresponds to the perturbing pattern. Follow-
ing the ideas of [2, 3, 13], we introduce the profile V 1 as the solution of the problem in the infinite domain
H∞:











−∆V 1 = 0 in H∞,

∂nV
1 = −|∇u0(0)|N1 on ∂H∞,

V 1 → 0 at infinity,

(10)

where N1 denote the first component of the unitary normal vector on ∂H∞. The existence and uniqueness
of such a profile follows from the lemma

Lemma 2.1 Problem (10) admits a unique weak solution V 1 in the variational space

{

V ; ∇V ∈ L2(H∞) and
V

(1 + |X |) log(2 + |X |)
∈ L2(H∞)

}

. (11)

Furthermore, we have the following behaviors at infinity:

V 1(X) = O(|X |−1) and ∇V 1(X) = O(|X |−2) when |X | → ∞. (12)

The proof makes use of a weighted Poincaré-like inequality, for the first part, and the Mellin transform for
the behavior at infinity, cf. [2].

Thanks to the profile V 1, we are able to write the beginning of the asymptotic expansion of uε: we set

r1ε = uε −
[

ũ0 + χ(x)ε V 1(x
ε )
]

. (13)

By construction, this remainder satisfies











−∆r1ε = ϕ0
ε + ϕ1

ε in Ωε,

r1ε = 0 on ΓD,

∂nr
1
ε = ψ0

ε + ψ1
ε on ∂Ωε\ΓD.

(14)

The function ϕ1
ε comes from the cut-off function χ:

ϕ1
ε = ∆

[

χ(·)εV 1( ·ε )
]

. (15)

Note that in the Laplacian, only derivatives of χ are involved since V 1 is harmonic, and only |x| > r∗/2
has to be considered in (15). The function ψ1

ε has its support inside the ball |x| < εR∗ and is given by

ψ1
ε = χ(x)∂nV

1(x
ε )− χ(x)∂nTK = −χ(x)

K
∑

k=2

∂nu
k(x) = OL2(Ωε)(ε

2), (16)

since V 1 stands for the term corresponding to k = 1 of the Taylor expansion (the constant term u0 does not
contribute to the normal derivative).
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It is not straightforward to obtain a remainder estimate on r1ε since the L2-norm of ϕ1
ε is onlyO(1). We

need to build further terms to get the (optimal) estimate

‖r1ε‖H1(Ωε) = O(ε2). (17)

The proof will follow from Theorem 2.2 below.
To continue the construction of the expansion, we need to take into account the next terms in the Taylor

expansion of u0 by new profiles, and add correctors for the cut-off. The technology used in [2, 3, 13] can
be extended, the main differences have been described just above for the first terms. Precisely, we get

Theorem 2.2 We assume that f in an L2-function, with compact support inside Ω0. Then the solution uε

of (5) admits the following asymptotic expansion for N < K

uε(x) = ũ0(x) + χ(x)

N
∑

i=1

εiV i(x
ε ) +

N
∑

i=2

εiwi
ε(x) +OH1(Ωε)(ε

N+1). (18)

The term ũ0 is defined by (7), the profiles V i is a counterpart for the ith term ui of the Taylor expansion of
u0 – see (20), and wi

ε are cut-off correctors satisfying ‖wi
ε‖H1(Ωε) = O(1).

Proof of Theorem 2.2: We give a sketch of the proof for the complete asymptotic expansion. Supposing
the expansion built until rank N − 1, we set

rN
ε (x) = uε(x) − ũ0(x) − χ(x)

N−1
∑

i=1

εiV i(x
ε )− ζ(x

ε )

N−1
∑

i=2

εiwi(x), (19)

the remainder of order N − 1. By definition, the profiles V i satisfies










−∆V i = 0 in H∞,

∂nV
i = −∂nu

i on ∂H∞,

V i → 0 at infinity.

(20)

(again, the datum is compactly supported and Lemma 2.1 ensures1 existence and uniqueness of V 1).
Laplacian. By construction, the residual in ∆rN

ε is corrected up to order N − 1 by the wi. But the term
∆[χ(x)εN−1V n1(x

ε )] is of order εN (in L∞(Ωε)) thanks to an estimate similar to (12). We define hence
wNε as the solution in H1(Ωε) of

−∆wN = −∆[χ(x)εN−1V N+1(x
ε )] with same boundary conditions as u0. (21)

Boundary conditions. The Dirichlet boundary condition on ΓD is fully satisfied by rN
ε , but the Neumann

boundary condition is not. Indeed, only the N − 1 first Neumann-traces have been taken into account so far
by the profiles V i: the leading term in ∂nrN

ε on ∂Ωε\ΓD is given by −∂nuN(x) = −εN∂nu
N (x

ε ). This
naturally leads to the definition of V N , according to (20).

Conclusion. The introduction of the termswN and V N allows to define the remainder rN
ε of orderN , which

satisfies

• the laplacian −∆rN
ε is small: precisely, its leading term is εN+1∆[χ(x)V N+1(x

ε )], whose L2(Ωε)-
norm is of order εN ;

• the Neumann boundary condition is satisfied up to a term in OL2(∂Ωε).

Using an a priori estimate on Problem (5) (independent on ε) we immediately get the estimate rN
ε =

OH1(Ωε)(ε
N ). To obtain εN+1, we simply write

rN
ε = rN+1

ε + χ(x)εN+2V N+2(x
ε ) + εN+2wN+2

ε (x), (22)

yielding the result from the estimates

χ(x)V N+2(x
ε ) = OH1(Ωε)(ε

N+1) and wN+2
ε = OH1(Ωε)(1). (23)

1Since Neumann conditions are considered, we have to make sure that the right hand-side of (20) meets the compatibility require-
ment. This is the case here: since u0 is harmonic, it is also the case of the terms in its Taylor expansion.
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Remark 2.3 By a mere rearrangement of the terms, the expansion of uε can read as follows

uε = ζ(x
ε )u0(x) + χ(x)

N
∑

i=1

εiW i(x
ε ) +

N
∑

i=2

εiw̃i
ε(x) +OH1(Ωε)(ε

N ). (24)

The new profiles W i are defined by W i(X) = V i(X) +
(

1− ζ(X)
)

ui(X) and the w̃i
ε are new correctors.

The advantage of this formulation is to involve u0 itself, instead of ũ0.
In the case of an inclusion, i.e. Ωε ⊂ Ω0, the function ζ can be chosen identically equal to 1, and

W i = V i.

Remark 2.4 We can deplore that the correcting terms wi
ε do depend on ε, though weakly since they are

of order O(1) in the H1(Ωε)-norm. It is possible to remove this feature from the asymptotic expansion by
introducing correctors zi defined in the limit domain Ω0 (with same right-hand side), and using the cut-off
function ζ. Of course, the normal trace does no more vanish on the perturbed boundary and we have to
take this into account in the definition of the profiles. The resulting expansion reads

uε(x) = ũ0(x) + χ(x)

N
∑

i=1

εiṼ i(x
ε ) + ζ(x

ε )

N
∑

i=2

εizi(x) +OH1(Ωε)(ε
N+1). (25)

or, with the previous remark,

uε(x) = ζ(x
ε )u0(x) + χ(x)

N
∑

i=1

εiW̃ i(x
ε ) + ζ(x

ε )
N
∑

i=2

εiz̃i(x) +OH1(Ωε)(ε
N+1). (26)

3 Extension to some curved boundaries.

In this section, for the lightness of the presentation, we consider the case of Dirichlet boundary conditions.
Let uε solve−∆u = f in H1

0(Ωε) while u0 solves the same equation in H1
0(Ω0). We also restrict ourself to

the inclusion case to avoid the need of ũ0, and we make the assumption that the initial domain is convex in
the neighborhood of O. The geometrical situation is illustrated in Figure 2.

Ω0

O
•

O

ω
•

Ωε

•

O

Figure 2: Domains in the case of locally convex curved boundary .

This situation in not a mere extension of the flat one, considered previously. Indeed, if we rectify the
boundary locally near O, the perturbation is not selfsimilar anymore!

Following the analysis performed in [3], we introduce the profile V 1
d as the solution of the problem in

the infinite domain H∞:










−∆V 1
d = 0 in H∞,

V 1
d = −|∇u0(0)|x2 on ∂H∞,

V 1
d → 0 at infinity,

(27)

where x2 denote the second component of the position on ∂H∞. As for the Neumann case, existence and
uniqueness of such a profile follows from next lemma, similar to lemma 2.1.
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Lemma 3.1 Problem (10) admits a unique weak solution V 1
d in the variational space

{

V ; ∇V ∈ L2(H∞) and
V

1 + |X |
∈ L2(H∞)

}

. (28)

Furthermore, there is a constant C depending only H∞ such that

|V 1
d (X)| ≤

C

|X |
and |∇V 1

d (X)| =
C

|X |2
when |X | → ∞. (29)

As in [3], we approximate uε by u0 + χV 1
d ( ·ε ) and we set

rd
ε (x) = uε(x) −

[

u0(x) + χ(x)V 1
d (x

ε )
]

. (30)

This remainder solves






−∆rd
ε (x) = ∆

[

χ(x)εV 1
d (x

ε )
]

, in Ωε,

rd
ε (x) = u0(x)− χ(x)εV 1

d (x
ε ) on ∂Ωε,

(31)

The difference with the flat case treated is the presence of boundary condition on ∂Ω0 ∩ ∂Ωε. The expan-
sions obtained in [3] and in Section 2 were justified without taking into account the short range interaction
between the profiles and the geometry of the initial domain Ω0. The flatness assumption of Ω0 around O
cancels the interaction between slow and rapid variable. Let us emphasize the fact that the approximation
u0 +χV 1

d ( ·ε ) does not satisfy the homogeneous Dirichlet boundary conditions on ∂Ω0 ∩∂Ωε. However, its
trace almost vanishes.

Like in the previous section, the laplacian part is easy to handle and it holds:

‖∆
[

χ(x)εV 1
d (x

ε )
]

‖L2(Ωε) ≤ Cε2.

We need to consider the boundary conditions on ∂Ωε in the two natural parts: on ∂Ωε∩Ω0, we immediately
get rd

ε = u2, which is naturally of order ε2 as a reminder of order 2 in a Taylor expansion. To prove that this
estimate extends to ∂Ω0 ∩ ∂Ωε requires some precautions and turns out to be the most difficult part of the
extension of to curved boundaries. The leading idea of the analysis is a decomposition of profiles in terms
of homogeneous functions, usually obtained from the Mellin transform, see [5, 2]. Here, we only need the
weak following statement.

Lemma 3.2 The profil V 1
d can be written as the sum V1

d + R where V1
d is an homogeneous function of

degree −1 and the remainder R has a precised behavior at infinity: there is a constant C depending only
H∞ such that

|R(X)| ≤
C

|X |
and |∇R(X)| =

C

|X |2
when |X | → ∞. (32)

Proof of Lemma 3.2: Fix R > 0 large enough so that ω ⊂ B(O,R). Then, the trace of V 1
d on the curve

∂B(O,R) ∩ H∞ is smooth and can be written as the sum of its Fourier series. Thanks to the boundary
conditions, only the sinus appear and one gets

V 1
d (R, θ) = a0 +

∑

n≥1

an sinnθ.

Using Poisson’s kernel, we then get that

V 1
d (r, θ) = a0 +

∑

n≥1

an

Rn

rn
sinnθ.

The behavior at infinity of V 1
d imposes a0 = 0 and we set V1

d(r, θ) = a1an

R

r
sin θ. Note that the depen-

dency of expression of V1
d with respect to R is fictious thanks to the homogeneity of its expression. Setting

R = V 1
d − V

1
d , leads to the stated result.
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Let us specify the geometry of ∂Ω0 aroundO. We assume ∂Ω0 to be C2 and fix the coordinate axis such
that ∂Ω0 is the graph x2 = h(x1) of a function h in the neighborhood of O with h(0) = h′(0) = 0. Then,
there exists a number C > 0 and a radius r > 0 such that for x = (x1, x2) ∈ ∂Ω0, it holds

|x| ≤ r ⇒ 0 ≤ h(x1) ≤ C|x1|
2 and |h′(x1)| ≤ C|x1|;

this property is connected to the C2 regularity od ∂Ω0. We fix r∗ = r and choose ε� r∗. This assumption
the characteristic size of the inclusion is small with respect of the radius of curvature of ∂Ω0 at O is a

natural limitation of the method. The geometrical context is summed up in Figure 3.

Figure 3: The geometrical setting of the inclusion in the convex case.

We can now state the estimates on the boundary conditions. The homogeneous part V 1
d of V 1

d is homo-
geneous of order −1, therefore it is easy to check that ‖V1

d‖H1/2(∂Ωε) is of order two in ε. We focus on the
remainder

r̃(x) = rd
ε + εχ (x1, h(x1))V

1
d

(

[x1, h(x1)]

ε

)

.

Proposition 3.3 One has
‖r̃d

ε‖H1/2(∂Ωε) ≤ Cε2. (33)

Proof of Proposition 3.3: In order to split the norm on the differents parts of ∂Ωε, we first study the L2

and H1 norms of the trace. In a first step, we show:

‖r̃d
ε‖L2(∂Ωε) ≤ Cε5/2, (34)

‖r̃d
ε‖H1(∂Ωε) ≤ Cε3/2. (35)

Thanks to the assumption made on the truncation in slow variable, the only two areas are to be considered:
ε∂ω the boundary of the inclusion itself, and the part of ∂Ωε \ ε∂ω in the support of the truncation χ.
On ε∂ω, rd

ε is by construction the remainder of order two in the Taylor expansion of uΩ0
. Therefore, it is

smooth with a L∞-norm of order ε2 and there is a constant C > 0 such that
∫

ε∂ω

(r̃d
ε (s))2ds ≤ Cε5,

After one derivation, one looses one order and gets
∫

ε∂ω

(∇τ r̃
d
ε (s))2ds ≤ Cε3.

For x = (x1, h(x1)) ∈ ∂Ωε \ ε∂ω, the remainder rd
ε is

r̃d
ε (x1, h(x1)) = −εχ (x,h(x1))R

(

(x,h(x1))

ε

)

.
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Now, for x1 ∈ (−r∗, r∗), we take advantage of the homogeneous Dirichlet boundary conditions and write
the remainder as an integral and make the change of variable y = εs:

r̃d
ε (x1, h(x1)) ≤ εR

(

(x,h(x1))

ε

)

= ε

∫ h(x1)/ε

0

∂2R

(

x

ε
, s

)

ds =

∫ h(x1)

0

∂2R

(

x1

ε
,
y

ε

)

dy

Using the upper bound (29) on the profile, we get the pointwise estimate

r̃d
ε (x1, h(x1)) ≤

∫ h(x1)

0

C

1 +
∣

∣

x1

ε

∣

∣

3dy ≤
C|x|4ε3

ε3 + |x1|3

that leads to
∫ r∗

ε

(

r̃d
ε (x1, h(x1))

)2
dx1 ≤ Cε6

∫ r∗

ε

|x1|
4

(ε3 + |x1|3)2
dx1

After the change of variables x1 = εy, we finally get

∫ r∗

ε

(

r̃d
ε (x1, h(x1))

)2
dx1 ≤ Cε5

∫ r∗/ε

1

|y|4

(1 + |y|3)2
dy ≤ Cε5.

Let us turn ourselves to the derivative. For x = (x1, h(x1)) ∈ ∂Ωε \ ε∂ω, one has

∇τ r̃
d
ε (x) = χ(x)

[

∂1R

(

x1

ε
,
h(x1)

ε

)

+ h′(x1)∂2R

(

x1

ε
,
h(x1)

ε

)]

+∇τχ(x)R

(

x1

ε
,
h(x1)

ε

)

.

We decompose this sum into

T1(x) = χ(x)∂1R

(

x1

ε
,
h(x1)

ε

)

,

T2(x) = χ(x)h′(x1)∂2R

(

x1

ε
,
h(x1)

ε

)

,

T3(x) = ∇τχ(x)R

(

x1

ε
,
h(x1)

ε

)

.

The study of T3 is a corollary of (34) and the Cauchy-Schwarz inequality leads to

∫ r∗

ε

|T3(x)|
2dx1 ≤ Cε5.

The other terms involve derivation in the fast variable and hence loss of order. More precisely, we have:

T1(x) =

∫ h(x1)/ε

0

∂2
2,1R

(

x1

ε
, s

)

ds ≤
C|x1|

2ε3

ε4 + |x1|4
.

Once we integrate over x1, we obtain

∫ r∗

ε

|T1(x1)|
2dx1 ≤ Cε3

∫ r∗/ε

1

|y|4

(1 + |y|3)2
dy.

Finally, we write

T2(x) ≤ C|x1|
C

1 + |x1

ε |
3
≤

C|x|ε3

ε3 + |x|3
.

∫ r∗

ε

|T1(x1)|
2dx1 ≤ Cε3

∫ r∗/ε

1

|y|2

(1 + |y|3)2
dy.

We treat the double products thanks to the Cauchy-Schwarz inequality to get (35). The estimate (33) is
easily deduced from (34) and (35) by interpolation.
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All the ingredients needed to prove the main result of this section are now at our disposal.

Theorem 3.4 In the curved situation described previously , it holds:

uε(x) = u0(x) + χ(x)V 1
d (x

ε ) +OH1(Ωε)(ε
2). (36)

while the boundary condition satisfies

u0(x) + χ(x)V 1
d (x

ε ) = OH1/2(∂Ωε)(ε
2) (37)

4 Variations of energy integrals for singular domain deformations.

In this section, we investigate the behavior of the Dirichlet energy with respect to singular deformations of
the boundary, our presentation is similar to [10]. We recall that for a given function f ∈ D(Rd) the Dirichlet
energy of Ω0 an bounded open subset of R

d with supp(f) ⊂⊂ Ω0 is

J(Ω0) = −
1

2

∫

Ω0

|∇uΩ0
(x)|

2
dx,

where uΩ0
is the solution of −∆u = f in H1

0(Ω0). We consider the same class of singular deformations
than in the previous section. The notations are recalled in Figure 4. The first result is the following.

Γ
−

ε

ω
−

ε

ω
+
ε

Γ
+
ε

Ωε, Ω0 Γ−ε = ∂Ωε ∩ Ω0 ⊂ ∂Ωε,

Γ+
ε = ∂Ω0 ∩ Ωε ⊂ ∂Ω0,

ω+
ε = Ωε \ (Ωε ∩ Ω0) ⊂ Ωε,

ω−ε = Ω0 \ (Ωε ∩ Ω0) ⊂ Ω0.

Figure 4: The notations.

Proposition 4.1 Let ε > 0 be such that supp(f) ⊂⊂ Ωε and uε (resp. u0) denotes the solution of −∆u =
f in H1

0(Ωε) (resp. H1
0(Ω0)). Then, one has :

J(Ωε) = J(Ω0)−
1

2

∫

Γ−ε

u0

∂uε

∂n
dσ +

1

2

∫

Γ+
ε

uε

∂u0

∂n
dσ (38)

Proof of Proposition 4.1.: The proof is elementary and based on the Gauss formula. Hence, it cannot be
extended to more general shape functional. Since Ωε = (Ωε ∩ Ω0) ∪ ω

+
ε , we write

J(Ωε) = −
1

2

∫

Ωε

|∇uε|
2
dx = −

1

2

∫

Ωε∩Ω0

|∇u0 +∇(uε − u0)|
2
dx−

1

2

∫

ω+
ε

|∇uε|
2
dx.

The second integral can be rewritten by the Gauss formula. One has to be careful with the outer normal
vector field. By n, we denote the outer normal vector field of ∂Ωε or ∂Ω0 depending on the context. It may
be the opposite to the outer normal field to ω−ε , ω+

ε denoted by n :

∫

ω+
ε

|∇uε|
2
dx =

∫

ω+
ε

uε(−∆uε)dx+

∫

Γ+
ε

uε

∂uε

∂n
dσ = −

∫

Γ+
ε

uε

∂uε

∂n
dσ.

We expend the first integral and get :
∫

Ωε∩Ω0

|∇u0 +∇(uε − u0)|
2
dx =

∫

Ωε∩Ω0

|∇u0|
2
dx+ 2

∫

Ωε∩Ω0

〈∇u0,∇(uε − u0)〉dx

+

∫

Ωε∩Ω0

|∇(uε − u0)|
2
dx.
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Applying Green’s formula and using the homogeneous Dirichlet boundary conditions on ∂Ωε and ∂Ω0, we
have :

∫

Ωε∩Ω0

|∇u0|
2
dx =

∫

Ω

|∇u0|
2
dx+

∫

Γ−ε

u0

∂u0

∂n
dσ;

∫

Ωε∩Ω0

|∇(uε − u0)|
2 dx =

∫

Γ−ε

u0

(

∂u0

∂n
−
∂uε

∂n

)

dσ +

∫

Γ+
ε

uε

(

∂uε

∂n
−
∂u0

∂n

)

dσ;

∫

Ωε∩Ω0

〈∇u0,∇(uε − u0)〉dx =

∫

Γ−ε

u0

∂uε

∂n
dσ −

∫

Γ−ε

u0

∂u0

∂n
dσ.

We now sum up all these intermediary computations, and we get :

∫

Ωε∩Ω0

|∇uε|
2
dx =

∫

Ω0

|∇u0|
2
dx +

∫

Γ−ε

u0

∂uε

∂n
dσ +

∫

Γ+
ε

uε

(

∂uε

∂n
−
∂u0

∂n

)

dσ;

and
∫

Ωε

|∇uε|
2
dx =

∫

Ω0

|∇u0|
2
dx+

∫

Γ−ε

u0

∂uε

∂n
dσ −

∫

Γ+
ε

uε

∂u0

∂n
dσ.

This concludes the proof.

Change of boundary conditions. The same method allows to treat the change of boundary conditions
imposed on the perturbed part of the boundary. Assume that the state function uΩε solves now the mixed
problem







−∆u = f ∈ Ωε,
u = 0 ∈ ∂Ωε ∩ ∂Ω0,

∂nu = 0 ∈ ∂Ωε \ (∂Ωε ∩ ∂Ω0).
(39)

We can state the counterpart of Theorem 4.1.

Proposition 4.2 Let ε > 0 be such that supp(f) ⊂⊂ Ωε and uε denotes the solution of (39) in H1(Ωε) .
Let u0 be the solution of −∆u = f in H1

0(Ω0)). Then, one has :

J(Ωε) = J(Ω0) +
1

2

∫

Γ−ε

u0

∂u0

∂n
dσ −

1

2

∫

Γ+
ε

uε

∂uε

∂n
dσ. (40)

The proof is very similar to the proof of Theroem 4.1. The changes appear in the Green formula .

Inserting the asymptotic expansion of uε into formulæ (38) and (40), we easily obtain

Proposition 4.3 In the framework of Proposition 4.1, the Dirichlet energy admits the following asymptotic
expansion:

J(Ωε) = J(Ω0) + ε2|∇u0(0)|2AH∞
+ O(ε2), (41)

where

AH∞
= −

1

2

∫

Γ−
K(y)∂NK(y)dσy +

1

2

∫

Γ+

K(y)N2(y)dσy ,

V is the normalized profile: K = V 1
d /|∇u0(0)|, cf. (10).

For 4.2, formula (41) hold with

AH∞
= −

1

2

∫

Γ−
N2(y)dσy +

1

2

∫

Γ+

K(y)∂NK(y)dσy.

with the modified boundary conditions.
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5 Numerics

5.1 Strategy

As already mentioned, the solution uε of the model problem (5) is difficult to approximate from a numerical
point of view: the refinement needed near the perturbation for a reasonable precision prevents (a least for
small values of ε) to compute uε directly. The asymptotic expansion, see Theorem 2.2, suggests a the
following numerical strategy.

Writing the expansion (24) of uε at order 1, we get

uε(x) ' ζ(x
ε )u0(x) + εχ(x)V 1(x

ε ). (42)

For simplicity, we consider here the case of an inclusion (Ωε ⊂ Ω0) and thanks to Remark 2.3, the cut-
off function ζ may be chosen identically equal to 1. A natural approximation of uε reads then uε(x) '
u0(x) + εχ(x)V 1(x

ε ).

• the limit term u0 may be computed accurately in a pretty coarse mesh independently of ε ;

• the profile V 1 does not depend on ε, but only on the geometry of the pattern H∞. Its approximation
is not straightforward, since it is defined on an infinite domain, but a technique of artificial boundary
is efficient in this case (with a suitable boundary condition, base for example on an integral represen-
tation).

The functions u0 and V 1 being computed, it remains to perform the superposition of u0(x) with the cor-
recting term εχ(x)V 1(x

ε ). Since the mesh used for the approximations do not coincide, we need to transfer
V 1( ·ε ) onto the mesh where u0 has been computed. This step can be facilitated by using a regular mesh for
V 1 (e.g. tensorial in polar coordinates, except near the perturbing pattern). The function χ is replaced in
the computations by the use of a patch of elements: V 1 is not taken into account except in this patch.

The obtained approximation is close to uε up to order O(ε2). For small values of ε, we expect the
method to work fine; for larger ε, the results may be inaccurate, but in that case the perturbation can be
incorporated directly to the initial mesh without harsh refinement. Of course, from a practical point of view
small and large have to be adapted to the considered situation.

5.2 Numerical results

We conclude the paper with some numerical results which validate our approach. The considered problem
is the following

uε ∈ H1(Ωε), −∆uε = f in Ωε, and ∂nu = 0 on ∂Ωε, (43)

where f(x, y) = 2π2 cos(πx) sin(πy) and Ωε is the square (−1/2, 1/2)× (0, 1) with a semicircular hole
of radius ε, centered at (0, 0). Figure 5 shows, for ε = 1/32 the solution uε (top-left picture), the difference
between uε and the limit term u0 (top-right picture), the difference between uε and the corrected limit term
u1 = u0 + εV 1( ·ε ) (bottom-right picture2 ). The bottom-left graph represents, for various values of ε, the
norm of the errors (L2, H1 and L∞-norms).

The efficiency of the correction by the first profile clearly appears in these results: for example, with
ε = 1/128, the L∞-norm of uε − u1 is about 40 times less than the L∞-norm of uε − u0.

In Figure 6, we present the same results in the Dirichlet case for a curved Ω0:

uε ∈ H1(Ωε), −∆uε = f in Ωε. (44)

The same conclusions arise; the gain in L∞-norm is here around 50.

2The profile V 1 has been computed on a (quasi-)regular mesh, independently of the value of ε, and it has been projected onto the
initial grid for the computation of u1.
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ε ‖uε − u0‖H1(Ωε) ‖uε − u1‖H1(Ωε) Gain
ε = 1/2 7.9168e-01 3.6946e+00 0.2
ε = 1/4 4.6937e-01 8.9397e-01 0.5
ε = 1/8 2.4354e-01 1.9181e-01 1.3
ε = 1/16 1.2286e-01 1.9593e-02 6.3
ε = 1/32 6.1569e-02 5.4704e-03 11.3
ε = 1/64 3.0802e-02 4.1649e-03 7.4
ε = 1/128 1.5403e-02 2.5574e-03 6.0
ε = 1/256 7.7017e-03 1.2696e-03 6.1
ε = 1/512 3.8509e-03 6.3292e-04 6.1

uε for ε = 1/32 uε − u0 for ε = 1/32
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Parameters : Q10Q10R40 − Neumann

uε−u
0
, L2

uε−u
0
 H1

uε−u
0
, L∞

uε−u
1
, L2

uε−u
1
, H1

uε−u
1
, L∞

Norms of the errors uε − u1 for ε = 1/32

Figure 5: Computations for the Neumann problem (43).
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ε ‖uε − u0‖H1(Ωε) ‖uε − u1‖H1(Ωε) Gain
ε = 1/2 2.1645e-01 2.1029e+00 1.0
ε = 1/4 1.3264e+00 5.4458e-01 2.4
ε = 1/8 7.4406e-01 1.4416e-01 5.2
ε = 1/16 3.9208e-01 3.5187e-02 11.1
ε = 1/32 2.0097e-01 8.8438e-03 22.7
ε = 1/64 1.0170e-01 2.3011e-03 44.2
ε = 1/128 5.1153e-02 7.0180e-04 72.9
ε = 1/256 2.5652e-02 1.8811e-04 136.4
ε = 1/512 1.2845e-02 5.7410e-05 223.7

uε for ε = 1/32 uε − u0 for ε = 1/32
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Norms of the errors uε − u1 for ε = 1/32

Figure 6: Computations for the Dirichlet problem (44).
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14


