Direct and dual laws for automata with multiplicities

Gérard Henry Edmond Duchamp, Marianne Flouret, Eric Laugerotte, Jean-Gabriel Luque

- To cite this version:

Gérard Henry Edmond Duchamp, Marianne Flouret, Eric Laugerotte, Jean-Gabriel Luque. Direct and dual laws for automata with multiplicities. Theoretical Computer Science, 2001, 267, pp.105-120. hal-00085316v1

HAL Id: hal-00085316
 https://hal.science/hal-00085316v1

Submitted on 12 Jul 2006 (v1), last revised 13 Jul 2006 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Direct and dual laws for automata with multiplicities

G. Duchamp, M. Flouret, É. Laugerotte and J-G. Luque ${ }^{1}$
LIFAR, Faculté des Sciences et des Techniques, 76821 Mont-Saint-Aignan CEDEX France.

Abstract

We present here theoretical results coming from the implementation of the package called AMULT (automata with multiplicities in several noncommutative variables). We show that classical formulas are "almost every time" optimal, characterize the dual laws preserving rationality and also relators that are compatible with these laws.

Key words: Automata with multiplicities; rational laws; dual laws; congruences; shuffle compatibility

1 Introduction

Noncommutative formal series (i.e. functions on the free monoid, with values in a - commutative or not - semiring) encode an infinity of data. Rational series can be represented by linear recurrences, corresponding to automata with multiplicities, and therefore they can be generated by finite state processes. Literature can be found on these "weighted automata" and their theoretical and practical (e.g. [13], [16], [11], [2], [15]) applications (recently one of us solved a conjecture in operator theory using these tools [4]). The theory was founded by Schützenberger in 1961 [18] where the link between recognizable and rational series is showed (see also [19]), extending to rings (and to semirings [1]) Kleene's result for languages [12] (corresponding to boolean coefficients). In 1974, for the case of fields, Fliess [6] extended the proof of the equivalence of minimal linear representations, using Hankel matrices. All these results allow us to construct an algorithmic processing for this series and their

[^0]associated operations. In fact, classical constructions of language theory have multiplicity analogues which can be used in every domain where linear recurrences between words are handled. All these operations can be found in the package over automata with multiplicities (called AMULT). This package is a component of the environment SEA (Symbolic Environment for Automata) under development at the University of Rouen.

The structure of this paper is the following: In section 3 (the first section after introductory paragraphs), we recall the classical construction for simple rational laws $(+, ., *, \times)$ and make some remarks concerning in particular the non-commutative case. The compositions are based on polynomial formulas which has an important consequence on composition of automata choosen "at random". In fact, this first result says that the classical formulas are "almost everywhere" optimal (which is clear from experimental tests at random).

In section 4, we show that the three laws known to preserve rationality (Hadamard, shuffle and infiltration products) are of the same nature: they arise by dualizing alphabetic morphisms. Moreover, they are, up to a deformation, the only ones of this kind, which of course, shows immediately in the implemented formulas.

Section 5 is devoted to study the compatibility with relators. It was well known that, when coefficients are taken in a ring of characteristic 0 , the only relators compatible with the shuffle were partial commutations ([3]). Here, we show that a similar result holds (up to the supplementary possibility of letters erasure) when K is a semiring which is not a ring. This implies the known case as a corollary. To end with, we give examples of some strange relators in characteristic 2.

2 Preamble

Let $K\langle\langle A\rangle\rangle$ be the set of noncommutative formal series with A a finite alphabet and K a semiring (commutative or not). A series denoted $S=\sum_{w \in A^{*}}\langle S \mid w\rangle w$ is recognizable iff there exists a row vector $\lambda \in K^{1 \times n}$, a morphism of monoids $\mu: A^{*} \rightarrow K^{n \times n}$ and a column vector $\gamma \in K^{n \times 1}$, such that for all $w \in A^{*}$, one has $\langle S \mid w\rangle=\lambda \mu(w) \gamma$. Throughout the paper, we will denote by $S:(\lambda, \mu, \gamma)$ this property and say that (λ, μ, γ) is a linear representation of S, or an automaton with behaviour S. The integer n is called the dimension of the linear representation (λ, μ, γ) [6].

Let $K^{\text {rat }}\langle\langle A\rangle\rangle$ be the set of rational noncommutative formal series, that is the set generated from the letters and the laws "." (concatenation or Cauchy product), $*$ (star operation, partially defined), $\times($ external product $)$ and +
(union or sum). The preceding four laws are called simple rational laws. The following important theorem for series [18] is the analogue of Kleene's theorem for languages (and in fact implies it).

Theorem 1 (Schützenberger, 1961) A formal series is recognizable if and only if it is rational.

Notice that, in the boolean case, \times (the external product) is trivial, but it permits to take for granded that $L=\emptyset$ and then $\emptyset^{*}=1$ are rational (see [12,10]).

A reduced automaton (λ, μ, γ) is an automaton of minimal dimension among all the automata with behaviour S^{2}. This minimum is called the rank of the series S [18]. In case K is a field, the rank of S is the dimension of the linear span of the shifts of S (see Sect. 3). It is the smallest number of nodes of an automaton with behaviour S. Here, minimization (up to an equivalence) is possible [18] (see also [1]). An explicit algorithm is given in full details in [9] (notice that this algorithm is valid as well for noncommutative multiplicities) as well as the construction of intertwining matrices.

Again, the specialisation of K to the boolean semiring \mathbb{B} yields to the case of classical finite state automata.

3 Constructing usual laws

3.1 Operations on linear representations

We expound here universal formulas for constructing linear representations. They can be applied to any semiring K. For two representations of ranks n and m, it will be provided a representation of $\operatorname{rank} r(n, m)$. Let us recall some classical facts. Classical operations on series are sum, external product and star (unary and partially defined). By definition, the sum of two series R and S is

$$
R+S=\sum_{w \in A^{*}}(\langle R \mid w\rangle+\langle S \mid w\rangle) w
$$

their concatenation (or Cauchy product)

$$
R . S=\sum_{w \in A^{*}}\left(\sum_{u v=w}\langle R \mid u\rangle\langle S \mid v\rangle\right) w,
$$

[^1]and the star of a series S
$$
S^{*}=\sum_{n \geq 0} S^{n}=1+S S^{*}
$$
if its constant term is zero (such a series is said to be proper). The preceding operations have polynomial counterparts in terms of linear representations. We gather them in the following proposition.

Proposition 2 Let $R: \mathcal{A}_{r}=\left(\lambda^{r}, \mu^{r}, \gamma^{r}\right)$ (resp. $S: \mathcal{A}_{s}=\left(\lambda^{s}, \mu^{s}, \gamma^{s}\right)$) of rank n (resp. m). The linear representations of the sum, the concatenation and the star are respectively
$R+S$:

$$
\mathcal{A}_{r} \boxplus \mathcal{A}_{s}=\left(\left(\lambda^{r} \lambda^{s}\right),\left(\begin{array}{c|c}
\mu^{r}(a) & 0_{n \times m} \tag{1}\\
\hline 0_{m \times n} \mid \mu^{s}(a)
\end{array}\right)_{a \in A},\binom{\gamma^{r}}{\gamma^{s}}\right)
$$

R.S :

$$
\mathcal{A}_{r} \boxtimes \mathcal{A}_{s}=\left(\left(\lambda^{r} 0_{1 \times m}\right),\left(\begin{array}{c|c}
\mu^{r}(a) & \gamma^{r} \lambda^{s} \mu^{s}(a) \tag{2}\\
\hline 0_{m \times n} & \mu^{s}(a)
\end{array}\right)_{a \in A},\binom{\gamma^{r} \lambda^{s} \gamma^{s}}{\gamma^{s}}\right),
$$

If $\lambda^{s} \gamma^{s}=0, S^{*}:$

$$
\left.\mathcal{A}_{s} \text { 四 }=\left(\begin{array}{l|l}
\left(0_{1 \times m} 1\right.
\end{array}\right),\left(\begin{array}{c|c}
\mu^{s}(a)+\gamma^{s} \lambda^{s} \mu^{s}(a) & 0_{m \times 1} \tag{3}\\
\hline \lambda^{s} \mu^{s}(a) & 0
\end{array}\right)_{a \in A},\binom{\gamma^{s}}{1}\right) .
$$

Proof Formula (1) is straightforward.
To prove formula (2), let $(\lambda, \mu, \gamma):=\mathcal{A}_{r} \boxtimes \mathcal{A}_{s}$. One proves by induction that

$$
\mu(w)=\left(\begin{array}{cc}
\mu^{r}(w) & \sum_{\substack{u w=w \\
v \neq 1}} \mu^{r}(u) \gamma^{r} \lambda^{s} \mu^{s}(v) \\
0_{m \times n} & \mu^{s}(w)
\end{array}\right)
$$

and then $\lambda \mu(w) \gamma=\sum_{u v=w} \lambda^{r} \mu^{r}(u) \gamma^{r} \lambda^{s} \mu^{s}(v) \gamma^{s}=\sum_{u v=w}\langle R \mid u\rangle\langle S \mid v\rangle$.
Concerning the formula (3), let $\left(\lambda^{*}, \mu^{*}, \gamma^{*}\right):=\mathcal{A}_{s}$ ख. Again,

$$
\mu^{*}(w)=\left(\begin{array}{cc}
* & 0_{m \times 1} \\
\sum_{n=1}^{|w|} \sum_{\substack{u_{1} \cdots u_{n}=w \\
u_{i} \neq 1}}\left(\lambda_{s} \mu_{s}\left(u_{1}\right) \gamma_{s}\right) \cdots\left(\lambda_{s} \mu_{s}\left(u_{n-1}\right) \gamma_{s}\right)\left(\lambda_{s} \mu_{s}\left(u_{n}\right)\right) & 0
\end{array}\right),
$$

that is

$$
\begin{aligned}
\lambda^{*} \mu^{*}(w) \gamma^{*} & =\sum_{n=1}^{|w|} \sum_{\substack{u_{1} \cdots u_{n}=w \\
u_{i} \neq 1}}\left(\lambda_{s} \mu_{s}\left(u_{1}\right) \gamma_{s}\right) \cdots\left(\lambda_{s} \mu_{s}\left(u_{n}\right) \gamma_{s}\right) \\
& =\sum_{n=1}^{|w|}\left\langle S^{n}\right| w| \rangle=\sum_{n \geq 0}\left\langle S^{n}\right| w| \rangle=\left\langle S^{*} \mid w\right\rangle
\end{aligned}
$$

Remark 3 (1) Formulas (1) and (2) provide associative laws on triplets. They can be found explicitly in [2].
(2) Formula (3) makes sense even when $\lambda^{s} \gamma^{s} \neq 0$ (this fact will be used in the density result of Section 3.2).
(3) Of course if $S:(\lambda, \mu, \gamma)$ and $\alpha \in K$ then $\alpha S:=\alpha \times S:(\alpha \lambda, \mu, \gamma)$ and $S \alpha:=S \times \alpha:(\lambda, \mu, \gamma \alpha)$.
(4) For the sum $\left(\mathcal{A}_{R} \boxplus \mathcal{A}_{S}\right), \mathcal{A}_{R}$ and \mathcal{A}_{S} are just placed side by side.

The product \mathcal{A}_{R} ■ \mathcal{A}_{S} has the following components

- States: States of \mathcal{A}_{R} and \mathcal{A}_{S}.
- Inputs: Inputs of \mathcal{A}_{R}.
- Transitions: Transitions of \mathcal{A}_{R} and \mathcal{A}_{S} and, for each letter a, each state r_{i} of \mathcal{A}_{R} and each state s_{j} of \mathcal{A}_{S}, a new arc $r_{i} \xrightarrow{a} s_{j}$ is added with the coefficient $\left(\gamma_{r}\right)_{i}\left(\lambda_{s} \mu_{s}(a)\right)_{j}$.
- Outputs: The scalar product $\lambda_{s} \gamma_{s}$ is computed once for all and there is an output on each q_{i} with the coefficient $\left(\gamma_{r}\right)_{i} \lambda_{s} \gamma_{s}$, the outputs of \mathcal{A}_{S} being unchanged.

For $\mathcal{A}^{\circledast}$, one adds a new state q_{n+1} with an input and an output bearing coefficient 1, every coefficient $\mu_{i, j}(a)$ is multiplied by $\left(1+\gamma_{i} \lambda_{j}\right)$ and new transitions $q_{n+1} \xrightarrow{a} q_{i}$ with coefficient $\sum_{k} \lambda_{k} \mu_{k, i}(a)$ (i.e. the "charge" of the state q_{i} after reading a) are added.

In the case $K=\mathbb{B}$, one recovers the classical boolean constructions.

3.2 Sharpness

Here we discuss the sharpness of the preceding constructions. Indeed, testing our package showed us that "almost everytime" the compound automata was minimal when the data were choosen at random. The crucial point in the proof of Theorem 6 is the fact that certain polynomial indicators are not trivial. For this, we use suited examples which are gathered in the following subsection.
a) Test automata

Let $\mathcal{B}=\left(S_{i}\right)_{1 \leq i \leq n}$ be a finite sequence of series generating a stable module and $S=\sum_{i=1}^{n} \lambda_{i} S_{i}$. It is well known that the triplet

$$
\left(\sum_{i=1}^{n} \lambda_{i} e_{i}, \quad\left(\left[\mu_{i, j}(a)\right]_{1 \leq i, j \leq n}\right)_{a \in A}, \sum_{i=1}^{n}\left\langle S_{i} \mid 1\right\rangle e_{i}^{*}\right)
$$

(where $e_{i}:=(0, \cdots, 1, \cdots 0)$ with the entry 1 at place i, e_{i}^{*} the transpose of e_{i}, and $a^{-1} S_{i}=\sum_{j=1}^{n}(\mu(a))_{i j} S_{j}$ for any letter $\left.a \in A\right)$ is a linear representation of S. Here, to each series of one variable, $S=\sum_{p \geq 0} \alpha_{p} a^{p}$, of rank n, over a field K, we associate the triplet $\tau(S)$ given by $\mathcal{B}=\left(a^{-p} S\right)_{0 \leq p \leq n-1}$.

Remark 4 Of course, if $a \in A$ we consider that S belongs to $K\langle\langle A\rangle\rangle$ and this will neither affect the rank nor the following constructions.

Lemma 5 Let $S_{\alpha, n}=\frac{1}{(1-\alpha a)^{n}}$ and $T_{n}=\frac{a^{n-1}}{1-a^{n}}$ be \mathbb{Q}-series.
(1) The rank of $S_{\alpha, n}, S_{\alpha, n}+S_{\beta, m}(\alpha \neq \beta)$, and $S_{\alpha, n} . S_{\alpha, m}$ are respectively n, $n+m$ and $n+m$.
(2) The rank of T_{n} is n and that of T_{n}^{*} is $n+1$.

Proof Straightforward.
b) Density

The following theorem proves that, if the data are choosen "at random" in bounded domains, the compound automaton is almost surely minimal. More precisely:

Theorem 6 Let A be a finite alphabet and $\mathcal{A}_{i}=\left(\lambda_{i}, \mu_{i}, \gamma_{i}\right)$ two automata of dimension $n_{i}(i=1,2)$, choosen "at random" within bounded non trivial disks of $K(K=\mathbb{R}$ or $\mathbb{C})$. Then the probability that the automaton $\mathcal{A}_{1} \boxplus \mathcal{A}_{2}$ (resp. $\mathcal{A}_{1} \square \mathcal{A}_{2}, \mathcal{A}_{1}{ }^{\text {® }}$) be minimal is 1 .

Proof The proof rests on the following lemma.
Lemma 7 There is a polynomial mapping $P: K^{|A| \times n^{2}+2 n} \rightarrow K^{s}$ such that $P(\lambda, \mu, \gamma)=0$ iff (λ, μ, γ) (an automaton of dimension n) is not minimal.

Proof of the lemma By a theorem of Schützenberger [18], the representation (λ, μ, γ) is minimal iff $\lambda \mu(K\langle A\rangle)=K^{1 \times n}$ (resp. $\left.\mu(K\langle A\rangle) \gamma=K^{n \times 1}\right)$. As there is a prefix (resp. suffix) subset $U \subset A^{*}$ (resp. $V \subset A^{*}$) such that $\lambda \mu(U)$ (resp. $\mu(V) \gamma)$ is a basis, we have $U \subset A^{<n}$ (resp. $V \subset A^{<n}$). Let $A^{<n}=\left\{w_{1}:=\right.$ $\left.1, w_{2}, \cdots, w_{m}\right\} \quad\left(m=\left(|A|^{n}-1\right) /(|A|-1)\right)$, one constructs the $m \times n$ (resp. $n \times m$) matrix

$$
L=\left(\begin{array}{c}
\lambda \mu\left(w_{1}\right) \\
\lambda \mu\left(w_{2}\right) \\
\vdots \\
\lambda \mu\left(w_{m}\right)
\end{array}\right)\left(\text { resp. } M=\left(\mu\left(w_{1}\right) \gamma \cdots \mu\left(w_{m}\right)\right)\right)
$$

these matrices have polynomial entries in the data. In view of what precedes, minimality is equivalent to the non nullity of some $n \times n$-minor of L and of M. Sorting these minors as a vector, one get the desired polynomial mapping $K^{|A| \times n^{2}+2 n} \rightarrow K^{s}$ with $s=\binom{m}{n}$.

The other steps go as follows.
(1) For the two first operations, let $P_{\boxplus}=\left(\mathcal{A}_{1} \boxplus \mathcal{A}_{2}\right), P_{\square}=P\left(\mathcal{A}_{1} \square \mathcal{A}_{2}\right)$, and prove that P_{\boxplus} (resp. $\left.P_{\square}\right)$ is not trivial using $\tau\left(S_{\alpha, n}\right)=\mathcal{A}_{1}$ and $\tau\left(S_{\beta, n}\right)=\mathcal{A}_{2}, \alpha \neq \beta\left(\right.$ resp. $\tau\left(S_{\alpha, n}\right)=\mathcal{A}_{1}$ and $\left.\tau\left(S_{\alpha, m}\right)=\mathcal{A}_{2}\right)$ extended to the alphabet A in view of remark 4. For the star operation, prove that $P_{\text {国 }}=P\left(\mathcal{A}_{1}{ }^{\text {Ti }}\right)$ is not trivial using $\tau\left(T_{n}\right)=\mathcal{A}_{1}$ 。
(2) End of the proof: if $\phi: K^{r} \rightarrow K^{s}$ is polynomial and not trivial, let ν be the normalized uniform probability mesure on the product of disks, then the probability such that $\phi(\nu) \neq 0$ is 1 as $\phi^{-1}\{0\}$ is closed with empty interior.

4 Dual laws

4.1 Discussion

Let $a, b \in A, u, v \in A^{*}$, and $\odot_{\epsilon, q}$ be the law defined recursively by

$$
\left\{\begin{array}{l}
1 \odot_{\epsilon, q} 1=1, a \odot_{\epsilon, q} 1=1 \odot_{\epsilon, q} a=\epsilon a, \\
a u \odot_{\epsilon, q} b v=\epsilon\left(a\left(u \odot_{\epsilon, q} b v\right)+b\left(a u \odot_{\epsilon, q} v\right)\right)+q \delta_{a, b} a\left(u \odot_{\epsilon, q} v\right)
\end{array}\right.
$$

with $\delta_{a, b}$ the Kronecker delta.

One immediately checks that this law is associative iff $\epsilon \in\{0,1\}$. We get, here, the well-known shuffle ($\Psi=\odot_{1,0}$), infiltration $\left(\uparrow=\odot_{1,1}\right)$ and Hadamard $\left(\odot=\odot_{0,1}\right)$ products ([5], [14]). Then, $\odot_{1, q}$ is a continuous deformation between shuffle and infiltration. These laws can be called "dual laws" as they proceed from the same template that we now describe. We use an implementable realisation of the lexicographically ordered tensor product. Let us recall that the tensor product of two spaces U and V with bases $\left(u_{i}\right)_{i \in I}$ and $\left(v_{j}\right)_{j \in J}$ is $U \otimes V$, with basis $\left(u_{i} \otimes v_{j}\right)_{(i, j) \in I \times J}$, and for the sake of computation, we impose that the set $I \times J$ be lexicographically ordered.

Let $K\langle A\rangle \otimes K\langle A\rangle$ be the "double" non commutative polynomial algebra that is the set of finite sums $P=\sum_{u, v \in A^{*}}\langle P \mid u \otimes v\rangle u \otimes v$, the product being given by $\left(u_{1} \otimes v_{1}\right)\left(u_{2} \otimes v_{2}\right)=u_{1} u_{2} \otimes v_{1} v_{2}$.
The construction of dual laws is based on the following pattern:

Let $c: K\langle A\rangle \rightarrow K\langle A\rangle \otimes K\langle A\rangle$, if for all $w \in A^{*}$, the set $\{w:\langle u \otimes v \mid c(w)\rangle \neq 0\}$ is finite (in which case c will be called locally finite), then the sum

$$
u \square_{\alpha} v=\sum_{w \in A^{*}}\left\langle u \otimes v \mid c_{\alpha}(w)\right\rangle w
$$

exists and defines a (binary) law \square_{α} on $K\langle A\rangle$, dual to c_{α}. Then, this extends to series by

$$
\left\langle R \square_{\alpha} S \mid w\right\rangle:=\left\langle R \otimes S \mid c_{\alpha}(w)\right\rangle .
$$

One can show easily that the three laws \odot, \amalg and \uparrow come from coproducts defined on the words by
(1) $c_{\alpha}\left(a_{1} a_{2} \cdots a_{n}\right)=c_{\alpha}\left(a_{1}\right) c_{\alpha}\left(a_{2}\right) \cdots c_{\alpha}\left(a_{n}\right)$,
(2) $c_{\odot}(a)=a \otimes a, c_{\text {Ш }}(a)=a \otimes 1+1 \otimes a, c_{\uparrow}(a)=a \otimes 1+1 \otimes a+a \otimes a$,
and generally $c_{\epsilon, q}(a)=\epsilon(a \otimes 1+1 \otimes a)+q a \otimes a$.
The preceding computation scheme has an immediate consequence on the implementation of the laws.

Proposition 8 Let $R:\left(\lambda^{r}, \mu^{r}, \gamma^{r}\right)$ and $S:\left(\lambda^{s}, \mu^{s}, \gamma^{s}\right)$. Then

$$
R \square_{\alpha} S:\left(\lambda^{r} \otimes \lambda^{s}, \mu^{r} \otimes \mu^{s} \circ c_{\alpha}, \gamma^{r} \otimes \gamma^{s}\right) .
$$

Proof We verify it by duality. Indeed, for $w \in A^{*}$,

$$
\begin{aligned}
\left\langle R \otimes S \mid c_{\alpha}(w)\right\rangle & =\sum_{u, v \in A^{*}}\left\langle\lambda^{r} \otimes \lambda^{s}\left(\mu^{r} \otimes \mu^{s}(u \otimes v)\right) \gamma^{r} \otimes \gamma^{s} \times u \otimes v \mid c_{\alpha}(w)\right\rangle \\
& =\sum_{u, v \in A^{*}} \lambda^{r} \otimes \lambda^{s}\left(\mu^{r} \otimes \mu^{s}(u \otimes v)\right) \gamma^{r} \otimes \gamma^{s} .\left\langle u \otimes v \mid c_{\alpha}(w)\right\rangle \\
& =\lambda^{r} \otimes \lambda^{s}\left(\sum_{u, v \in A^{*}} \mu^{r} \otimes \mu^{s}\left\langle u \otimes v \mid c_{\alpha}(w)\right\rangle(u \otimes v)\right) \gamma^{r} \otimes \gamma^{s} \\
& =\lambda^{r} \otimes \lambda^{s}\left(\mu^{r} \otimes \mu^{s} \sum_{u, v \in A^{*}}\left\langle u \otimes v \mid c_{\alpha}(w)\right\rangle(u \otimes v)\right) \gamma^{r} \otimes \gamma^{s} \\
& =\lambda^{r} \otimes \lambda^{s}\left(\mu^{r} \otimes \mu^{s} c_{\alpha}(w)\right) \gamma^{r} \otimes \gamma^{s} . \quad \square
\end{aligned}
$$

Let us study among laws which ones are associative.
Proposition 9 Let K be a field, and $c_{\alpha}: K\langle A\rangle \rightarrow K\langle A\rangle \otimes K\langle A\rangle$ the alphabetic morphism defined on the letters of A by

$$
c_{\alpha}(a)=\sum_{p, q \geq 0} \alpha_{p, q} a^{p} \otimes a^{q}
$$

with $c_{\alpha}(1)=1 \otimes 1\left(\alpha_{p, q}=\alpha_{p, q}(a)\right.$ may vary from one letter to one another $)$.
(1) The morphism c_{α} is locally finite iff $\alpha_{0,0}=0$.
(2) Providing $\alpha_{0,0}=0$, the following assertions are equivalent.
(a) The law \square_{α} defined by $\left\langle u \square_{\alpha} v \mid w\right\rangle:=\left\langle u \otimes v \mid c_{\alpha}(w)\right\rangle\left(u, v, w \in A^{*}\right)$ is associative.
(b) The coefficients $\alpha_{p, q}$ satisfy the relations $\alpha_{p, q}=0$ for p or $q \geq 2$, $\alpha_{0,1}, \alpha_{1,0} \in\{0,1\}$ and $\alpha_{0,1} \alpha_{1,1}=\alpha_{1,0} \alpha_{1,1}$.
(3) Providing (2.2b), the element $1_{A^{*}}$ is a unit for \square_{α} iff $\alpha_{0,1}=\alpha_{1,0}=1$.

Proof

(1) We have $c_{\alpha}(a)=\alpha_{0,0} 1 \otimes 1+\sum_{p+q \geq 1} \alpha_{p, q} a^{p} \otimes a^{q}$, and then for all $n \geq 0$, $c_{\alpha}\left(a^{n}\right)=\alpha_{0,0}^{n} 1 \otimes 1+\sum_{p+q \geq 1} \beta_{p, q} a^{p} \otimes a^{q}$ for some $\beta_{p, q}$. If $\alpha_{0,0}$ were not zero, the term $1 \otimes 1$ would appear in an infinity of words, and then c_{α} would not be locally finite.
Conversely, if $\alpha_{0,0}(a)=0$ (for every letter), then $c_{\alpha}(a)=\sum_{p+q \geq 1} \alpha_{p, q} a^{p} \otimes a^{q}$ and for all word $w=a_{1} \cdots a_{n} \in A^{*}$,

$$
c_{\alpha}(w)=\sum_{\substack{p_{i}+q_{i} \geq 1 \\ 1 \leq i \leq n}}\left(\prod_{i=1}^{n} \alpha_{p_{i}, q_{i}}\left(a_{i}\right)\right) a_{1}^{p_{1}} \cdots a_{n}^{p_{n}} \otimes a_{1}^{q_{1}} \cdots a_{n}^{q_{n}} .
$$

As $p_{i}+q_{i} \geq 1$, we have $\sum_{i=1}^{n}\left(p_{i}+q_{i}\right) \geq n$, that is to say

$$
\left\langle c_{\alpha}(w), u \otimes v\right\rangle \Rightarrow\left\{\begin{array}{l}
w|\leq|u|+|v| \\
\operatorname{Alph}(w)=\operatorname{Alph}(u) \cup \operatorname{Alph}(v)
\end{array}\right.
$$

where $u:=a_{1}^{p_{1}} \cdots a_{n}^{p_{n}}$ and $v:=a_{1}^{q_{1}} \cdots a_{n}^{q_{n}}$.
To summarize, the set

$$
S=\left\{w /\left\langle u \otimes v \mid c_{\alpha}(w)\right\rangle \neq 0\right\}
$$

has bounded lengths and its alphabet is finite, S is then finite.
(2) First, remark that (2.2a) is equivalent to the condition

$$
\begin{equation*}
\left(I d \otimes c_{\alpha}\right) \circ c_{\alpha}=\left(c_{\alpha} \otimes I d\right) \circ c_{\alpha} . \tag{4}
\end{equation*}
$$

The law \square_{α} is associative iff for all words $u_{1}, u_{2}, u_{3} \in A^{*}$, we have

$$
\left(u_{1} \square_{\alpha} u_{2}\right) \square_{\alpha} u_{3}=u_{1} \square_{\alpha}\left(u_{2} \square_{\alpha} u_{3}\right)
$$

that is to say that, for all $w \in A^{*}$,

$$
\left\langle\left(u_{1} \square_{\alpha} u_{2}\right) \square_{\alpha} u_{3} \mid w\right\rangle=\left\langle u_{1} \square_{\alpha}\left(u_{2} \square_{\alpha} u_{3}\right) \mid w\right\rangle .
$$

But one has

$$
\begin{aligned}
\left\langle\left(u_{1} \square_{\alpha} u_{2}\right) \square_{\alpha} u_{3} \mid w\right\rangle & =\left\langle\left(u_{1} \square_{\alpha} u_{2}\right) \otimes u_{3} \mid c_{\alpha}(w)\right\rangle \\
& =\left\langle u_{1} \otimes u_{2} \otimes u_{3} \mid\left(c_{\alpha} \otimes I d\right) \circ c_{\alpha}(w)\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle u_{1} \square_{\alpha}\left(u_{2} \square_{\alpha} u_{3}\right) \mid w\right\rangle & =\left\langle u_{1} \otimes\left(u_{2} \square_{\alpha} u_{3}\right) \mid c_{\alpha}(w)\right\rangle \\
& =\left\langle u_{1} \otimes u_{2} \otimes u_{3} \mid\left(I d \otimes c_{\alpha}\right) \circ c_{\alpha}(w)\right\rangle .
\end{aligned}
$$

As u_{1}, u_{2}, u_{3}, w are arbitrary, we get $\left(c_{\alpha} \otimes I d\right) \circ c_{\alpha}=\left(I d \otimes c_{\alpha}\right) \circ c_{\alpha}$. To show the equivalence between (2.2b) and (4), suppose first that (4) holds. We endow \mathbb{N}^{k} with the lexicographic order (reading from left to right for instance) which is compatible with addition and will be denoted $\prec($ here, $k=2,3)$. Then, if it is not zero, $c_{\alpha}(a)$ can be written

$$
\alpha_{\bar{p}, \bar{q}} \bar{q}^{\bar{p}} \otimes a^{\bar{q}}+\sum_{(p, q) \prec(\bar{p}, \bar{q})} \alpha_{p, q} a^{p} \otimes a^{q}
$$

(\bar{p}, \bar{q}) being the highest couple of exponents in the support. Then,

$$
\begin{aligned}
\left(c_{\alpha} \otimes I d\right) \circ c_{\alpha}(a) & =\alpha_{\bar{p}, \bar{q}} c_{\alpha}\left(a^{\bar{p}}\right) \otimes a^{\bar{q}}+\sum_{(p, q)<(\bar{p}, \bar{q})} \alpha_{p, q} c_{\alpha}\left(a^{p}\right) \otimes a^{q} \\
& =\alpha_{\bar{p}, \bar{q}}^{\bar{p}+\bar{q}} a^{(\bar{p})^{2}} \otimes a^{\overline{p q}} \otimes a^{\bar{q}}+\sum_{(p, q, r)<\left(\bar{p}^{2}, \overline{p q}, \bar{q}\right)} \beta_{p, q, r, r} a^{p} \otimes a^{q} \otimes a^{r},
\end{aligned}
$$

but

$$
\begin{aligned}
\left(I d \otimes c_{\alpha}\right) \circ c_{\alpha}(a) & =\alpha_{\bar{p}, \bar{q}} a^{\bar{p}} \otimes c_{\alpha}\left(a^{\bar{q}}\right)+\sum_{(p, q) \prec(\bar{p}, \bar{q})} \alpha_{p, q} a^{p} \otimes c_{\alpha}\left(a^{q}\right) \\
& =\alpha_{\overline{\bar{p}, \bar{q}}}^{\bar{q}+1} a^{\bar{p}} \otimes a^{\overline{p q}} \otimes a^{(\bar{q})^{2}}+\sum_{(p, q, r) \prec\left(\bar{p}, \bar{p}, \bar{q}^{2}\right)} \beta_{p, q, r} a^{p} \otimes a^{q} \otimes a^{r} .
\end{aligned}
$$

Necessarily, $\bar{p}=\bar{p}^{2}$ and $\bar{q}=\bar{q}^{2}$, which is only possible when $\bar{p} \in\{0,1\}$ and $\bar{q} \in\{0,1\}$ and then $\alpha_{p, q}=0$ for p or $q \geq 2$. The equality now reads

$$
\begin{gathered}
\alpha_{1,0} a \otimes 1 \otimes 1+\alpha_{0,1}^{2} 1 \otimes 1 \otimes a+\alpha_{0,1} \alpha_{1,1} a \otimes 1 \otimes a \\
= \\
\alpha_{1,0}^{2} a \otimes 1 \otimes 1+\alpha_{0,1} 1 \otimes 1 \otimes a+\alpha_{1,0} \alpha_{1,1} a \otimes 1 \otimes a
\end{gathered}
$$

which implies (2.2 b). The converse is a straightforward computation.
(3) The condition $1_{A^{*}}$ is a unit for \square_{α} implies that, for $a \in A$, we have

$$
\begin{aligned}
1 \square_{\alpha} a=a \square_{\alpha} 1=a & \Leftrightarrow\left\langle 1 \square_{\alpha} a \mid a\right\rangle=\left\langle a \square_{\alpha} 1 \mid a\right\rangle=1 \\
& \Leftrightarrow\left\langle 1 \otimes a \mid c_{\alpha}(a)\right\rangle=\left\langle a \otimes 1 \mid c_{\alpha}(a)\right\rangle=1 \\
& \Leftrightarrow\left\{\begin{array}{l}
\left\langle 1 \otimes a \mid \sum_{p, q \geq 0} \alpha_{p, q} a^{p} \otimes a^{q}\right\rangle=1 \\
\left\langle a \otimes 1 \mid \sum_{p, q \geq 0} \alpha_{p, q} a^{p} \otimes a^{q}\right\rangle=1
\end{array}\right. \\
& \Leftrightarrow \alpha_{0,1}=\alpha_{1,0}=1 .
\end{aligned}
$$

Conversely, the latter implies that, for each $w \in A^{*}, 1 \square_{\alpha} w=w \square_{\alpha} 1=$ w.

Remark 10 (1) For just a commutative law the condition $\alpha_{p, q}=\alpha_{q, p}$ is sufficient. Moreover, the condition (2.2b) implies $\alpha_{0,1}, \alpha_{1,0} \in\{0,1\}$.
(2) If $\alpha_{11} \neq 0$, the only dual laws which are associative ones are

$$
c_{\epsilon, q}(a)=\epsilon(a \otimes 1+1 \otimes a)+q a \otimes a
$$

with parameters $\epsilon \in\{0,1\}$ and $q \in K^{\times}$. Notice that in this case they are all commutative.
(3) If $\alpha_{11}=0$, we get two degenerate laws (opposite between theimselves) which are not in the familly $\left(\square_{\epsilon, q}\right)$ with $\epsilon \in\{0,1\}$ and $q \in K$ corresponding to $\alpha_{10}=1$ and $\alpha_{10}=0$ (resp. $\alpha_{01}=0$ and $\alpha_{10}=1$). This laws are not commutative when $A \neq \emptyset$.

4.2 Usual dual laws

a) Shuffle and infiltration product $(\epsilon=1, q \in\{0,1\})$

Proposition 11 Let $R:\left(\lambda_{1}, \mu_{1}, \gamma_{1}\right)$ (resp. $S:\left(\lambda_{2}, \mu_{2}, \gamma_{2}\right)$) with rank n (resp. m).
(1) Automata corresponding to shuffle and infiltration products are respectively

$$
\begin{equation*}
R \sqcup S:\left(\lambda_{1} \otimes \lambda_{2},\left(\mu_{1}(a) \otimes I_{2}+I_{1} \otimes \mu_{2}(a)\right)_{a \in A}, \gamma_{1} \otimes \gamma_{2}\right) \tag{5}
\end{equation*}
$$

and

$$
R \uparrow S:\left(\lambda_{1} \otimes \lambda_{2},\left(\mu_{1}(a) \otimes I_{2}+I_{1} \otimes \mu_{2}(a)+\mu_{1}(a) \otimes \mu_{2}(a)\right)_{a \in A}, \gamma_{1} \otimes \gamma_{2}\right) .(6)
$$

(2) The bound $n m$ is sharp in both cases.
(3) The density result of theorem 6 holds.

Proof Concerning point (2), an example reaching the bound for any rank is to consider the families of series $S_{n}=a^{n-1}$ and $T_{n}=b^{n-1}$ of rank n. The shuffle product $S_{n} \amalg S_{m}=a^{n-1} \amalg b^{m-1}(a \neq b \in A)$ has a minimal linear representation of rank $n m$. The same example is valid for the infiltration product as, for $a \neq b, a^{n} \uparrow b^{m}=a^{n} \amalg b^{m}$.

The proposition yields the following.
Definition 12 Let $\mathcal{A}_{i}=\left(\lambda_{i}, \rho_{i}, \gamma_{i}\right)$ with $i=1,2$ then we define $\mathcal{A}_{1} \square \mathcal{A}_{2}$ and $\mathcal{A}_{1} \mathbb{-} \mathcal{A}_{2}$ by the formulas 5 and 6 .

Remark 13 These laws are already associative at the level of automata.
b) Hadamard product ($\epsilon=0, q=1$)

We recall that the Hadamard product ([7], [19]) of two series is the pointwise product of the corresponding functions (on words). We can use the machinery above to describe an automata for it.

Proposition 14 Let $R:\left(\lambda^{r}, \mu^{r}, \gamma^{r}\right)$ (resp. $S:\left(\lambda^{s}, \mu^{s}, \gamma^{s}\right)$) with rank n (resp. $m)$. A representation of the Hadamard product is

$$
R \odot S:\left(\lambda^{r} \otimes \lambda^{s},\left(\mu^{r}(a) \otimes \mu^{s}(a)\right)_{a \in A}, \gamma^{r} \otimes \gamma^{s}\right)
$$

and the bound is asymptotically sharp.

Proof Let $\beta(n, m):=\sup _{\substack{\operatorname{rank}(R)=n \\ \operatorname{rank}(S)=m}} \operatorname{rank}(R \odot S)$. We claim that

$$
\limsup _{n, m \rightarrow+\infty} \frac{\beta(n, m)}{n m}=1
$$

(what we mean by "asymptotically sharp").
Indeed, let us consider the Hadamard product of two series of the family

$$
S_{n}=\sum_{k \geq 0} a^{n k}=\frac{1}{\left(1-a^{n}\right)} .
$$

The rank of S_{n} is n, and

$$
\begin{aligned}
S_{n} \odot S_{m} & =\sum_{k \geq 0} a^{n k} \odot \sum_{k^{\prime} \geq 0} a^{m k^{\prime}}=\sum_{p \geq 0}\left\langle S_{n} \mid a^{p}\right\rangle\left\langle S_{m} \mid a^{p}\right\rangle a^{p} \\
& =\sum_{k \geq 0} a^{l c m(n, m) k}=S_{l c m(n, m)} .
\end{aligned}
$$

Thus, for n and m coprime, the rank of the product is $n m$, which proves the claim.

5 Shuffle of automata compatible with relators

In this section, we deal with automata whose actions can be coded by elements of a monoid defined by generators and relations. The first interesting case historically encountered is the trace monoid but, as we will see below, some results can be extended to the general case. To end with, we study the relators permitting the shuffle of automata.

5.1 Series over a monoid and automata

In the whole section $R \subset A^{*} \times A^{*}$ is a relator and \equiv_{R} is the congruence relation generated by R.

Definition 15 (1) Let $f: A^{*} \rightarrow X$ (X a set) and \equiv be a congruence on A^{*}, we will say that f is $\equiv-$ compatible if

$$
u \equiv v \Rightarrow f(u)=f(v) .
$$

(2) An automaton $\mathcal{A}=(\lambda, \mu, \gamma)$ is said \equiv-compatible if $\mu: A^{*} \rightarrow K^{n \times n}$ is.

Remarks 1 (1) The coarsest congruence compatible with a function f is known as the syntactic congruence of f. A non trivial result says that
the syntactic congruence of all Greene's invariants is the plactic equivalence [17].
(2) If an automaton \mathcal{A} is \equiv-compatible, then it is straigthforward to see that its behaviour is.
(3) We can restate geometrically (2) of definition 15 as :

For each state q and $(u, v) \in R$ then $q \cdot u=q . v$.
(4) If $f: A^{*} \rightarrow M$ is a morphism of monoids (this is the case for the data μ of automata) compatibility has just to be tested on R, more precisely

$$
(\forall(u, v) \in R)(f(u)=f(v)) \Rightarrow f \text { is } \equiv \text {-compatible. }
$$

(5) If S, T are \equiv-compatible, so is $S \odot T$ (which is by no means the case for $\boldsymbol{\omega}$ and \uparrow, see discussion below).

The converse of remark 1(2) is true for minimal automata over fields as shown just below.

Proposition 16 Suppose that K is a field (commutative or skew).
Let $S: A^{*} \rightarrow K$ be a rational series, the following assertions are equivalent:
(1) S is \equiv-compatible.
(2) The minimal automata of S are \equiv-compatible.

Proof Let us first prove that $(1) \Rightarrow(2)$. By the minimality of \mathcal{A}, it exists words $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots v_{n}$ such that the column block matrix $L=$ $\left(\lambda \mu\left(u_{i}\right)\right)_{i \in[1, n]}$ and the line block matrix $R=\left(\mu\left(v_{i}\right) \gamma\right)_{i \in[1, n]}$ are invertible $n \times n$ matrices (K may not be commutative see [8]). Thus, if $w \equiv w^{\prime}$ then

$$
\begin{aligned}
L \mu(w) R & =\left(\lambda \mu\left(u_{i} w v_{j}\right) \gamma\right)_{1 \leq i, j \leq n} \\
& =\left(\left\langle S \mid u_{i} w v_{j}\right\rangle\right)_{1 \leq i, j \leq n} \\
& =\left(\left\langle S \mid u_{i} w^{\prime} v_{j}\right\rangle\right)_{1 \leq i, j \leq n} \\
& =\left(\lambda \mu\left(u_{i} w^{\prime} v_{j}\right) \gamma\right)_{1 \leq i, j \leq n} \\
& =L \mu\left(w^{\prime}\right) R
\end{aligned}
$$

And thus, $\mu(w)=\mu\left(w^{\prime}\right)$.
The converse is straightforward from remark 1(4).

It is clear that \equiv-compatibility is stable under linear combinations (i.e. if the series $\left(S_{i, j}\right)_{(i, j) \in I \times J}$ are \equiv-compatible so is $\left.\sum \alpha_{i} S_{i, j} \beta_{j}\right)$. However, the Cauchy
product of two compatible series may not be so, as shown by the example: $a b \equiv b a, S=a$ and $T=b$.

5.2 Study for general semirings

In case of a field, the compatibility of automata with shuffle product is equivalent to the compatibility of the coproduct with the congruence and its square. More precisely

Theorem 17 (1) Suppose that K is a field. Let \equiv be a congruence with finite fibers ${ }^{3}$, the following assertions are equivalent.
(a) If \mathcal{A}_{1} and \mathcal{A}_{2} are two \equiv-compatible automata so is $\mathcal{A}_{1} \amalg \mathcal{A}_{2}$.
(b) The coproduct respects \equiv in the following sense:

For every $(u, v) \in A^{*} \times A^{*}$, we have

$$
u \equiv v \Rightarrow c(u) \equiv^{\otimes 2} c(v) .
$$

where $\equiv{ }^{\otimes 2}$ is the "square" of \equiv defined as the kernel of the natural mapping

$$
K\langle A\rangle \otimes K\langle A\rangle \rightarrow K\left[A^{*} / \equiv\right] \otimes K\left[A^{*} / \equiv\right] .
$$

(2) The preceding conditions imply that if S and T are two \equiv-compatible series, so are $S \amalg T, S \uparrow T$.

Proof To prove (1.1b) $\Rightarrow(1.1 \mathrm{a})$, it suffices to remark that $\mu=\left(\mu_{1} \otimes \mu_{2}\right) \circ c$ where μ_{1}, μ_{2} and μ are respectively the associated morphisms of the automata $\mathcal{A}_{1}, \mathcal{A}_{2}$ and $\mathcal{A}_{1} \boxtimes \mathcal{A}_{2}$.
Now, we prove that (1.1a) \Rightarrow (1.1b). We consider the (product order) relation on the multidegrees $\left(\alpha, \beta \in \mathbb{N}^{(A)}\right)$:

$$
(\alpha \leq \beta) \Leftrightarrow(\forall a \in A)(\alpha(a) \leq \beta(a)) .
$$

Let w be a word. In the sequel, we denote $[w]$ the mapping $\left(a \rightarrow|w|_{a}\right)$ its multidegree and $C l(w)$ its equivalence class modulo \equiv. Let $w_{1} \equiv w_{2}$ be two equivalent words. Consider

$$
t_{1}=\sup _{w \in C l\left(w_{1}\right)}[w] .
$$

And let $\mathcal{C}_{1} \ldots \mathcal{C}_{k}$ be the classes which contain at least a word whose multidegree is less than t_{1}, and we set

$$
t_{2}=\sup _{w \in \cup_{i=1}^{k} \mathcal{C}_{i}}[w]
$$

[^2](t_{1} and t_{2} are well defined due to the "finite fibers" hypothesis).
With $A^{\leq t_{2}}:=\left\{w /[w] \leq t_{2}\right\}$, let us define the following truncation of \equiv by
\[

u \sim v \Leftrightarrow\left\{$$
\begin{array}{c}
C l(u) \nsubseteq A^{\leq t_{2}} \text { and } C l(v) \nsubseteq A^{\leq t_{2}} \\
\text { or } \\
C l(u)=C l(v)
\end{array}
$$\right.
\]

The following lemma is easy.
Lemma 18 (1) The equivalence \sim is a congruence coarser than \equiv.
(2) The classes of $\sim \operatorname{are} \mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}, \mathcal{C}_{k+1}, \ldots \mathcal{C}_{p-1}$ and

$$
\mathcal{C}_{p}=\bigcup_{C l(w) \nsubseteq A \leq t_{2}} C l(w)
$$

where $\mathcal{C}_{1}, \ldots, \mathcal{C}_{p-1}$ are equivalence classes of \equiv precisely the equivalence classes of \equiv which are subsets of $A^{\leq t_{2}}$.
(3) In particular $w_{1} \sim w_{2}$ and $\left[w_{i}\right] \leq t_{1}$ implies $w_{1} \equiv w_{2}$.

For every $a \in A$, we define $\mu(a)$ as the matrix (with respect to the basis $\left.\left(\mathcal{C}_{j}\right)_{j \in[1, p]}\right)$ of the linear transformation $\bar{u} \rightarrow \bar{a} \cdot \bar{u} \in A^{*} / \sim$, where \bar{u} denotes the class of u for \sim. More explicitly

$$
\mu(w): \mathcal{C}_{j} \rightarrow \bar{w} \cdot \mathcal{C}_{j} .
$$

Then, μ is \equiv-compatible and hence the automata $\mathcal{A}_{i, j}=\left(e_{\mathcal{C}_{i}}, \mu, e_{\mathcal{C}_{j}}^{*}\right)$ (with $\left(e_{\mathcal{C}_{i}}\right)_{1 \leq i \leq p}$ being the canonical basis of $K^{p \times 1}$) are \equiv-compatible. Then, by (1a) the p^{4} automata

$$
\mathcal{A}_{i_{1}, j_{1}} \boxtimes \mathcal{A}_{i_{2}, j_{2}}=\left(e_{\mathcal{C}_{i_{1}}} \otimes e_{\mathcal{C}_{i_{2}}}, \mu \otimes I_{p}+I_{p} \otimes \mu, e_{\mathcal{C}_{j_{1}}}^{*} \otimes e_{\mathcal{C}_{j_{2}}}^{*}\right)
$$

are \sim-compatible. This, implies that the morphism $\nu: A^{*} \rightarrow K^{p^{2} \times p^{2}}$ defined by $\nu(a)=\mu(a) \otimes I_{p}+I_{p} \otimes \mu(a)$ for each $a \in A$, is \sim-compatible. Now, as $w_{1} \equiv w_{2}$, one has

$$
\begin{aligned}
\sum_{I+J=[1 \ldots n]} \mu\left(w_{1}[I]\right) \otimes \mu\left(w_{1}[J]\right) & =\nu\left(w_{1}\right) \\
& =\nu\left(w_{2}\right) \\
& =\sum_{I+J=[1 \ldots n]} \mu\left(w_{2}[I]\right) \otimes \mu\left(w_{2}[J]\right)
\end{aligned}
$$

which proves (evaluating this linear transformation on $1 \otimes 1$) that

$$
\sum_{I+J=[1 \ldots n]} w_{1}[I] \otimes w_{1}[J] \sim^{\otimes 2} \sum_{I+J=[1 \ldots n]} w_{2}[I] \otimes w_{2}[J]
$$

but, as $\left[w_{i}[I]\right],\left[w_{i}[J]\right] \leq t_{1}$ for $I, J \subset[1 . . n]$, lemma 18 implies $c\left(w_{1}\right) \equiv{ }^{\otimes 2} c\left(w_{2}\right)$.

Now, we prove (1) \Rightarrow (2). In fact we have, $\langle S \amalg T \mid w\rangle=\langle S \otimes T \mid c(w)\rangle$. As S and T are \equiv-compatible, the assertion (1.1b) implies the \equiv-compatibility of $S ш T$.

In fact (1.1b) can be formulated without the hypothesis over K and the fibers of \equiv and then (1.1b) \Rightarrow (1.1a) in the (very) general case.
According to this remark we can give the following definition.
Definition 19 Let K be a semiring. A congruence will be said $K-ш$ compatible if (1.1b) is fullfilled.

Partial commutations are $K-ш$ compatible for any K, so does, more generally, the relators $a^{p^{e_{1}}} b^{p^{e_{2}}} \equiv b^{p^{e_{2}}} a^{p^{e_{1}}}$ and $a^{p^{e_{1}}}=b^{p^{e_{2}}}$ for $K=\mathbb{Z} / p \mathbb{Z}$ with p prime.

In the next paragraph we completely solve the problem of $K-\amalg$ compatibility for semirings which are not rings.
The case when K is a ring of characteristic 0 is known (see [3]) but the tools developped below shows this again by a different argument.

5.3 Generalities

In the following we need some elementary properties.
Lemma 20 Let $\phi: K_{1} \rightarrow K_{2}$ be a morphism of semirings then
(1) If \equiv is $K_{1}-\boldsymbol{\text { compatible }}$ then it is $K_{2}-ш$ compatible.
(2) If ϕ is into, the converse is true.

Proof Straightforward, remarking that the mapping $\mathbb{N} .1_{K_{1}} \xrightarrow{\phi} \mathbb{N} .1_{K_{2}}$ is surjective.

Remark 21 This lemma implies that if a congruence is $\mathbb{N}-\boldsymbol{\text { compatible }}$ then it is $K-\boldsymbol{\text { c compatible for each semiring K. In fact, a congruence is }}$

Let K be a semiring, in the following we discuss according to the subsemiring $K_{0}=\mathbb{N} .1_{K}$. The semiring K_{0} is entirely characterized by the monoid structure of $\left(K_{0},+\right)$ which depends of the two following parameters:

$$
m(K)=\inf \left\{e \in \mathbb{N} / \exists r \in \mathbb{N}^{*}, e .1_{k}=(e+r) .1_{K}\right\} \in \mathbb{N} \cup\{+\infty\}
$$

and if $m(K) \neq \infty$

$$
l(K)=\inf \left\{r \in \mathbb{N}^{*} / m(K) \cdot 1_{K}=(m(K)+r) \cdot 1_{K}\right\} \in \mathbb{N}^{*}
$$

Lemma 22 Let R be a relator on A^{*}. Then, \equiv_{R} is $K-ш$ compatible if and only if for each pair $\left(w_{1}, w_{2}\right) \in R$ we have $c\left(w_{1}\right) \equiv_{R}^{\otimes 2} c\left(w_{2}\right)$.

Proof The "if" part is straightforward considering the morphism

$$
c: A^{*} / \equiv \rightarrow K\left[A^{*} / \equiv\right] \otimes K\left[A^{*} / \equiv\right] .
$$

The converse is obvious.

Lemma 23 Each congruence generated by relators under the form $a \equiv b$ or $c d \equiv d c$ with $a, b, c, d \in A$ is $K-$ ш compatible.

Proof According to lemma 22, it suffices to check that

$$
c(a)=a \otimes 1+1 \otimes a \equiv^{\otimes 2} b \otimes 1+1 \otimes b=c(b)
$$

for each $a \equiv b \in A$ and

$$
\begin{aligned}
c(c d) & =c d \otimes 1+c \otimes d+d \otimes c+1 \otimes c d \\
& \equiv{ }^{\otimes 2} d c \otimes 1+c \otimes d+d \otimes c+1 \otimes d c \\
& =c(d c)
\end{aligned}
$$

for each pair of letters $(a, b) \in A^{2}$ such that $c d \equiv d c$.
Lemma 24 Let $B \subseteq A$ be a subalphabet. If \equiv is $K-$ compatible then so is the congruence $\equiv_{B}:=\equiv \cap B^{2}$.

Proof Direct computation.

The following general lemma will be used later.
Lemma 25 Let $u \in A^{+}$be a word and let n be the maximal integer such that u can be written under the form $u=u_{1} a^{n}$ with $u_{1} \in A^{*}, a \in A$ and $n \geq 1$ then

$$
\left\langle c(u) \mid u_{1} \otimes a^{n}\right\rangle=1 .
$$

Proof Suppose that $n=1$ then it is easy to verify that $u_{1} \otimes a$ appears only one times in the polynomial $c(u)$. By induction on n, we find the result.
5.4 The case when $m(K) \neq 0$
a) The boolean case

We first consider the case where $K=\mathbb{B}$ is the boolean semiring. The $\mathbb{B}-ш$ compatible congruences are caracterised by the following result.

Proposition 26 A congruence is $\mathbb{B}-\boldsymbol{\text { compatible }}$ if and only if it is generated by the following relators

$$
\begin{cases}a \equiv 1 & (L E) \\ a \equiv b & (L I) \\ a b \equiv b a & (L C)\end{cases}
$$

Proof Let us first prove that a congruence is $\mathbb{B}-ш$ compatible if it is generated by relators (LE), (LI) or (LC). According lemmas 22 and 23, it suffices to prove that the relators (LE) are $\mathbb{B}-\boldsymbol{\text { compatible. In fact, we have }}$

$$
a \equiv 1 \Rightarrow c(a)=a \otimes 1+1 \otimes a \equiv^{\otimes 2}(1+1) \otimes 1=c(1)
$$

which proves the result.
Now, we prove the converse. Let $A^{\prime}=\{a \in A / a \not \equiv 1\}$ and $S \subseteq A^{\prime}$ be a section of $\equiv \cap A^{\prime} \times A^{\prime}$. It is clear that if (LE) is a list of couples $\{(a, 1)\}_{a \in A-A^{\prime}}$ and (LI) a list of couples $\{(a, b)\}_{x \equiv y, x \in S, y \in A^{\prime}-S}$, then \equiv is generated by $\equiv_{S}:=\equiv$ $\cap S^{*} \times S^{*}$, (LI) and (LE). So, it suffices to prove that \equiv_{S} is generated by ($L C$) relators. Let us prove first, that \equiv_{S} is multihomogeneous. Let \equiv_{m} be the multihomogeneous part of \equiv_{S} (i.e. the congruence generated by the pairs $(u, v) \in \equiv_{S}$ such that $\left.[u]=[v]\right)$. Let (u, v) be a pair of words such that $u \equiv_{S} v$ and $u \not 三_{m} v$ with $|u|$ minimal. Suppose that $u=1$, if $v \neq 1$ we can set $v=v_{1} a$ with $a \in S$. Then, as by lemma $24 \equiv_{S}$ is again \mathbb{B} - - compatible,

$$
\left\langle\bar{v}_{1} \otimes \bar{a} \mid c(\overline{1})\right\rangle=1
$$

(\bar{w} denoting the class of w for \equiv), but $c(1)=1 \otimes 1$ which implies $a \equiv_{S} 1$ and contradicts the construction of S. Then, $u \neq 1$ and we can write u under the form $u=u_{1} a$ with $a \in S$. As $\left\langle c(u) \mid u_{1} \otimes a\right\rangle=1$, it exists two complementary subwords $v[I]$ and $v[J]$ of v such that $v[I] \otimes v[J] \equiv_{S}^{\otimes 2} u_{1} \otimes a$. But, $v \equiv_{S} u_{1} a \equiv_{S}$ $v[I] v[J]$ which implies $v \equiv_{m} v[I] v[J]$ and proves $\equiv_{S}=\equiv_{m}$.
Let \equiv_{θ} be the congruence generated by pairs $(a b, b a)$ with $a, b \in S$ and $a b \equiv_{S}$ $b a$.

Lemma 27 Let $u \equiv_{S} v$ with $v \in S^{*} a$ then it exists $u_{1} \equiv_{\theta} u$ with $u_{1} \in S^{*} a$.

Proof We have $[u]=[v]$ from what precedes and in particular $|u|_{a} \neq 0$. Let $u_{1}=u_{2} a u_{2}^{\prime}$ be a word such that $u_{1} \equiv_{\theta} u,\left|u_{2}^{\prime}\right|_{a}=0$ and $\left|u_{2}^{\prime}\right|$ minimal. Suppose that $u_{2}^{\prime} \neq 1$, then we can write $u_{2}^{\prime}=b u_{3}$ with $b \in S$ and $u_{3} \in S^{*}$. Let $a^{q} b=\left(u_{1}\right)_{I}$ be the subword of u_{1} with q maximal ($q=\left|u_{a}\right|$, the word is unique but the equality has $\left|u_{2}^{\prime}\right|_{b}$ solutions in I), it exists two complementary subwords $v[I]$ and $v[J]$ such that $a^{q} b \otimes w \equiv_{S}^{\otimes 2} v[I] \otimes v[J]$ where w is a subword of u complementary of $a^{q} b$. Then $a^{q} b \equiv_{S} v[I]$ and then, as $|v[I]|_{a}=|u|_{a}=|v|_{a}$, $v[I]=a^{q-i} b a^{i}$ with $i \geq 1$. This implies $a b \otimes a^{q-1} \equiv_{m}^{\otimes 2} a b \otimes a^{q-1}+b a \otimes a^{q-1}$. As \equiv_{S} is multihomogeneous, we have necessarily $a b \equiv_{S} b a$. It follows $u \equiv_{\theta}$ $u_{2} a b u_{3} \equiv_{\theta} u_{2} b a u_{3}$ which contradicts the minimality of $\left|u_{2}^{\prime}\right|$ and proves the result.

End of the proof of proposition If $\equiv_{S} \neq \equiv_{\theta}$, let (u, v) be a couple of words such that $u \equiv_{S} v$ and $u \not \equiv_{\theta} v$ with $|u|+|v|$ minimal.
Let a be a letter such that $u \equiv_{\theta} u_{1} a^{k}=u^{\prime}, v \equiv_{\theta} v_{1} a^{l}=v^{\prime}$ with $k, l \neq 0, k+l \geq 2$ maximal (the existence of a such letter follows from lemma 27). Without restriction we can suppose that $k \leq l$. We have $\left\langle u_{1} \otimes a^{k} \mid c\left(u^{\prime}\right)\right\rangle=1$ and then it exists two complementary subwords $v^{\prime}[I]$ and $v^{\prime}[J]$ of v^{\prime} such that $u_{1} \otimes a^{k} \equiv_{S}^{\otimes 2}$ $v^{\prime}[I] \otimes v^{\prime}[J]$. Hence, the multihomogeneity of \equiv_{S} gives $v^{\prime}[J]=a^{k}$ and we can write $v^{\prime}[I]=v_{2} a^{\alpha}$ where v_{2} is a subword of v_{1}. If $\alpha>0$, we have $u_{1} \equiv_{S} v_{2} a^{\alpha}$ and by lemma 27 , it would exist $u_{2} \in S^{*}$ such that $u_{1} \equiv_{\theta} u_{2} a$. Hence, $u \equiv_{\theta} u_{2} a^{k+1}$ which contradicts the maximality of $k+l$. Thus $\alpha=0$ and $v^{\prime}[I] \notin S^{*} a$ is a subword of v_{1}, we have thus $|u|-k=\left|u_{1}\right|=\left|v^{\prime}[I]\right| \leq\left|v_{1}\right|=|v|-l$ but we had $k \leq l$ then $k=l$. Now $v_{1}=v^{\prime}[I]$ and then $u_{1} \equiv_{\theta} v_{1}$ which implies

$$
u \equiv_{\theta} u_{1} a^{k} \equiv_{\theta} v_{1} a^{k} \equiv_{\theta} v
$$

a contradiction, this proves the result.
b) Other semirings such that $m(K) \neq 0$

Theorem 28 Let K be a semiring such that $m(K) \neq 0$. Then a congruence \equiv is $K-$ ш compatible if and only if
(1) If $1_{K}+1_{K}=1_{K}$, it is generated by relators (LE), (LI) and (LC).
(2) If $1_{K}+1_{K} \neq 1_{K}$, it is generated by relators (LI) and ($L C$).

In the two cases, A^{*} / \equiv is a partially commutative monoid.

Proof The assertion (1) can be easily proved using lemma 20 and proposition 26. Let us show the assertion (2). Let K be a semiring such that $m(K) \neq 0$ and $1_{K}+1_{K} \neq 1_{K}$, then it exists a morphism from K onto \mathbb{B} (this morphism sends 0 on 0 and $x \neq 0$ on 1). Let \equiv be a $K-ш$ compatible congruence, by
lemma $20 \equiv$ is so $\mathbb{B}-\boldsymbol{\text { compatible and then it is generated by (LE), (LI) or }}$ (LC) relators. A fast computation shown that the only possibilities are (LI) and (LC). Which gives the result.

Corollary 29 [3] Let K be a ring of characteristic 0 . A congruence is $K-$ compatible if and only if it is generated by relators of the type (LI) and (LC).

Example 30 Let $\mathbb{N}_{\text {max }}=(\mathbb{N} \cup\{-\infty\}$, max,+$)$ be the tropical semiring and $A=\{a, b, c, d\}$, the congruence generated by $\{(a, 1),(a, b),(c d, d c)\}$ is $\mathbb{N}_{\text {max }}-\boldsymbol{w}$ compatible.
c) Other examples in characteristic 2

We consider here the field $K=\mathbb{Z} / 2 \mathbb{Z}$, and the relators

$$
R=\left\{\left(a b^{2}, b^{2} a\right),\left(a^{2} b, b a^{2}\right),(a b a b, b a b a)\right\}
$$

It is obvious to see that the congruence generated by the set $\left\{\left(a b^{2}, b^{2} a\right)\right.$, $\left.\left(a^{2} b, b a^{2}\right)\right\}$ is $\mathbb{Z} / 2 \mathbb{Z}-ш$ compatible. Furthermore, we have

$$
\begin{aligned}
c(a b a b) & =a b a b \otimes 1+a b a \otimes b+a^{2} b \otimes b+a b^{2} \otimes a+b a b \otimes a+b a \otimes a b \\
& +v a^{2} \otimes b^{2}+a b \otimes b a+b^{2} \otimes a^{2}+b \otimes a b a+b \otimes a^{2} b+a \otimes b^{2} a \\
& +a \otimes b a b+1 \otimes a b a b \\
& \equiv_{R}^{\otimes 2} b a b a \otimes 1+a b a \otimes b+b a^{2} \otimes b+b^{2} a \otimes a+b a b \otimes a+b a \otimes a b \\
& +a^{2} \otimes b^{2}+a b \otimes b a+b^{2} \otimes a^{2}+b \otimes a b a+b \otimes b a^{2}+a \otimes a b^{2} \\
& +a \otimes b a b+1 \otimes b a b a \\
& =c(b a b a)
\end{aligned}
$$

which implies the $\mathbb{Z} / 2 \mathbb{Z}-ш$ compatibility of \equiv_{R}.
We can remark that this property does not occur if K is not a field or if $2_{K} \neq 0_{K}$.
In the same way, the congruence generated by the relators

$$
R=\left\{\left(a^{8} b^{2}, b^{2} a^{8}\right),\left(a^{4} b^{4}, b^{4} a^{4}\right),\left(a^{4} b^{2} a^{4} b^{2}, b^{2} a^{4} b^{2} a^{4}\right)\right\}
$$

is $\mathbb{Z} / 2 \mathbb{Z}-ш$ compatible.

6 Conclusion

Many computations over rational series can be lifted at the level of automata and these (classical) constructions has been proved to be genericaly optimal.

The implementation of classical rational laws (shuffle, Hadamard, infiltration) has suggested us other laws (which also preserve rationality) and we have proved that, under some natural hypothesis, there is no other choice than a deformation of the classical case.
The study of the shuffle product over automata raises the question of the compatibility with relators. The answer is of course coefficient dependant and in classical cases (0 characteristic, boolean and proper semirings) it is interesting to observe that only dependance relations can occur. But the p-characteristic induces strange phenomena and opens some new and exciting questions.

References

[1] J. Berstel and C. Reutenauer, Rational Series and Their Languages (EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin, 1988).
[2] K. Culik II and J. Kari, Finite state transformations of images, Proceedings of ICALP 95, Lecture Notes in Comput. Sci. 944 (1995) 51-62.
[3] G. Duchamp and D. Krob, Partially commutative structures, J. Algebra 156 (1993) 318-361.
[4] G. Duchamp and C. Reutenauer, Un critère de rationalité provenant de la géométrie non-commutative, Invent. Math. 128 (1997) 613-622.
[5] S. Eilenberg, Automata, languages and machines, Vol. A (Acad. Press, NewYork, 1974).
[6] M. Fliess, Matrices de Hankel, J. Math. Pures et Appl. 53 (1974) 197-224.
[7] M. Fliess, Sur divers produits de séries formelles, Bull. Sc. Math. 102 (1974) 181-191.
[8] M. Flouret, Contribution à l'algorithmique non commutative, Ph.D. thesis, University of Rouen (1999).
[9] M. Flouret and É. Laugerotte, Noncommutative minimization algorithms, Inform. Process. Lett. 64 (1997) 123-126.
[10] J. Hopcroft and D. Ullman, Introduction to automata theory languages and computation (Addison Wesley, 1979).
[11] T. Harju and J. Karhumäki, The equivalence problem of multitape finite automata, Theoret. Comput. Sci. 78 (1991) 347-355.
[12] S.C. Kleene, Representation of events in nerve nets and finite automata, Automata Studies, Princeton Univ. Press (1956) 3-42.
[13] W. Kuich and A. Salomaa, Semirings, automata, languages (EATCS Monographs on Theoret. Comput. Sci., Springer-Verlag, 1986).
[14] M. Lothaire, Combinatorics on words (Addison-Wesley, 1983).
[15] M. Mohri, F. Pereira and M. Riley, A rational design for a weighted finitestate transducer library, Proceedings of WIA'97 (1997) 43-53.
[16] A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power series (Springer-Verlag, 1978).
[17] M.P. Schützenberger, Communication to G. Duchamp.
[18] M.P. Schützenberger, On the definition of a family of automata, Inform. and Contr. 4 (1961) 245-270.
[19] M.P. Schützenberger, On a theorem of R. Jungen, Proc. Amer. Soc. 13 (1962) 885-890.

[^0]: ${ }^{1}$ \{Gerard.Duchamp, Marianne.Flouret, Eric.Laugerotte, Jean-Gabriel.Luque\}@ univ-rouen.fr

[^1]: ${ }^{2}$ Existence is assumed by definition, unicity is proved in case K is \mathbb{B} (for deterministic automata) or a (commutative or not) field [9] but is problematic in general.

[^2]: $\overline{3 \text { i.e. the classes of } \equiv \text { are finite sets. }}$

