N

N

Flowvr: a middleware for large scale virtual reality
applications
Jérémie Allard, Valérie Gouranton, Loic Lecointre, Sébastien Limet,

Emmanuel Melin, Bruno Raffin, Sophie Robert

» To cite this version:

Jérémie Allard, Valérie Gouranton, Loic Lecointre, Sébastien Limet, Emmanuel Melin, et al.. Flowvr:
a middleware for large scale virtual reality applications. 2004, pp.497-505. hal-00085302

HAL Id: hal-00085302
https://hal.science/hal-00085302
Submitted on 12 Jul 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00085302
https://hal.archives-ouvertes.fr

FlowVR: a Middleware for Large Scale Virtual
Reality Applications

Jérémie Allard!, Valérie Gouranton?, Loick Lecointre!, Sébastien Limet?,
Emmanuel Melin?, Bruno Raffin!, and Sophie Robert?

! Laboratoire ID, CNRS/INPG/INRIA/UJF, Montbonnot, France
2 LIFO, Université d’Orléans/CNRS, Orléans, France

Abstract. This paper introduces FlowVR, a middleware dedicated to
virtual reality applications distributed on clusters or grid environments.
FlowVR supports coupling of heterogeneous parallel codes and is compo-
nent oriented to favor code reuse. While classical communication para-
digms focus on either a synchronous approach (FIFO channels) or an
asynchronous one (sampling), FlowVR enables a large range of inter-
mediate policies to better balance the application performance between
levels of details, latencies and refresh rates.

1 Introduction

Classically, a virtual reality (VR) application features a complex simulation us-
ing input and output devices to provide users with a sense of immersion in a
synthetic world [7]. Most of today’s VR applications only run on machines with
a reduced number of processors, like visualization clusters or SGI Onyx. They
do not take advantage of the computing power offered by large clusters and grid
environments. One main limitation is the difficulty to assemble and distribute
the different (potentially parallel) components and to maintain the overall appli-
cation coherent while guaranteeing a good quality interaction with low latency
and high refresh rates. We define the coherency as the fact that the information
provided to the user senses at a given moment are related to the same simulated
time.

To improve latency and refresh rates, VR applications can take advantage
of a data exchange model based on sampling. The producer updates data in
a shared buffer asynchronously read by the consumer. Some updates may be
lost if the consumer is slower than the producer. While asynchronism leads to
a performance improvement, the application coherency cannot be maintained.
Depending on the context this may be acceptable. It is for example used when
coupling haptic and visualization systems that run at very different frequencies
(about 1000 Hz and 60 Hz respectively). Distributed virtual environments [9, 11]
or VR middlewares like OpenMask [2] use such an approach, but parallel code
coupling becomes difficult in this context as no coherency control is offered.
The other approach classically used for parallel programming, parallel code cou-
pling [8, 10], or distributed visualization environments [3-5], relies on a classical



FIFO synchronization semantics. It ensures proper application coherency, but it
is difficult to efficiently implement a sampling approach.

In this paper, we propose a programming model that eases the implemen-
tation of a large range of synchronization policies, from FIFO to sampling. We
present FlowVR [1], a middleware dedicated to VR and supporting coupling of
heterogeneous parallel codes to build large scale applications. FlowVR reuses
and extends the data flow paradigm commonly used for scientific visualization
environments [3,4]. A VR application is seen as a set of possibly distributed
modules exchanging data. Each module endlessly iterates, consuming and pro-
ducing data. From the FlowVR point of view, modules are not aware of the
existence of other modules, the FlowVR engine taking care of moving data be-
tween producers and consumers. This leads to a simple application programming
interface (API) that eases turning an existing code into a FlowVR module (or
several modules in case of a parallel code). For data exchange between modules,
FlowVR defines an abstract network featuring from simple routing operations
to complex message handling operations. Each message is associated with a list
of stamps, a lightweight data used to route or filter messages. This list can
also be routed separately from its message to special network nodes in charge
of synchronization policies. Besides predefined FlowVR stamps, others, like a
time or a 3D bounding box for instance, may be added to extend the network
routing, filtering or synchronization abilities. The FlowVR network enables to
build complex collective communications, a desirable feature for efficient parallel
code coupling. It is also possible to go beyond the classical synchronization bar-
rier, designing synchronizations waiting for the resolution of complex constraints
based on stamps (a data semantically richer than a signal). Different FlowVR
networks can be designed without modification of the module codes.

2 The FlowVR Application Model

In this section we introduce the FlowVR application model.

2.1 Running Example

All along this paper, we use a simple yet important example, an interactive VR
application where the user can perturbate a fluid flow simulation with its hand.
We distinguish three parts :

— A tracker that gives the user’s hand position.

— A physical fluid simulation parallelized with MPI. The simulation is based
on a 2D grid split in blocks amongst the different MPI processes. MPI com-
munications take place at each iteration to exchange the values of the grid
borders between neighbors. Each process should also receive the hand posi-
tion, which acts as an obstacle for the fluid flow.

— A multi-projector visualization environment. Each projector, driven by its
own PC, displays a tile of the entire scene. The distribution paradigm adopted



initialization

while not stop
wait() o
get(position) C gic J
comput(-ztzons
put(grid)

Fig.1. The algorithm of the simulation Fig. 2. Interactive fluid simulation with 3
module. modules.

is simple: all PCs run a copy of the visualization application, each one ex-
pecting the coordinates of the hand position and a density grid at each
iteration. To ensure a strong coherency of the displayed images, these copies
must receive the same input data at each iteration. Next, each copy com-
putes its tile of the global image based on its own viewing frustum (viewing
angle). All PCs must then display the new image synchronously, either using
a hardware swaplock or a software barrier.

These codes can run independently at very different frequencies. The tracker
is certainly the fastest one and the fluid simulation the slowest one. A sampling-
based data exchange model will let the codes run independently at their highest
frequency, but it may lead to incoherences. For instance, in a given image, the
displayed hand position may not correspond to the one used to compute the
displayed simulation state. On the opposite, a FIFO communication model will
ensure the overall application coherency, but at the price of a lower performance.
All codes will run at the same frequency, synchronized on the slowest one. The
tracker will produce a new data as soon as room is available in the output channel
buffer. The latency will increase by the time such data stay unused in this buffer,
the time required by the fluid simulation to consume all data previously stored
in this buffer. FlowVR has been designed to let the user specify these different
policies and other intermediate solutions, without requiring any modification of
the codes.

2.2 Modules

We first introduce the APT used to program FlowVR modules. This APT is kept
as simple as possible to limit the effort required to convert an existing code into a
FlowVR module. For that purpose we explicitly took advantage of the interactive
nature of VR applications. A FlowVR module is a computation loop periodically
reading input data and producing new results. To improve code reuse, a module
cannot directly address another module. This way there is no explicit dependency
between modules. Their only knowledge of the FlowVR environment is a list of
input and output ports. The module API is based on three main methods:

— The wait defines the transition to a new iteration. It is a blocking call that
ensures each connected input port holds a new message. Input ports not



connected to any other port will never receive any message. They are deac-
tivated.

— The get function enables a module to retrieve the message available on a
port.

— The put function enables a module to write a message on an output port.
Only one new message can be written per port and iteration. Each output
message is automatically stamped by FlowVR with the current iteration
number.

In our example, we would define:

— One module for the tracker with one output port (a position data).

— Each MPI process of the fluid simulation will define a module with one input
(a position data) and one output (its block of the fluid density grid) (Fig. 1).
To be able to distinguish the different blocks, each process stamps its output
messages with the coordinates of its block.

— One module for each visualization process, with two input ports each, one to
retrieve the tracker position and the other one to retrieve the whole density
grid.

Each module has two additional predefined ports. The input activation port
is used to lock the module to an external event (fixed frequency trigger for the
tracker for instance). The output activation port is used to signal other compo-
nents that the module has started a new iteration (see section 2.5).

2.3 Connections

Once modules are defined, they are assembled connecting their input and output
ports. The simplest primitive used to build a FlowVR network is a connection.
A connection is a typed FIFO channel with one source and one destination.
Messages in a connection are numbered. Each message is stamped with this
number and the source id.

Let us consider our example. We can build a simple first application with
one tracker module, one fluid simulation module and one visualization module
(Fig. 2). We add one connection from the tracker to the visualization, another
one from the tracker to the simulation and a last one from the simulation to
the visualization. This simple application implements a classical communication
scheme using FIFO channels. The FIFO connections ensure a strong coherency.
At each iteration the visualization module will always retrieve a tracker position
and a density grid corresponding to the same simulated time. Therefore the
resulting application will be synchronized on the slowest module, presumably
the fluid simulation. If the tracker module is faster than the simulation module,
there will be a significant lag between between user interactions and their effects
on the virtual world. Also notice that adding the connections does not require
to modify the code of the modules.

However, having only point to point FIFO connections, it is difficult to loosen
the synchronizations imposed by the FIFO model or to express collective com-
munications.



2.4 Filters

To extend the capabilities of the FlowVR network we introduce a new compo-
nent, called filter.

A filter has typed input and output ports and can perform complex oper-
ations on messages. Filters have all the freedom to discard, combine or even
generate messages. They are not restricted to receive only one message per port
and per iteration like modules. They have free access to incoming buffers. Filters
usually handle messages based on the associated lists of stamps. For instance, a
filter can discard all incoming messages, which 3D bounding box falls outside of
a given volume. Amongst filters, we distinguish the routing nodes as the filters
that only forward all incoming messages on one or several outputs.

Let extend our example by now using four modules for the simulation and
two modules for the visualization (Fig. 3(a)). The tracker messages must be
broadcasted to these modules. For that purpose we introduce in our network
several routing nodes. To broadcast the data to modules we choose to implement
a binary-tree broadcast. The data exchange between simulation and visualization
is more complex as we have to ensure that all visualization modules receive the
whole density grid while each simulation module sends only one fourth of it.
For that purpose we use a filter that combines two blocks of density grids into
a larger one. This example implements a network with non trivial collective
communications. A strong coherency is still ensured as the filter we use here
does not suppress or generate new data (FIFO network).

2.5 Synchronizers

We distinguish a special class of filters, called synchronizers, used to implement
the resolution of non local constraints. A synchronizer works on stamps. There-
fore all incoming and outgoing connections only carry message stamps. Generally
a synchronizer activity is triggered by incoming stamps on some selected ports.
As synchronizers do not receive the data part of the messages, their output ports
are generally connected to filters. These filters typically have 2 input ports, one
receiving full messages (the data and its list of stamps) from a module or a
filter, and the other one receiving only stamps from a synchronizer. The filter
processes the incoming full messages according to incoming stamps. For instance,
such a filter can forward to its output only the full messages corresponding to
the incoming stamps, discarding the other messages.

Classical synchronization schemes can often be expressed in term of signal
handling. In this case the synchronizer only uses its inputs as signals. A sampling
scheme is implemented by selecting the last received message each time an acti-
vation signal is received from the destination module (request for another input
message). But synchronizers can implement more complex algorithms by taking
advantage of the semantically rich information hold by stamps. For example, in
VR environments some coherency constraints can be expressed in term of spatial
relationships. A strong coherency is required for objects close to the user, while
background or unseen parts of the scene require much less attention. A stamp



; \
\
\
\
|
\
'
|
|
|

s R T Bl

(pos ) ( _pos ) o pes N[ pos

\
Simulation’2 | [ Simulation/a \ ” Simulation/o | [ Simulation/
act | gid act |_gid v act |_gid act |_gnid

1

O

Simulation/0 Simulation/2

\

(pos | grid \ (‘pos [ grid (Cpos | gid
Visualization/0 Visualization/1
(a) (b)

Fig. 3. (a) Fluid simulation with a FIFO network. Modules are represented as round-
shaped squares, routing nodes as circles and filters as diamonds. (b) Fluid simulation
with a coherent sampling network using one synchromnizer (a square). Dashed lines
correspond to connections carrying only stamps. The act port corresponds to the output
activation port.

holding a bounding box information can be used to implement such a coherency
policy.

In our example, because the simulation will probably be slower than the
tracker, we introduce a synchronizer to keep pace with the tracker (Fig. 3(b)).
This synchronizer takes as input the stamps from the position messages, and
the stamps from the activation output ports of the fluid modules. When all
fluid modules request a new data, the synchronizer selects the newest stamp
available and sends it to the filter Fit. This filter only forwards on its output
port the messages having the stamps selected by the synchronizer. A strong
coherency is ensured as the visualization and simulation modules receive the
same position messages. Similar ideas could be applied to implement a coherent
sampling scheme to enable the visualization to run asynchronously from the
simulation. Once again, building this network did not require any modification
of the module codes.

3 Runtime Engine

FlowVR is open source and currently ported on Linux for TA32, TA64 and
Opteron.

The FlowVR runtime engine relies on daemons, one per participating node.
Daemons are in charge of FlowVR networks. They act as brokers and relay
messages between modules. Filters, including synchronizers, are implemented as



dynamically loaded classes (plugins) within the daemon. Communications lo-
cal to a node use a shared memory area. Care is taken to avoid unnecessary
data copies and memory allocations by exchanging pointers and reusing allo-
cated buffers. The current implementation of inter-node communications relies
on TCP. Networks of heterogeneous nodes are easily exploited, as connections are
dynamically created and each daemon can be launched independently. Several
applications can safely run concurrently using the same daemons.

Each FlowVR application is managed by one special module called a con-
troller, automatically loaded at starting time. The controller first starts the
application’s modules using their own launching command, ssh or mpirun for
instance. Once the modules launched, they register themselves to their local dae-
mon that sends an acknowledgment to the controller. Then, the controller sends
to each daemon the list of plugins to load to implement the FlowVR network.

FlowVR integrates tools to generate the module launching commands and
the list of plugins to load. It uses as input an XML description of the syntax
of the launching command associated with each module code, as well as an
XML description of the FlowVR network with an explicit placement of all com-
ponents on target nodes. Ongoing work focuses on developing automatic and
semi-automatic FlowVR network generation tools.

3.1 Experimental Results

We implemented the running example porting an existing fluid simulation code.
The fluid simulation is parallelized with MPI, while the multi-projector visual-
ization is handled by Net Juggler (also based on MPI) [6]. From the FlowVR
point of view, each MPI fluid process and each Net Juggler process is seen as
a module. Note that all fluid modules (respectively visualization modules) are
synchronized through MPI communication calls FlowVR is not aware of. All
results presented here run a fluid simulation based on a 2D 512 x 512 grid. The
visualization modules integrate the fluid into a rich virtual environment (See
Fig. 4(d)).

Two versions of the network were tested, a FIFO network (similar to Fig. 3(a)),
and a coherent sampling network enabling the tracker, the fluid simulation and
the visualization to run asynchronously. It extends the network presented in
Fig. 3(b) by adding an extra synchronizer between the tracker and the visualiza-
tion, and another one between the simulation and the visualization (Fig. 4(c)).
Tests were performed on a PC cluster with dual Xeon PCs (2.66 GHz) con-
nected through a Gigabit Ethernet network. Each machine was equipped with a
GeForce FX 5600 graphics card.

The number of visualization and fluid modules vary from 1 to 4. Each module
runs on its own PC. For instance when 8 nodes are used, 4 of them execute a
fluid module, while each of the 4 other PCs run a visualization module. Each
of these 4 PCs drives a video projector to display the result of its visualization
module (1/4 of the global image).

We measured the refresh rate, i.e. number of iterations per second, for the
visualization and the fluid simulation (see Fig. 4(a)). The FIFO networks im-



oo

250 T T
= 50 F
g 200 F J
o 40 - g
i = n -
g 301 - 150
n =] -
g 20r g 100 0
I % Visu. & Fluid (FIFO) ——| = L _
E 10 Visu. (sampling) —5— 50 FIIFO
= 0 Fluid (sampling) —x— 0 samping —8
1 2 3 4 1 2 3 4
Number of nodes Number of nodes
(a) Refresh rate (b) Latency
(c) Coherent sampling network (d) Screenshot of the visualization

Fig. 4. Experimental results with a coherent sampling network and a FIFO network.

pose the same refresh rate for the visualization and the fluid modules. For the
coherent sampling network, the visualization and the fluid run asynchronously.
It enables the visualization to run significantly faster than the simulation. The
fluid simulation keeps the same performance as in the FIFO case. It shows that
the communications induced by synchronizers do not significantly affect the per-
formance. As the number of nodes allocated to the fluid simulation increases,
the fluid performance increases too. For the sampling approach this decreases
the refresh rate of the visualization modules as they must upload to the graphics
card new data from the fluid modules more frequently.

We also measured the overall latency, i.e. the time lag between the time a
new tracker position is available and the end of the iteration of the visualization
modules using this tracker position (see Fig. 4(b)). Allocating more nodes to the
simulation also improves latency. Sampling leads to a better latency than FIFO,
because sampling uses the more recent data available while FIFO uses the older
one. Note that the FIFO was executed with intermediate buffers of size 2.

The synchronizers used for the sampling approach can be extended to enable
a finer control over dependencies between modules. For instance, the synchro-



nizer between the fluid modules and the visualization modules could take into
account a user position data to know for each visualization module if the fluid
is visible or not. If not, it could block the transmission of fluid grid to the visu-
alization module, to let the visualization and network resources fully available
for objects that are in the user field of view.

4 Conclusion

We introduced FlowVR, a middleware dedicated to distributed interactive ap-
plications. FlowVR distinguishes two main parts in an application, the modules
and the network. Modules are endless loops reading and writing data on input
and output ports. Modules are assembled in a network with advanced features
for message handling. It enables parallel code coupling and the design of com-
plex communication and synchronization schemes. First experiences show that
FlowVR eases the development and deployment of interactive distributed appli-
cations, while leading to high performance executions.

Acknowledgment

This work is partly funded by the RNTL project Geobench.

References

1. FlowVR. http://flowvr.sf.net.
2. OpenMASK. http://www.irisa.fr /siames/OpenMASK.
3. Scirun: A scientific computing problem solving environment.
http://software.sci.utah.edu/scirun.html.
4. Covise Programming Guide, 2001. http://www.hlrs.de/organization/vis/covise.
5. J. Ahrens, C. Law, W. Schroeder, K. Martin, and Michael Papka. A Parallel
Approach for Efficiently Visualizing Extremely Large, Time-Varying Datasets.
http://www.acl.lanl.gov/Viz/papers/pvtk/pvtkpreprint/.
6. J. Allard, V. Gouranton, E. Melin, and B. Raffin. Parallelizing pre-rendering com-
putations on a net juggler PC cluster. In Immersive Projection Technology Sym-
posium, Orlando, USA, March 2002.
7. C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart. The
Cave Audio VIsual Experience Automatic Virtual Environement. Communication
of the ACM, 35(6):64-72, 1992.
8. A. Denis, C. Pérez, and T. Priol. Padicotm: An open integration framework for
communication middleware and runtimes. Future Generation Computer Systems,
2003.
9. E. Frécon and M. Stenius. Dive: A scalable network architecture for distributed
virtual environments. Distributed Systems Engineering Journa, 5:91-100, 1998.
10. N. Karonis, B. Toonen, and I. Foster. Mpich-g2: A grid-enabled implementation
of the message passing interface. Journal of Parallel and Distributed Computing,
63(5):551-563, 2003.

11. K. Watsen and M. Zyda. Bamboo - a protable system for dynamically extensi-
ble, real-time, networked, virtual environments. In IEEE Virtual Reality Annual
Internationnal Symposium, Georgia, USA, 1998.



