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Vortex sheet dynamics and turbulence

Malek Abid] and Alberto Vergf
Institut de Recherche sur les Phénomenes Hegasilibre,
UMR 6594, CNRS, Université de Provence, Marseille, Frﬂnce
(Dated: July 12, 2006)

The nonlinear evolution of a vortex sheet driven by the Kehdelmholtz instability is characterized by the
formation of a spiral possessing complex stretching anensity patterns. We show that the power energy
spectrum of a single two-dimensional vortex sheet tendseasual fluid turbulent spectrum, with an exponent
of —3. Using numerical simulations and asymptotic methods, eeahstrate the relation between this power
law and the singularities in the geometry and vorticityritisttion of the sheet.

PACS numbers: 47.15.Ki, 47.32.C-, 47.27.E-

In 1941, Kolmogorov formulated a theory of fluid turbu- principal value integral, and the over bar denotes the cerpl
lence, based on the idea of statistical similarﬁy [1]. Im-pa conjugate. A sinusoidal perturbation of a straight vorteset
allel, Onsager proposed that a singular enough velocitg fiel evolves towards a singularity in finite time, as demonstrate
could explain dissipation without the “final assistanceigsfv by Moore in 1979 @2@3], probably related to the incipient
cosity” [EE] (A thorough review on Kolmogorov theory can rolling-up of the sheet into a spiral. In order to integreﬂ93 (
be found in the book by U. Frisclﬂ[4]. Onsager’s work on tur-in time, it is then necessary to regularize the kernel. A &mp
bulence is accounted for in Ref] [5].) These two complemenmethod consists in cutting the vortex interaction at a dista
tary approaches, the one statistical, the other dynandaal, §, therefore replacindk ~ 1/z by K; = z/(|2? + 6?) [@].
be taken as constitutive of further theoretical developien  Solutions of the regularized Birklie-Rott equation, withK
turbulence. One dicult problem, whose solution would con- replaced byK;, tend to solutions of the Euler equation in the
tribute to understanding the physics of turbulent flowspis t limit § — 0 ]. It is worth noting that the dynamics of the
establish the relation existing between dynamics andstit] desingularized[{l) remains Hamiltonian. As a consequence,
in particular flows. Following the theoretical ideas firdraz  this model is particularly well suited to investigate the- dy
duced by Townsencﬂ[G], Lundgren proposed a relation of thisiamics of the turbulent cascade in one of the most basic flow
type in his model of intermittent structures at high Reysold structures, the Kelvin—Helmholtz unstable vortex sheet.

numbers[[7[J8]. Lundgren demonstrated that solutions of the We used the blob vortex method of Krasfiy][14] to compute

Nawer—Stokes equation in the form of slender §p|ral VOHIC e dynamics of a shear layer in a periodic domain of length
yield Kolmogorov spectrum, through a mechanism of enstro

. o . , o L. We take units such thdt = 1 and the circulation is in
phy intensification and creation of fine scales bffetential the intervall’ € [0, 1] (or the unperturbed velocity disconti-
rotation and stretching. In two dimensional flows, Gilb@]t [ .

tudied the wind ; ; tchb ‘ intvort nuity equal to one). The initial perturbation, as for exaenpl
studiedthe wind-up ot a vortex patc yfi Strong point varteXyp, o superposition of small amplitude modes, evolves togsvard
and found that an energy spectritk) ~ k™ with 3 <y < 4,

is obtained f he f | £ th ol sei the formation of a system of spirals winding around the main
IS obtained from the fractal structure of the spiral sepagat o - These structures are driven by a cascade of secondary
potential and vortical regions. The goal of this Letter is to

. T Kelvin—Helmholtz instabilities, as shown in Ref. [16]. Fi
study the relation between geometry, vorticity distribatand E[ I Fig

: o ure[] presents the vortex sheet formed from an initial condi-
spectral properties of the flow generated by the windingfup O%ion of two modes with wavelengths 1 angé] together with
a shear layer subject to the Kelvin—Helmholtz instability.

) . . - o . : the strain rat&(s, t) and the intensity(s, t). The strain rate is
In two dimensions, and in the limit of vanishing viscosity, a defined byS = (1/As)dAs/dt, whereAs — 0, is the arclength
shear layer becomes a line of velocity discontinuity. TheeEu ! '

. : ~—~_ separation of two neighboring points on the vortex sheet. Di
flow associated with a vortex sheet reduces to the Hamiltonia

oo . . minishing the value o, the relevant physical limit i§ — O,
dynamics given by the Birktb-Rott equaﬂorﬂ(]:il], results in a drastic increasing of small scale features ef th

o — 1 sheet winding[[47] (see alsp |18]). We study numerically the
Glsh =5 deK(S',t)K(Z(S, t) - Z(Sl,t))~ (1) generation of the small scales resulting from the short irave
stabilities, in the presence of nontrivial stretching aadieity
In EqQ. (]]) the vortex sheet is represented by the paramatric e concentrationfects. Indeed, arbitrarily small scale perturba-
pression of the curve= Z(s,t), wherez = x+iyis a complex tions might grow, depending for instance on the local strain
coordinate and is the arclengthds = |dZ|. The Biot-Savart rate ], and regions of strong localized vortex intensigy
kernel is defined byK(2) = 1/zor K(2) = cot(r2)/2 in the velop as observed in Fi@. 1(b). The origin of these smallescal
case of periodic boundary conditions in thealirection. In  features, can be traced back to the highly oscillatory biehav
@I) k = I's = 0I'/ds (subscripts denotes derivative) is the of the vortex sheet stretching, whose dynamics is esshntial
intensity of the sheet, where the circulatios: T'(s,t)isalLa- Lagrangian and nonlocal (Fiﬁ|. 1(c)). The presence of strong
grangian variable satisfyingl"/dt = O; f denotes the Cauchy velocity gradients (in the limid — 0) possessing a wide range
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FIG. 1: (Color online.) Spiral formed at the nonlinear stafe¢he Kelvin—Helmholtz instability l = 16384,6 = 0.024,t = 0.93). (a)
Snapshot of the vortex sheet; (b) the intengitg, t) concentrates in localized regions; (c) the strain &¢gt) (in blue) shows a complex
structure of alternating compression and stretching z@ineed, the vortex sheet).

of space and time scales, responsible for the appearanoe of a
increasingly complex velocity field, can be considered to be
the root of a turbulent flow. We found indeed, that the flow
created by this single shear layer becorhabulent in the
sense that it is characterized by a well defined power law en-
ergy spectrunig ~ k™ (for k <« 2r/6, and 3< y < 4), in
agreement with full Navier—Stokes simulations with random
initial vorticity field [fL9, [20].

It is then natural to look at the energy spectrifp,= E(K)
of the sheet. However, in order to avoid the arbitrarinegisen 7 v v
origin of coordinates we define a one-dimensional spectrum X
from they-direction average of the velocityx, y) correlation
functionc(¢) ,

FIG. 2: (Color online.) The energy spectruﬂ1 (2) of the flonoass
ated with the vortex sheet shown in the inséit£ 2'° § = 0.01,
t = 0.386, quadruple precision computation).

1
Eo=EQ = 57l - 5 [deol@e™. @
0

first time to a quadruple precision computation (33 significa
where¥y is the Fourier transform, and digits), usings = 0.01 andN = 2'° vortices.

As it is well known, the superposition of velocity disconti-
nuities yields a spectrum iBx ~ k=2 [f], while a superposi-
tion of vorticity discontinuities yield&, ~ k=4 [R1], the clas-
sical enstrophy cascade picture gid&s~ k=3 [R3]. It would
(The averaging lengthis chosen munch larger than the spiral be interesting, as suggested by fiédt ], to establish arela-
size.) This definition, similar to the one proposed byf®an tionship between the fractal structure of the rolled shayed
and others[[9[ 21[ 22], satisfies the condition that the conand the observed energy spectrum, characterized by an inter
served total energk, is given byfom dkE(K) = fom dv® =  mediate value of the exponent. (It is worth mentioning that f
E, where,vx = Fi[v]. We measured the spectrufy (2) of the finite § the velocity field is continuous.) The fractal dimension
vortex sheet shown in Figﬂ 1, and found that ko 27/6, dr of the spiral in Fig[|1 is found to bdr ~ 1.44. This value
it is well fitted by a power lanEx ~ k2% close to the law can be compared tde = 1.33 measured in Ref[ [P5], for a
observed in developed decaying two-dimensional turb@lencsingle Kelvin—Helmholtz spiral and for a large value of the
[@]. In fact, the actual value of the exponent follows the-ev smoothing parametey = 0.25. Assuming that the formula
lution of the initially regular vortex sheet. The valyer 3is  y = —5 + dg relating the energy exponent to the fractal di-
reached after the development of the secondary structsges ( mension, derived by Gilberf][9] in his study of a spiral varte
the insert in Fig[]1). At the early stages of the winding, inte patch, holds in the present case, we obtain a valee3.56,
mediate values & y < 4 are measured, with a low wavenum- somewhat larger than the observed one. Tlikedince may
ber range dominated by~ 3, and a large wavenumber range be attributed to the nonuniformity in the distribution okth
having a steeper spectrum. Thex 3 range ofk increases vorticity.
with time, and att = 0.386 it extends almost over all the It is then tempting to conjecture that the characteristic ex
available range (0< k < 2r/6). In order to obtain a sig- ponent of the spectrum reflects, not only the fractal spiral
nificant range in the turbulent spectrum we proceeded for thstructure of the sheets, but also the existence of singekri

| 1
1
(©=5 [dy [ dex+ey vxy. @
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FIG. 3: (Color online.) Shape and spectrum of the vortex tsi{ag The spiral shown in Fiﬂ 1 after periodization in thdirection; (b) power
spectrum ofZ(s), with exponent 2 + 2 = 2.45; (c) power spectrum afs), with exponent 2 + 2 = 0.66.

in both the shape and the intensity of the vortex sheet. Remathat, in the limit of6 — 0, the curvature diverges at a point
that the existence of such type of singularities is notedlad s, where it changes sign, leading to the eventual formation
eventual singularities in Euler flows, the velocity fieldside  of a new spiral (Fig[|4). In order to identify the nature ofsthi
the sheet is always regular in our case. Indeed, we can use teagularity we assume that the behavior of the vortex sheet
Biot—Savart equation for the velocity field to relatavith the  arounds = s, can be analyzed within a local approximation
characteristic exponentsandg of the shape&(s) ~ s* and [@], therefore neglecting the contour integral in the catap

intensityx(s) ~ & singularities, respectively: tion of the principal value of the BirkHB-Rott term,
L gy L7 P N 6
v~ [as [ @ e, (4) Y= " 25y T sy ©

where we introduced non-dimensional variables based on the
time unit 2rd?/T’y and the space unit The non-dimensional
parametea = mxod/T'g < 1 measures the circulation ratio be-
tween the central point vortex and the sheet. In the follgwin
we put the poink = Z(sp, to) corresponding to the singularity,

at the origingg = 0 andty; = 0. Moreover, the transformation
Z(s,t) = r(s t) explip(s t) +iQ(9)t], allows to separate the dy-
namics of the complex amplitude? from the pure rotation

Mt frequency, and leads, after substitution intd (6), to the

Therefore,Ex = [wf> ~ k™ impliesy = 2(8 + 1)/a. The
exponentsr andg can be directly measured from the data of
Fig. B where we display the shagés) (after subtraction of
I'(s), in order to obtain a periodic functic®(I" + 1) = Z(I), in
terms of the parametél) and its spectrum together with the
one of the intensity. In Fourier space we h#Zig® ~ k™2%72
and|x®> ~ k%72, it follows thata = 0.22 ands = —0.66,
giving y = 3 in agreement with the exponent measured fro

the energy. ) ) ) . @ two real equations,
We found that the intensity concentrations shown in Elg. 1
are related with regions characterized by the strong advec- 9 r o= ars @)
tion of secondary structures. Indeed, during the evolutibn ot r2 +r2(¢s + Qst)?
secondary instabilities, filamentary sheets are advegtéiteb 0 1 s+ Qqt
previous formed intense vortices (the central tightly webewh ¢ = (@Gt 2" (8)
ot r rs +r2(¢s + Qgt)

region of the spirals). A simple model describing this situa
tion, consists of a fixed strong point vortex advecting an ini
tially straight weak intensity vortex sheet.

The evolution of the sheat= Z(s t) of intensityx(s,t) =
dI'(s,t)/ds s is the arclength, is given by a BirkffeRott
equation with an external velocity field due to the point gart
of circulationI'y:

We assume now, that the form of the sheet near de singu-
larity can be written ag = rp + sgnE)R)(s,t) and ¢ =
¢o + H(t)D)(s 1), with the regular parts determined by the ad-
vectionro(s) = |z| = [1 + (s + $)%]*? andgo(s) = arg) =
arctang+ s) + /2 + Qty, and where the singular paf$s, t)
and®(s, t), should possess strong derivatives rear0. This
can be satisfied iR ~ |99, with the conditiong < 1. We in-
I'o + 1 J[ (s, tds 5) troduced the sign sgaf) and the Heaviside H(t) functions, to
2niZ(st)  2ni J Z(st)-Z(s,t)° reproduce the jump in the curvatynec(t)|, as observed in the
numerical computations of Fifj] 4, together with the smooth-
ness of the phas®(s,t) before the singularity. Substituting
these expressions intﬂ []7-8), and neglecting small terms in
ﬁs| < 1] (we cana posterioriverify the consistency of these
assumptions), we get,

9 —
EZ(S’ t) =

Initially one may consider that the sheet is located at adist

d in they direction from the central point vorte¥(s,0) =
s+id. If one neglects the self-interaction, the advection of th
sheet is described by the cun& = z(s t) = (s + id)dt,
whereQ(s) = T'o/2r(d? + s%). However, a singularity can-
not result from the sole advection, and thieet of self- O _SINEY 0. sgn®, Ps+Qd

interaction is needed. Direct integration ﬂf(S) actualpws ot Ry ~ ot rg Rz 7

©)



FIG. 4: (Color online.) The maximal curvature jump as a fiorcof
time for various values aof € (0.013 0.005), showing the approach
to a singularity in the limitt — 0, during the advection of the sheet,
from numerical solutions oﬂS). Inserts: (top) Snapshahefvortex
sheet withs = 0.005 att = 1.8; and (middle) the corresponding
vortex intensityk as a function of the arclength

whose solutions, singular at~ 0, are,

R = (4alst)"?, (10)

and

90 s+ 1(s9. - (12)

0

® = (Qgg log(1/]s]) -

where f(st) is an arbitrary smooth function, that can be ne-
glected. We note that the solution cﬂ (9) naturally leads to11]

g = 1/2, and to the scaling®Rs > ro®s for t <« 1, justifying

the assumption that the second term in the denominatd} of

B) is negligible near the singularity. It is also worth ngtihat

4

of strong secondary singularities, associated with junmps i
the curvature, by the simultaneous action of the advection a
self-interaction of the vortex sheet. A simple model ddxesi
the structure of the sheet near the singularity in the forma of
square root cusg(s) ~ sgn@)|sY, with an exponeng = 1/2.
This value is sfficiently small to be in agreement with the
requirement that % y < 4. If one assumes that ~ «, the
condition 3+1)/2 < q ~ @ < 2/3 should hold. The formation
of singular concentrations of vorticity in regions with dig-
ing curvature, constitute a dynamical mechanism towards a
turbulent dissipation in the limit of vanishing viscosity.

* Electronic addresg: irphe.univ-mis.fr

T Electronic addres$: verga@irphe.univ-mfs.fr

¥ IRPHE, 49, rue F. Joliot-Curie, BP 146, 13384 Marseille,
France

[1] A. N. Kolmogorov, Comptes rendus (Doklady) de I’Academ
de sciences de I'U.R.S.80, 301 (1941), translated version in
Ref. [21.

[2] L. Onsager, Phys. Re68, 286 (1945), abstract, meeting of the
American Physical Society, Columbia University, New York,
November 9 and 10, 1945.

[3] L. Onsager, Nuovo Cimento Supid, 279 (1949).

[4] U. Frisch, Turbulence(Cambridge Univ. Press, Cambridge,
1995).

[5] G. L. Eyink and K. R. Sreenivasan, Rev. Mod. Phy8, 87
(2006).

[6] A. A. Townsend, Proc. R. Soc. Lond. 208, 534 (1951).

[7] T. S. Lundgren, Phys. Fluid2b, 2193 (1982).

[8] D. I. Pullin and P. G. S@iman, Ann. Rev. Fluid Mech30, 31
(1998).

[9] A. D. Gilbert, J. Fluid Mech193, 475 (1988).

[10] C. Sulem, P. L. Sulem, C. Bardos, and U. Frisch, Commun.
Math. Phys80, 485 (1981).

P. G. S&fman,Vortex DynamicgCambridge University Press,
London, 1992).

_}12] D. W. Moore, Proc. R. Soc. London 365, 105 (1979).
[

13] S.J. Cowley, G. R. Baker, and S. Tanveer, C. R. Acad. SdsP
297, 641 (1999).

this singularity is stronger than the one found by Mo@ [12] [14] R. Krasny, J. Comp. Phy65, 292 (1986).

whose characteristic exponentgs= 3/2 > 1, the diference
coming from the presence of the advection velocity field.

[15] J. G. Liu and Z. P. Xin, Comm. Pure Appl. Math8, 611
(1995).

In this Letter thek-3 energy spectrum of two dimensional [18] M. Abid and A. D. Verga, Phys. Fluidsd, 3829 (2002).

turbulence is recovered in a simple model of a single, regut

larized, vortex sheet evolving according to a Hamiltonign d

[17] R. Krasny, Lectures in Applied Mathemati28, 385 (1991).
[18] A. J. Majda and A. L. BertozziVorticity and incompressible
flow (Cambridge University Press, New York, 2002).

namics. The vortex sheet is subject to a cascade of Kelvin[-lg] M. E. Brachet, M. Meneguzzi, H. Politano, and P. L. Sulém

Helmholtz instabilities, leading to spiral windings affdrent
scales. The flow is characterized by an intermittent distrib
tion of the vorticity intensity along the vortex sheet, arydsb

Fluid Mech.194, 333 (1988).
[20] P. Tabeling, Phys. Ref62, 1 (2002).
[21] P. G. S&man, Stud. Appl. Math§0, 377 (1971).

complex sequence of compression and stretching regions r&22] H. K. Moffatt, inNew Approaches and Concepts in Turbulence

sulting from the nonlocal Lagrangian dynamics of the strain
The sole consideration of the fractal structure of the $pira[23]

edited by T. A. Dracos and A. Tsinober (Birkhauser, Basel,
1993), pp. 121-129.
G. K. Batchelor, Phys. Fluids (supplement1B, Il (1969).

windings is not enough to account for the observed SPectrunjz4] H. K. Moftatt, inTurbulence and Chaotic Phenomena in Flyids

A simple dimensional argument using the Biot—Savart equa-

tion, allows to relate the exponents of the singularitiethim

edited by T. Tatsumi (Elsevier, North Holland, 1984), pp322
230.

shape and the intensity of the vortex sheet, with the sped25] J. R. Angilella and J. C. Vassilicos, Phys. Rev5§ 5427

trum exponent. We propose a mechanism for the formation

(1999).


mailto:abid@irphe.univ-mrs.fr
mailto:verga@irphe.univ-mrs.fr

[26] R. E. Caflisch, O. F. Orellana, and M. Siegel, SIAM J. Appl statistical theory(Interscience publishers, New York, 1961).
Maths50, 1517 (1990).
[27] S. K. Friedlander and L. Topp€Furbulence, classic papers on



