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Moment estimates for Lévy Processes

Harald Luschgy∗ and Gilles Pagès †
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Abstract

For real Lévy processes (Xt)t≥0 having no Brownian component with Blumenthal-Getoor
index β, the estimate E sups≤t |Xs − aps|p ≤ Cpt for every t∈ [0, 1] and suitable ap ∈ R has
been established by Millar [6] for β < p ≤ 2 provided X1 ∈ Lp. We derive extensions of these
estimates to the cases p > 2 and p ≤ β.

Key words: Lévy process increment, Lévy measure, α-stable process, Normal Inverse Gaussian
process, tempered stable process, Meixner process.

2000 Mathematics Subject Classification: 60G51, 60G18.

1 Introduction and results

We investigate the Lp-norm (or quasi-norm) of the maximum process of real Lévy processes having
no Brownian component. A (càdlàg) Lévy process X = (Xt)t≥0 is characterized by its so-called
local characteristics in the Lévy-Khintchine formula. They depend on the way the ”big” jumps are
truncated. We will adopt in the following the convention that the truncation occurs at size 1. So
that

E eiuXt = e−tΨ(u) with Ψ(u) = −iua+
1

2
σ2u2 −

∫

(eiux − 1 − iux1 {|x|≤1})dν(x) (1.1)

where u, a∈ R, σ2 ≥ 0 and ν is a measure on R such that ν({0}) = 0 and
∫

x2 ∧ 1dν(x) < +∞.
The measure ν is called the Lévy measure of X and the quantities (a, σ2, ν) are referred to as the
characteristics of X. One shows that for p > 0,E |X1|p < +∞ if and only if E |Xt|p < +∞ for
every t ≥ 0 and this in turn is equivalent to E sups≤t |Xs|p < +∞ for every t ≥ 0. Furthermore,

E |X1|p < +∞ if and only if

∫

{x|>1}
|x|pdν(x) < +∞ (1.2)

(see [7]). The index β of the process X introduced in [2] is defined by

β =inf{p > 0 :

∫

{|x|≤1}
|x|pdν(x) < +∞}. (1.3)

Necessarily, β∈ [0, 2].
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Paris Cedex 5. E-mail:gpa@ccr.jussieu.fr

1



In the sequel we will assume that σ2 = 0, i.e. that X has no Brownian component. Then the
Lévy-It decomposition of X reads

Xt = at+

∫ t

0

∫

{|x|≤1}
x(µ− λ⊗ ν)(ds, dx) +

∫ t

0

∫

{|x|>1}
xµ(ds, dx) (1.4)

where λ denotes the Lebesgue measure and µ is the Poisson random measure on R+×R associated
with the jumps of X by

µ =
∑

t≥0

ε(t,△Xt)1 {△Xt 6=0},

△Xt = Xt −Xt−,△X0 = 0 (see [4] , [7]).

Theorem 1 Let (Xt)t≥0 be a Lévy process with characteristics (a, 0, ν) and index β such that
E |X1|p < +∞ for some p∈ (β,∞) or for p = β provided

∫

{|x|≤1} |x|βdν(x) < +∞ and β > 0. Then
for every t ≥ 0

E sup
s≤t

|Ys|p ≤ Cpt if p < 1,

E sup
s≤t

|Xs − sEX1|p ≤ Cpt if 1 ≤ p ≤ 2

where Yt = Xt − t(a− ∫{|x|≤1} xdν(x)). Furthermore, for every p > 2

E sup
s≤t

|Xs|p = O(t) as t→ 0

for a finite real constant Cp.

If X1 is symmetric one observes that Y = X since the symmetry of X1 implies a = 0 and the
symmetry of ν (see [7]). We emphasize that in view of the Kolmogorov criterion for continuous
modifications the above bounds are best possible as concerns powers of t. In case p > β and p ≤ 2,
these estimates are due to Millar [6]. However, the Laplace-transform approach in [6] does not
work for p > 2. Our proof is based on the Burkholder-Davis-Gundy inequality.

For the case p < β we need some assumptions on X. Recall that a measurable function
ϕ : (0, c] → (0,∞) (c > 0) is said to be regularly varying at zero with index b∈ R if, for every t > 0,

lim
x→0

ϕ(tx)

ϕ(x)
= tb.

This means that ϕ(1/x) is regularly varying at infinity with index −b. Slow variation corresponds
to b = 0.

Theorem 2 Let (Xt)t≥0 be a Lévy process with characteristics (a, 0, ν) and index β such that β > 0
and E |X1|p < +∞ for some p∈ (0, β). Assume that the Lévy measure satisfies

∃ c∈ (0, 1],1 {0<|x|≤c}ν(dx) ≤ ϕ(|x|)1 {0<|x|≤c}dx (1.5)

where ϕ : (0, c] → (0,∞) is a regularly varying function at zero of index −(β + 1). Let l(x) =
xβ+1ϕ(x) and assume that l(1/x), x ≥ c is locally bounded. Let l(x) = lβ(x) = l(x1/β).

(a) Assume β > 1. Then as t→ 0, for every r∈ (β, 2], q∈ [p ∨ 1, β),

E sup
s≤t

|Xs|p = O(tp/β[l(t)p/r + l(t)p/q]) if β < 2,
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E sup
s≤t

|Xs|p = O(tp/β [1 + l(t)p/q]) if β = 2.

If ν is symmetric then this holds for every q∈ [p, β).

(b) Assume β < 1. Then as t→ 0, for every r∈ (β, 1], q∈ [p, β)

E sup
s≤t

|Ys|p = O(tp/β[l(t)p/r + l(t)p/q])

where Yt = Xt − t(a− ∫{|x|≤1} xdν(x)) . If ν is symmetric this holds for every r∈ (β, 2].

(c) Assume β = 1 and ν is symmetric. Then as t → 0, for every r∈ (β, 2], q∈ [p, β)

E sup
s≤t

|Xs − as|p = O(tp/β[l(t)p/r + l(t)p/q]).

It can be seen from strictly α-stable Lévy processes where β = α that the above estimates are
best possible as concerns powers of t.

Observe that condition (1.5) is satisfied for a broad class of Lévy processes. It implies that
the tail function t 7→ ν(t) := ν([−t, t]c), t > 0 of the Lévy measure is dominated, for t ≤ c, by
2
∫ c
t ϕ(x)ds+ν(|x| > c), a regularly varying function at zero with index −β, so that ν(t) = O(tϕ(t))

as t → 0.
Important special cases are as follows.

Corollary 1.1 Assume the situation of Theorem 2 (with ν symmetric if β = 1) and let U denote
any of the processes X, Y, (Xt − at)t≥0.

(a) Assume that the slowly varying part l of ϕ is decreasing and unbounded on (0, c] (e.g. (− log x)a, a >
0). Then as t → 0, for every ε∈ (0, β),

E sup
s≤t

|Us|p = O(tp/βl(t)p/(β−ε).

(b) Assume that l is increasing on (0, c] satisfying l(0+) = 0 (e.g. (− log x)−a, a > 0, c < 1) and
β∈ (0, 2). Then as t→ 0, for every ε > 0,

E sup
s≤t

|Us|p = O(tp/βl(t)p/(β+ε).

The remaining cases p = β∈ (0, 2) if β 6= 1 and p ≤ 1 if β = 1 are solved under the assumption
that the slowly varying part of the function ϕ in (1.5) is constant.

Theorem 3 Let (Xt)t≥0 be a Lévy process with characteristics (a, 0, ν) and index β such that
β ∈ (0, 2) and E |X1|β < +∞ if β 6= 1 and E |X1|p < +∞ for some p ≤ 1 if β = 1. Assume that
the Lévy measure satisfies

∃ c∈ (0, 1],∃C ∈ (0,∞),1 {0<|x|≤c}ν(dx) ≤
C

|x|β+1
1 {0<|x|≤c}dx. (1.6)

Then as t→ 0

E sup
s≤t

|Xs|β = O(t(− log t)) if β >> 1,

E sup
s≤t

|Ys|β = O(t(− log t)) if β < 1

and
E sup

s≤t
|Xs|p = O((t(− log t))p) if β = 1, p ≤ 1

where the process Y is defined as in Theorem 2.

The above estimates are optimal (see Section 3).
The paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1, 2 and 3.

Section 3 contains a collection of examples.
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2 Proofs

We will extensively use the following compensation formula (see e.g. [4])

E

∫ t

0

∫

f(s, x)µ(ds, dx) = E
∑

s≤t

f(s,∆Xs)1 {∆Xs 6=0} =

∫ t

0

∫

f(s, x)dν(x)ds

where f : R+ × R → R+ is a Borel function.

Proof of Theorem 1. Since E |X1|p < +∞ and p > β (or p = β provided
∫

{|x|≤1} |x|βdν(x) < +∞
and β > 0), it follows from (1.2) that

∫

|x|pdν(x) < +∞.

CASE 1: 0 < p < 1. In this case we have β < 1 and hence
∫

{x|≤1} |x|dν(x) < +∞. Consequently,
X a.s. has finite variation on finite intervals. By (1.4),

Yt = Xt − t

(

a−
∫

{|x|≤1}
xdν(x)

)

=

∫ t

0

∫

xµ(ds, dx) =
∑

s≤t

△Xs

so that, using the elementary inequality (u+ v)p ≤ up + vp,

sup
s≤t

|Ys|p ≤




∑

s≤t

|△Xs|




p

≤
∑

s≤t

|△Xs|p =

∫ t

0

∫

|x|pµ(ds, dx).

Consequently,

E sup
s≤t

|Ys|p ≤ t

∫

|x|pdν(x) for every t ≥ 0.

CASE 2: 1 ≤ p ≤ 2. Introduce the martingale

Mt := Xt − tEX1 = Xt − t

(

a+

∫

{|x|>1}
xdν(x)

)

=

∫ t

0

∫

x(µ− λ⊗ ν)(ds, dx).

It follows from the Burkholder-Davis-Gundy inequality (see [5]) that

E sup
s≤t

|Ms|p ≤ CE [M ]
p/2
t

for some finite constant C. Since p/2 ≤ 1, the quadratic variation [M ] of M satisfies

[M ]
p/2
t =





∑

s≤t

|△Xs|2




p/2

≤
∑

s≤t

|△Xs|p

so that

E sup
s≤t

|Ms|p ≤ Ct

∫

|x|pdν(x) for every t ≥ 0.

CASE 3: p > 2. One considers again the martingale Lévy process Mt = Xt − tEX1. For k ≥ 1
such that 2k ≤ p, introduce the martingales

N
(k)
t :=

∫ t

0

∫

|x|2k
(µ− λ⊗ ν)(ds, dx) =

∑

s≤t

|△Xs|2
k − t

∫

|x|2k
dν(x).
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Set m := max{k ≥ 1 : 2k < p}. Again by the Burkholder-Davis-Gundy inequality

E sup
s≤t

|Ms|p ≤ C E [M ]
p/2
t

= C E

(

t

∫

x2dν(x) +N
(1)
t

)p/2

= ≤ C

(

tp/2
(∫

x2dν(x)

)p/2

+ E |N (1)
t |p/2

)

≤ C (t+ E |N (1)
t |p/2)

for every t∈ [0, 1] where C is a finite constant that may vary from line to line. Applying successively
the Burkholder-Davis-Gundy inequality to the martingales N (k) and exponents p/2k > 1, 1 ≤ k ≤
m, finally yields

E sup
s≤t

|Ms|p ≤ C(t+ E [N (m)]
p/2m+1

t ) for every t∈ [0, 1].

Using p ≤ 2m+1, one gets

[N (m)]
p/2m+1
t =





∑

s≤t

|△Xs|2
m+1





p/2m+1

≤
∑

s≤t

|△Xs|p

so that

E sup
s≤t

|Ms|p ≤ C

(

t+ t

∫

|x|pdν(x)
)

for every t∈ [0, 1].

This implies E sups≤t |Xs|p = O(t) as t→ 0. 2

Proof of Theorems 2 and 3. Let p ≤ β and fix c∈ (0, 1]. Let ν1 = 1 {|x|≤c}·ν and ν2 = 1 {|x|>c}·ν.
Construct Lévy processes X(1) and X(2) such that X

d
= X(1)+X(2) and X(2) is a compound Poisson

process with Lévy measure ν2. Then β = β(X) = β(X(1)), β(X(2)) = 0, E |X(1)|q < +∞ for every

q > 0 and E |X(2)
1 |p < +∞. It follows e.g. from Theorem 1 that for every t ≥ 0,

E sup
s≤t

|X(2)
s |p ≤ Cpt if p < 1, (2.1)

E sup
s≤t

|X(2) − sEX
(2)
1 |p ≤ Cpt if 1 ≤ p ≤ 2

where EX
(2)
1 =

∫

xdν2(x) =
∫

{|x|>c} xdν(x) .

As concerns X(1), consider the martingale

Z
(1)
t := X

(1)
t − tEX

(1)
1 = X

(1)
t − t

(

a−
∫

x1 {c<|x|≤1}dν(x)

)

=

∫ t

0

∫

x(µ1 − λ⊗ ν1)(ds, dx)

where µ1 denotes the Poisson random measure associated with the jumps of X(1). The starting
idea is to part the ’small’ and the ’big’ jumps of X(1) in a non homogeneous way with respect to
the function s 7→ s1/β . Indeed one may decompose Z(1) as follows

Z(1) = M +N

where

Mt :=

∫ t

0

∫

x1 {|x|≤s1/β}(µ1 − λ⊗ ν1)(ds, dx)
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and

Nt :=

∫ t

0

∫

x1 {|x|>s1/β}(µ1 − λ⊗ ν1)(ds, dx)

are martingales. Observe that for every q > 0 and t ≥ 0,

∫ t

0

∫

|x|q1 {|x|>s1/β}dν1(x)ds =

∫

|x|q(|x|β ∧ t)dν1(x)

≤
∫

{|x|≤c}
|x|β+qdν(x) < +∞.

Consequently,

Nt =

∫ t

0

∫

x1 {|x|>s1/β}dµ1(s, x) − ψ(t)

where ψ(t) :=
∫ t
0

∫

x1 {|x|>s1/β}dν1(x)ds. Furthermore, for every r > β or r = 2 and t ≥ 0

∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds ≤ t

∫

{|x|≤c}
|x|rdν(x) < +∞. (2.2)

In the sequel let C denote a finite constant that may vary from line to line.
We first claim that for every t ≥ 0, r∈ (β, 2] ∩ [1, 2] and for r = 2,

E sup
s≤t

|Ms| ≤ C(

∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds)
p/r. (2.3)

In fact, it follows from the Burkholder-Davis-Gundy inequality and from p/r ≤ 1, r/2 ≤ 1 that

E sup
s≤t

|Ms|p ≤
(

E sup
s≤t

|Ms|r
)p/r

≤ C
(

E [M ]
r/2
t

)p/r

= C






E





∑

s≤t

|△X(1)
s |21

{|△X
(1)
s |≤s1/β}





r/2






p/r

≤ C



E
∑

s≤t

|△X(1)
s |r1

{|△X
(1)
s |≤s1/β}





p/r

= C

(∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds

)p/r

.

Exactly as for M , one gets for every t ≥ 0 and every q∈ [p, 2] ∩ [1, 2] that

E sup
s≤t

|Ns|p ≤ C

(∫ t

0

∫

|x|q1 {|x|>s1/β}dν1(x)ds

)p/q

. (2.4)

If ν is symmetric then (2.4) holds for every q∈ [p, 2] (which of course provides additional information
in case p < 1 only). Indeed, ψ = 0 by the symmetry of ν so that

Nt =

∫ t

0

∫

x1 {|x|>s1/β}dµ1(s, x)

6



and for q∈ [p, 1]

E sup
s≤t

∣

∣

∣

∣

∫ s

0

∫

x1 {|x|>u1/β}µ1(du, dx)

∣

∣

∣

∣

p

≤
(

E sup
s≤t

∣

∣

∣

∣

∫ t

0

∫

x1 {|x|>u1/β}µ1(du, dx)

∣

∣

∣

∣

q
)p/q

(2.5)

≤


E
∑

s≤t

∣

∣

∣△X(1)
s

∣

∣

∣

q
1

{|△X
(1)
s |>s1/β}





p/q

=

(∫ t

0

∫

|x|q1 {|x|>s1/β}dν1(x)ds

)p/q

.

In the case β < 1 we consider the process

Y
(1)
t := Z

(1)
t + t

∫

xdν1(x) = X
(1)
t − t

(

a−
∫

{|x|≤1}
xdν(x)

)

= Mt +Nt + t

∫

xdν1(x)

=

∫ t

0

∫

x1 {|x|≤s1/β}µ1(ds, dx) +

∫ 1

0

∫

x1 {|x|>s1/β}µ1(ds, dx).

Exactly as in (2.5) one shows that for t ≥ 0 and r∈ (β, 1]

E sup
s≤t

∣

∣

∣

∣

∫ s

0

∫

x1 {|x|≤u1/β}µ1(du, dx)

∣

∣

∣

∣

p

≤
(∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds

)p/r

. (2.6)

Combining (2.1) and (2.3) - (2.6) we obtain the following estimates. Let

Zt = Xt − t

(

a−
∫

x1 {c<|x|≤1}dν(x)

)

.

CASE 1: β ≥ 1 and p < 1. Then for every t ≥ 0, r∈ (β, 2] ∪ {2}, q∈ [1, 2],

E sup
s≤t

|Zs|p ≤ C

(

t+ (

∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds

)p/r

+

(∫ t

0

∫

|x|q1 {|x|>s1/β}dν1(x)ds)
p/q
)

. (2.7)

If ν is symmetric (2.7) is even valid for every q∈ [p, 2].

CASE 2: β ≥ 1 and p ≥ 1. Then for every t ≥ 0, r∈ (β, 2] ∪ {2}, q∈ [p, 2],

E sup
s≤t

|Xs − sEX1|p ≤ C

(

t+

(∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds

)p/r

+

(∫ t

0
|x|q1 {|x|>s1/β}dν1(x)ds

)p/q
)

. (2.8)

CASE 3: β < 1. Then for every t ≥ 0, r∈ (β, 1], q∈ [p, 1]

E sup
s≤t

|Ys|p ≤ C

(

t+

(∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds

)p/r

+

(∫ t

0
|x|q1 {|x|>s1/β}dν1(x)ds

)p/q
)

. (2.9)
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If ν is symmetric then Y = Z = (Xt − at)t≥0 and (2.9) is valid for every r∈ (β, 2], q∈ [p, 2].

Now we deduce Theorem 2. Assume p∈ (0, β) and (1.5). The constant c in the above decompo-
sition of X is specified by the constant from (1.5). Then one just needs to investigate the integrals
appearing in the right hand side of the inequalities (2.7) - (2.10). One observes that Theorem 1.5.11
in [1] yields for r > β,

∫

|x|rϕ(|x|)1 {|x|≤s1/β}dx ∼ 2

r − β
s

r
β
−1
l(s1/β) as s→ 0

which in turn implies that for small t,

∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds ≤
∫ t

0

∫

|x|rϕ(|x|)1 {|x|≤s1/β}dxds (2.10)

∼ 2β

(r − β)r
tr/βl(t1/β) as t→ 0.

Similarly, for 0 < q < β,

∫ t

0

∫

|x|q1 {|x|>s1/β}dν1(x)ds ≤
∫ t

0

∫

|x|qϕ(|x|)1 {|x|>s1/β}dxds (2.11)

∼ 2β

(β − q)q
tq/βl(t1/β) as t→ 0.

Using (2.2) for the case β = 2 and t + tp = o(tp/β l(t)α) as t → 0, α > 0, for the case β > 1 one
derives Theorem 2.

As for Theorem 3, one just needs a suitable choice of q in (2.7) - (2.9). Note that by (1.6) for
every β∈ (0, 2) and t ≤ cβ ,

∫ t

0

∫

|x|β1 {|x|>s1/β}dν1(x)ds =

∫ t

0

∫

|x|β1 {c≥|x|>>s1/β}dν(x)ds

≤ C

∫ t

0

∫

|x|−11 {c≥|x|>>s1/β}dxds

= Ct(− log t)

so that q = β is the right choice. (This choice of q is optimal.) Since by (2.10), for r∈ (β, 2](6= ∅),
∫ t

0

∫

|x|r1 {|x|≤s1/β}dν1(x)ds = O(tr/β)

the assertions follow from (2.7) - (2.9). 2

3 Examples

Let Kν denote the modified Bessel function of the third kind and index νgiven by

Kν(z) =
1

2

∫ ∞

0
uν−1 exp(−z

2
(u+

1

u
))du, z > 0.

• The Γ-process is a subordinator (increasing Lévy process) whose distribution PXt at time t > 0
is a Γ(1, t)-distribution

PXt(dx) =
1

Γ(t)
xt−1e−x1 (0,∞)(x)dx.

8



The characteristics are given by

ν(dx) =
1

x
e−x1 (0,∞)(x)ds

and a =
∫ 1
0 xdν(x) = 1 − e−1 so that β = 0 and Y = X. It follows from Theorem 1 that

E sup
s≤t

Xp
s = EXp

t = O(t)

for every p > 0. This is clearly the true rate since

EXp
t =

Γ(p+ t)

Γ(t+ 1)
t ∼ Γ(p)t as t→ 0.

• The α-stable Lévy Processes indexed by α∈ (0, 2) have Lévy measure

ν(dx) =

(

C1

xα+1
1 (0,∞)(x) +

C2

|x|α+1
1 (−∞,0)(x)

)

dx

with Ci ≥ 0, C1 + C2 > 0 so that E |X1|p < +∞ for p∈ (0, α),E |X1 |α = ∞ and β = α. It follows
from Theorems 2 and 3 that for p∈ (0, α),

E sup
s≤t

|Xs|p = O(t p/α) if α > 1,

E sup
s≤t

|Ys|p = O(t p/α) if α < 1,

E sup
s≤t

|Xs|p = O((t (− log t))p) if α = 1.

Here Theorem 3 gives the true rate provided X is not strictly stable. In fact, if α = 1 the scaling

property in this case says that Xt
d
= tX1 + Ct log t for some real constant C 6= 0 (see [7], p.87) so

that for p < 1
E |Xt|p = tpE |X1 + C log t|p ∼ Cptp| log t|p as t→ 0.

Now assume that X is strictly α-stable. If α < 1, then a =
∫

|x|≤1 xdν(x) and thus Y = X and
if α = 1, then ν is symmetric (see [7]). Consequently, by Theorem 2, for every α∈ (0, 2), p∈ (0, α),

E sup
s≤t

|Xs|p = O(t p/α).

In this case Theorem 2 provides the true rate since the self-similarity property of strictly stable
Lévy processes implies

E sup
s≤t

|Xs|p = t p/α
E sup

s≤1
|Xs|p.

• Tempered stable processes are subordinators with Lévy measure

ν(dx) =
2α · α

Γ(1 − α)
x−(α+1) exp(−1

2
γ1/αx)1 (0,∞)(x)dx

and first characteristic a =
∫ 1
0 xdν(x), α∈ (0, 1), γ>0 (see [8]) so that β=α, Y =X and EXp

1 < +∞
for every p > 0. The distribution of Xt is not generally known. It follows from Theorems 1,2 and
3 that

EXp
t = O(t) if p > α,

EXp
t = O(t p/α) if p < α

EXα
t = O(t(− log t)) if p = α.
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For α = 1/2, the process reduces to the inverse Gaussian process whose ditribution PXt at time
t > 0 is given by

PXt(dx) =
t√
2π
x−3/2 exp

(

−1

2
(
t√
x
− γ

√
x)2
)

1(0,∞)(x)dx.

In this case all rates are the true rates. In fact, for p > 0,

EXp
t =

t√
2π
etγ
∫ ∞

0
xp−3/2 exp

(

−1

2
(
t2

x
+ γ2x)

)

dx

=
t√
2π
etγ
(

1

γ

)p−3/2

tp−1/2
∫ ∞

0
yp−3/2 exp

(

− tγ
2

(
1

y
+ γ2y)

)

dy

=
2√
2π
γp−3/2tp+1/2etγKp−1/2(tγ)

and, as z → 0,

Kp−1/2(z) ∼ Cp

zp−1/2
if p >

1

2
,

Kp−1/2(z) ∼ Cp

z1/2−p
if p <

1

2
K0(z) ∼ | log z|

where Cp = 2p−3/2Γ(p − 1/2) if p > 1/2 and Cp = 2−p−1/2Γ(1
2 − p) if p < 1/2.

• The Normal Inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen and has been
used in financial modeling (see [8]). The NIG process is a Lévy process with characteristics (a, 0, ν)
where

ν(dx) =
δα

π

exp(γx)K1(α|x|)
|x| dx,

a =
2δα

π

∫ 1

0
sinh(γx)K1(αx)dx,

α > 0, γ∈ (−α,α), δ > 0. Since K1(|z|) ∼ |z|−1 as z → 0, the Lévy density behaves like δπ−1|x|−2

as x→ 0 so that (1.6) is satisfied with β = 1. One also checks that E |X1|p < +∞ for every p > 0.
It follows from Theorems 1 and 3 that, as t→ 0

E sup
s≤t

|Xs|p = O(t) if p > 1,

E sup
s≤t

|Xs|p = O((t(− log t))p) if p ≤ 1.

If γ = 0, then ν is symmetric and by Theorem 2,

E sup
s≤t

|Xs|p = O(tp) if p < 1.

The distribution PXt at time t > 0 is given by

PXt(dx) =
tδα

π
exp(t δ

√

α2 − γ2 + γx)
K1(α

√
t2δ2 + x2)√

t2δ2 + x2
dx

so that Theorem 3 gives the true rate for p = β = 1 in the symmetric case. In fact, assuming γ = 0,
we get as t→ 0

E |Xt| =
2tδα

π
etδα

∫ ∞

0

xK1(α
√
t2δ2 + x2)√

t2δ2 + x2
dx
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=
2tδα

π
etδα

∫ ∞

tδ
K1(αy)dy

∼ 2δ

π
t

∫ 1

tδ

1

y
dy

∼ 2δ

π
t(− log(t)).

• Hyperbolic Lévy motions have been applied to option pricing in finance (see [3]). These processes
are Lévy processes whose distribution PX1 at time t = 1 is a symmetric (centered) hyperbolic
distribution

PX1(dx) = C exp(−δ
√

1 + (x/γ)2)dx, γ, δ > 0.

Hyperbolic Lévy processes have characteristics (0, 0, ν) and satisfy E |X1|p < +∞ for every p > 0. In
particular, they are martingales. There (rather involved) symmetric Lévy measure has a Lebesgue
density that behaves like Cx−2 as x → 0 so that (1.6) is satisfied with β = 1. Consequently, by
Theorems 1,2 and 3, as t→ 0

E sup
s≤t

|Xs|p = O(t) if p > 1,

E sup
s≤t

|Xs|p = O(tp) if p < 1,

E sup
s≤t

|Xs| = O(t (− log t)) if p = 1.

• Meixner processes are Lévy processes without Brownian component and with Lévy measure given
by

ν(dx) =
δeγx

x sinh(πx)
dx, δ > 0, γ∈ (−π, π)

(see [8]). The density behaves like δ/πx2 as x→ 0 so that (1.6) is satisfied with β = 1. Using (1.2)
one observes that E |X1|p < +∞ for every p > 0. It follows from Theorems 1 and 3 that

E sup
s≤t

|Xs|p = O(t) if p > 1,

E sup
s≤t

|Xs|p = O((t (− log t))p) if p ≤ 1.

If γ = 0, then ν is symmetric and hence Theorem 2 yields

E sup
s≤t

|Xs|p = O(tp) if p < 1.
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