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We compute hyperdeterminants of hypermatrices whose indices belongs in a meet-semilattice and whose entries depend only of the greatest lower bound of the indices. One shows that an elementary expansion of such a polynomial allows to generalize a theorem of Lindström to higher-dimensional determinants. And we gave as an application generalizations of some results due to Lehmer, Li and Haukkanen.

Introduction

Since the end of the nineteen century, it is known that some determinants, with entries depending only of the gcd of the indices, factorize. Readers interested in the story of the problem can refer to [START_REF] Krattenthaler | Advanced determinant calculus: a complement[END_REF] and [START_REF] Altinisik | GCD matrices, posets and nonintersecting paths[END_REF]. In 1876, Smith [START_REF] Smith | On the value of certain arithmetical determinant[END_REF] evaluated the determinant of a GCD matrix whose entries belong to a factor closed set (i.e., a set which contains all the factors of its elements) as a product of Euler's totient. The interest of this computation lies in its links with arithmetic functions [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF] and in particular multiplicative functions (see [START_REF] Lascoux | Addition of 1, Séminaire Lotharingien[END_REF][START_REF] Lascoux | Multiplicative functions[END_REF] for interesting remarks about the last notion). During the last century, many generalizations of Smith's theorem have been investigated. One of the 1 ways to extend his result consists in changing the set of the indices of the matrices. In 1990, Li [START_REF] Li | The determinants of gcd matrices[END_REF] gave the value of GCD determinant for an arbitrary set of indices. Beslin and Ligh [START_REF] Beslin | Another generalization of Smith's determinant[END_REF] shown that such a determinant factorizes when the indices belongs to a gcd-closed set (i.e., a set which contains the gcd of any pairs of its elements) as a product of certain functions evaluated in terms of Euler's totient. The fact that these determinants factorize can be seen as a corollary of a very elegant theorem due to Lindström [START_REF] Lindström | Determinants on semilattices[END_REF] which evaluated the determinant of the GCD-matrix whose indices are chosen in a meet semilattice, i.e., a poset such that each pair admits a greatest lower bound. Another way to generalize Smith's result consists in computing multidimensional analogous. In 1930 Lehmer gave [START_REF] Lehmer | The p dimensional analogue of Smith's determinant[END_REF] the first multi-indexed version of Smith's determinant. Other related computation are collected in [START_REF] Sokolov | Spatial matrices and their applications[END_REF][START_REF] Sokolov | Introduction to the theory of multidimensional matrices[END_REF]. More recently, Haukkanen [START_REF] Haukkanen | Higher-Dimensionnal GCD matrices[END_REF] generalized the results of Beslin and Ligh [START_REF] Beslin | Another generalization of Smith's determinant[END_REF] and Li [START_REF] Li | The determinants of gcd matrices[END_REF]) to hyperdeterminants.

We will see in Section 2 that the main trick for computing these multidimensional determinants consists in expanding it as a sum of (classical 2-way) determinants. In the aim to highlight this method, we apply it to a more general object Det F . In Section 3, we recall shortly a classical technic and give a slight generalization of Lindström's Theorem. As a consequence, we give a multidimensional analogue of Lindström's Theorem. In Section 4, one investigates minors of meet hypermatrices and generalizes two theorems due to Haukkanen [START_REF] Haukkanen | Higher-Dimensionnal GCD matrices[END_REF].

Hyperdeterminants and F-determinants

The question of extending the notion of determinant to higher dimensional arrays has been raised by Cayley [START_REF] Cayley | Mémoire sur les hyperdéterminants[END_REF][START_REF] Cayley | On the theory of permutants[END_REF] few after he introduced the modern notation as square arrays [START_REF] Cayley | On the theory of determinants[END_REF]. The simplest generalization is defined for a kth order tensor on an n-dimensional space M

= (M i 1 ,••• ,i k ) 1≤i 1 ,••• ,i k ≤n by the alternated sum DetM = 1 n! σ=(σ 1 ,••• ,σ k )∈S k n sign(σ)M σ ,
where sign(σ) = sign(σ 1 )

• • • sign(σ k ), M σ = M σ 1 (1)...σ k (1) • • • M σ 1 (n)...σ k (n) and
S n is the symmetric group. A straightforward computation gives DetM = 0 if k is odd.

For any k (even if k is odd), one defines the polynomial

Det 1 M = σ=(Id,σ 2 ,••• ,σ k )∈S k n sign(σ)M σ .
When k is even the two notions coincide but for k odd, only Det 1 does not vanish. This is a special case of the "less-than-full-sign" determinant theory due to Rice [START_REF] Rice | P-way determinants with an application to transvectants[END_REF].

Let us denote by F a map from S k-2 n to a commutative ring. One defines a more general object, which will be called F-determinant of M by

Det F (M) = σ=(σ 2 ,••• ,σ k )∈S k-1 n sign(σ 2 )F(σ 3 , . . . , σ k ) i M iσ 2 (i)...σ k (i) .
It exists an elementary identity which consists in expanding the F-determinant as a sum of (n!) k-2 classical (2-way) determinants.

Lemma 2.1 (Determinantal expansion) One has

Det

F M = σ 3 ,...,σ k F(σ 3 , . . . , σ k ) det(M σ 3 ,...,σ k ),
where M σ 3 ,...,σ k denotes the n×n matrix such that M σ 3 ,...,σ k i,j

= M i,j,σ 3 (i),...,σ k (i) .
Proof -It suffices to remark that

Det F M = σ 3 ,...,σ k F(σ 3 , . . . , σ k ) σ 2 sign(σ 2 ) i M iσ 2 (i)σ 3 (i)•••σ k (i)
One of the most important property of hyperdeterminants is the invariance under the action of k copies of the special linear group. It is a very classical result which can be recover as a straightforward consequence of the following proposition.

Proposition 2.2

The polynomial Det F M is invariant under the action of linear group on M in the following sense

Det F g.M = det gDet F M, (1) 
where

g.M = 1≤j 2 ≤n g i 2 j 2 M i 1 ,j 2 ,i 3 ••• ,i k 1≤i 1 ,••• ,i k ≤n .
Proof -By applying Lemma 2.1 to g.M, one gets

Det F g.M = σ 3 ,...,σ k F(σ 3 , . . . , σ k ) det(g.M σ 3 ,...,σ k ) = σ 3 ,...,σ k F(σ 3 , . . . , σ k ) det g det(M σ 3 ,...,σ k ) = det gDet F M.
3 Hyperdeterminants of meet hypermatrices

Meet semilattice

Consider a partially ordered finite set L so that every pairs (x, y) ∈ L 2 has a greatest lower bound denoted by x ∧ y. Such a poset is called a meet semilattice. One defines classically its ζ function by

ζ(x, y) = 1 if x ≤ y, 0 otherwise.
Its Möbius function is the inverse of the zeta function and can be computed by the induction

µ(x, y) =    1 if x = y, -x≤z<y µ(z, y) if x < y, 0
in the other cases.

If F and f verify the equality

F (x) = y≤x f (y) = y∈L ζ(y, x)f (y), (2) 
then, one has

f (x) = y∈L µ(y, x)F (y) = (F ⋆ µ)(x) (3) 
where the symbol ⋆ means the convolution product.

Lindström Theorem

The factorization properties of the GCD determinants are the consequence of the semilattice structure of the integers with respect to divisibility and can be stated in a more general way. The manipulations of the identities ( 2) and ( 3) are the keys of the proof of Lindström's Theorem [START_REF] Lindström | Determinants on semilattices[END_REF]. We recall its proof in a very slightly more general version.

For each x ∈ L, one considers a fixed element z x ≤ x. Let F x be a function from L to C (or more generally to a commutative ring). Let M be the matrix defined by M = (F x (z x ∧ y)) x,y∈L . Remark that it suffices to define F x (z) only when z ≤ x. In particular, one can suppose that F x (z) = F (z, x) is an incidence function, i.e., F (x, z) = 0 unless x ≤ z. One has 

F x (z x ∧ y) = z∈L ζ(z, z x )ζ(z, y)f x (z), where f x (z) = y∈L µ(y, z)F x (y).
Φ = x ζ(x, z x )f x (x) =    x f x (y) if z x = x for each x, 0 otherwise. ( 4 
)
Then one obtains Lindström's Theorem.

Theorem 3.1 (Lindström [START_REF] Lindström | Determinants on semilattices[END_REF])

det (F x (z x ∧ y)) x,y∈L = x f x (x) if z x = x for each x, 0 otherwise. (5) 
Note that, the original Lindstöm 's Theorem deals with the case where z x = x for each x. Furthermore, equality (4) generalizes a lemma of Cesaro.

Lemma 3.2 (Cesaro) Denote by gcd m (n) = gcd(m, n). One has, (µ * (f • gcd m ))(n) = (f * µ)(n) if m = n, 0 otherwise, ( 6 
)
where * is the Dirichlet convolution and • is the composition of functions.

Linström's Theorem for F-determinants

Lindstöm's Theorem can be extended to F-determinants.

Theorem 3.3 (Lindström's theorem for F-determinants) If L = {x 1 , . . . , x n } denotes a meet semilattice, one has

Det F F x i 1 (z x i 1 ∧ • • • ∧ x i k ) =    F(Id, • • • , Id) x f x (x) if z x = x for each x 0 otherwise Proof -Lemma 2.1 gives Det F (F x 1 (z x 1 ∧ • • • ∧ x k )) x 1 ,••• ,x k ∈L = σ 3 ,...,σ k F(σ 3 , . . . , σ k ) det F x i (z x i ∧ x j ∧ x σ 3 (i) ∧ • • • ∧ x σ k (i) i,j
From Linström's Theorem (Theorem 3.1), one has det

F x i (z x i ∧ x j ∧ x σ 3 (i) ∧ • • • ∧ x σ k (i) = 0
if and only if for each x i one has

z x i ∧ x σ 3 (i) ∧ • • • ∧ x σ k (i) = x i .
Equivalently,

z x i ∧ x σ 3 (i) ∧ • • • ∧ x σ k (i) ≥ x i ,
for eacu i. Hence, σ 3 = • • • = σ k = Id and z x i = x i for each i. The result follows.

Example 3.4 Consider the semilattice constituted with two elements 2 ≥ 1.

The expansion of the F-determinant gives

Det F (F i (i ∧ j ∧ k ∧ l)) = F(12, 12) F 1 (1) F 1 (1) F 2 (1) F 2 (2) + (F(12, 21) + F(21, 12) + F(21, 21)) F 1 (1) F 1 (1) F 2 (1) F 2 (1) = F(12, 12)F 1 (1)(F 2 (2) -F 2 (1)) = F(12, 12)f 1 (2)f 2 (2)
4 Minors of meet Hypermatrices

Meet closed subsets

Consider a meet closed subset S of L (i.e., a subset closed under the operation ∧) and fix a linear extension l = y 1 . . . y n of S. Following the notations of [START_REF] Altinisik | GCD matrices, posets and nonintersecting paths[END_REF], we denote by x y i the relation x ≤ y i and x ≤ y j for each j < i. Consider a pair of functions f and F verifying

F (y i ) = x≤y i x∈L f (x) (7) 
and set f(y i ) = x y i f (x). One has the following lemma.

Lemma 4.1 F (y i ) = y k ≤y i f (y k ). (8) 
Proof -Remarking that for each x ∈ L, it exists i such that x y i (it suffices to set y i = min{j|x ≤ y j } and that x y i and x y j implies i = j, we have

F (y i ) = x≤y i x∈L f (x) = y k ≤y i x y k f (x) = y k ≤y i f (y k ).
Note that this identity appears in [START_REF] Altinisik | GCD matrices, posets and nonintersecting paths[END_REF] (Theorem 4.1, p 7). Hence, using Theorem 3. 

Det F (F y i 1 (y i 1 ∧ • • • ∧ y i k )) = F(Id, • • • , Id) n i=1 x 1 y i x 2 ∈L µ(x 1 , x 2 )F y i (x 2 ) .
Example 4.3 Consider the semilattice L given by its Hasse diagram

L = 4 5 ↑ ր ↑ 2 3 ↑ ր 1
where i → j means i ≤ j. The sublattice generated by 2, 4 and 5,

S = 4 5 ↑ ր 2 is meet closed and f2 (2) = f 2 (2) + f 2 (1) f4 (4) = f 4 (4) f5 (5) = f 5 (5) + f 5 (3).
Hence,

Det F (F i (i ∧ j ∧ k)) i,j,k∈S = F(123) F 2 (2) F 2 (2) F 2 (2) F 4 (2) F 4 (4) F 4 (2) F 5 (2) F 5 (2) F 5 (5) +F(213) F 2 (2) F 2 (2) F 2 (2) F 4 (2) F 4 (2) F 4 (2) F 5 (2) F 5 (2) F 5 (5) +F(321) F 2 (2) F 2 (2) F 2 (2) F 4 (2) F 4 (2) F 4 (2) F 5 (2) F 5 (2) F 5 (2) +(F(132) + F(231) + F(312)) F 2 (2) F 2 (2) F 2 (2) F 4 (2) F 4 (2) F 4 (2) F 5 (2) F 5 (2) F 4 (2)
The permutation 123 is the only one having a non zero contribution in this sum. Hence,

Det F (F i (i ∧ j ∧ k)) i,j,k∈S = F(123)F 2 (2)(F 4 (4) -F 4 (2))(F 5 (5) -F 5 (2)) = F(123)(f 2 (2) + f 2 (1))f 4 (4)(f 5 (5) + f 5 (3)) = F(123) f2 (2) f4 (4) f5 (5) 
Remark 4.4 If L is the semilattice structure of the integers with respect to divisibility. By the specialization F(σ 3 , . . . , σ k ) = sign(σ 3 ) . . . sign(σ k ), one recovers the computations of Lehmer [START_REF] Lehmer | The p dimensional analogue of Smith's determinant[END_REF] as a special case of Theorem 3.3 and the result of Haukkanen ([12] Theorem 1. p 56) from Corollary 4.2.

Factor closed subsets

Let S be a factor closed subset of L. Then, f = f and

Det F (F x 1 (x 1 ∧ • • • ∧ x k )) x 1 ,...,x k ∈S = F(Id, • • • , Id) x f x (x). (9) 
As special cases of equality [START_REF] Lehmer | The p dimensional analogue of Smith's determinant[END_REF], one recovers Lehmer's identities [START_REF] Lehmer | The p dimensional analogue of Smith's determinant[END_REF] and the original result of Smith [START_REF] Smith | On the value of certain arithmetical determinant[END_REF].

General case

Let X = {x 1 , . . . , x n } be a subposet of a meet semi-lattice L. We will denote by X = {x 1 , . . . , x n , x n+1 , . . . , x m } the smallest factor-closed subset of L containing X. The aim of this section consists in investigating the Fdeterminant

DF (X) := Det F F x i 1 (z x i 1 ∧ x i 2 ∧ • • • ∧ x i k ) 1≤i 1 ,...,i k ≤n (10) 
where for each x ∈ X, z x denotes a fixed element of X such that z ≤ x. As in the previous section, the result follows from the case k = 2 and Proposition 2.1.

Let us consider first the determinant det(F x i (z x i ∧ x j )) 1≤i,j≤n . The functions F x i can be chosen such that F (x, y) is an incidence function. The set X being closed by factors, the functions f x and fx are equal. Hence,

F x i (z x i ∧ x j ) = n+m k=1 C x i ,x k ζ(x k , x j ) (11) 
where

C x,y = f x (y)ζ(y, z x ) = f x (y) if y ≤ z x 0 otherwise. ( 12 
)
One has Proposition 4.5

det(F x i (x i ∧ x j )) = 1≤k 1 <•••<kn≤n+m det C x i ,x k j 1≤i,j≤n det (ζ(x k i , x j )) 1≤i,j≤n . (13) 
Proof -By multi-linearity, one obtains 

det(F x i (x i ∧ x j )) = det n+m k=1 C x i ,x k ζ(x k , x j ) = 1≤k 1 ,...,kn≤n+m det C x i ,x k j ζ(x k j , x j ) = 1≤k 1 ,...,kn≤n+m det C x i ,x k j i ζ(x k i , x i ) = 1≤k 1 <•••<kn≤n+m det C x i ,x k j 1≤i,j≤n det (ζ(x k i , x j )) 1≤i,j≤n
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and X = {4, 5, 6}. We set z 4 = 1, z 5 = 2 and z 6 = 6 . Consider the determinant

det(F i (z i ∧ j ∧ k)) i,j,k∈X = f 4 (1) + f 4 (0) f 4 (0) f 4 (1) + f 4 (0) f 5 (2) + f 5 (0) f 5 (2) + f 5 (0) f 5 (0) f 6 (1) + f 6 (0) f 6 (3) + f 6 (0) f 6 (6) + f 6 (3) + f 6 (1) + f 6 (0) = -f 4 (0)f 6 (1)f 5 (2) + f 4 (1)f 6 0 f 5 (2) + f 4 (1)f 5 (0)f 6 (3) +f 4 1 f 5 (0)f 6 (6) + f 4 (0)f 5 (2)f 6 3 + 2 f 4 (1)f 5 (2)f 6 (3) +f 4 (1)f 5 (2)f 6 (6)
Using the multilinearity of det, one recovers the expression given by Propo-sition 4.5

det(F i (z i ∧ j)) = f 4 (0) f 4 (1) 0 f 5 (0) 0 f 5 (2) f 6 (0) f 6 (1) 0 • 1 1 0 1 0 1 1 1 0 + f 4 (0) f 4 (1 ) 0 f 5 (0) 0 0 f 6 (0) f 6 (1) f 6 (3) • 1 1 0 1 0 0 1 1 1 + f 4 (0) f 4 (1) 0 f 5 (0) 0 0 f 6 (0) f 6 (1) f 6 (6) • 1 1 0 1 0 0 1 1 1 + f 4 (0) 0 0 f 5 (0) f 5 (2) 0 f 6 (0) 0 f 6 (3) • 1 0 0 1 1 0 1 0 1 + f 4 (1) 0 0 0 f 5 (2) 0 f 6 (1) 0 f 6 (3) • 1 0 0 0 1 0 1 0 1 + f 4 (1) 0 0 0 f 5 (2) 0 f 6 (1) 0 f 6 (6) • 1 0 0 0 1 0 1 0 1
More generally, one has a multi-indexed version of Proposition 4.5.

Theorem 4.7

DF (X) = 1≤k 1 <•••<kn≤n+m Det F f x i 1 (x k i 2 )ζ(x k i 2 , z x i 1 ∧ x i 3 ∧ • • • ∧ x i k ) × × det (ζ(x k i , x j )) (14) 
Proof -We use Lemma 2.1 to expand DF (X) and we obtain

DF (X) = σ 1 ,...,σ k F(σ 1 , . . . , σ k ) det F x i (z x i ∧ x j ∧ x σ 3 (i) ∧ • • • ∧ x σ k (i) ) .
Now, by Proposition 4.5, one gets

DF (X) = σ 1 ,...,σ k F(σ 1 , . . . , σ k ) 1≤k 1 <•••<kn≤n+m det (ζ(x k i , x j )) × × det f x i (x k j ζ(x k j , z x i ∧ x σ 3 (i) ∧ • • • ∧ x σ k (i) )) = 1≤k 1 <•••<kn≤n+m det (ζ(x k i , x j )) σ 1 ,...,σ k F(σ 1 , . . . , σ k )× × det f x i (x k j ζ(x k j , z x i ∧ x σ 3 (i) ∧ • • • ∧ x σ k (i) )) = 1≤k 1 <•••<kn≤n+m Det F f x i 1 (x k i 2 )ζ(x k i 2 , z x i 1 ∧ x i 3 ∧ • • • ∧ x i k ) × × det (ζ(x k i , x j ))
This ends the proof. 

Det F F (z x i 1 ∧ x i 2 ∧ • • • ∧ x i k ) = 1≤k 1 <•••<kn≤n+m i f (x k i )× ×Det F ζ(x k i 2 , z x i 1 ∧ x i 3 ∧ • • • ∧ x i k ) det (ζ(x k i , x j ))
Proof -By applying the equality,

Det F f (x k i 1 )ζ(x k i 2 , z x i 1 ∧ x i 3 ∧ • • • ∧ x i k ) = σ 3 ,...,σ k F(σ 3 , • • • , σ k ) det f (x k i )ζ(x k j , z x i ∧ x σ 1 (i) ∧ • • • ∧ x σ k (i) ) = i f (x k i )Det F ζ(x k i 2 , z x i 1 ∧ x i 3 ∧ • • • ∧ x i k ) .
to identity 14, one obtains the result. Remark 4.9 Assume that L is the integer lattice. Then, if z x = x for each x ∈ X and F(σ 3 , • • • , σ k ) = sign(σ 3 ) . . . sign(σ k ) in Corollary 4.8, one recovers Theorem 2 in [START_REF] Haukkanen | Higher-Dimensionnal GCD matrices[END_REF]. Moreover, Proposition 4.5 generalizes the result of Li [START_REF] Li | The determinants of gcd matrices[END_REF].

  Hence, det M factorizes as the product det M = det Φ. det Z, where Φ = (ζ(y, z x )f x (y)) x,y∈L and Z = (ζ(x, y)) x,y∈L . As Φ and Z are triangular, det Z = 1 and det

  3 and Lemma 4.1, one generalizes a result by Altinisik, Sagan and Tuglu ([2], Theorem 4.1 p 7). Corollary 4.2

Example 4 . 6

 46 Let us consider the semilattice L whose Hasse diagram is

Let set F x 1 =

 1 F x 2 = • • • = F xn = F then for 1 ≤ k 1 , k 2 , . . . , k n ≤ n, we getCorollary 4.8