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Abstract

We show that a very elementary trick allows to generalize a theo-

rem of Linström to higher determinants. As a special case, one recov-

ers some results due to Lehmer and Haukkannen on hyperdeterminants

of GCD matrices.

1 Introduction

Since the end of the nineteen century, it is known that some determinants,
with entries depending only of the gcd of the indices, factorize. Readers
interested by the story of the problem can refer to [13] and [2]. The subject is
born in 1876, in an article of Smith [15] which has evaluated the determinant
of a GCD matrix whose entries belong in a factor closed set (i.e. all the
factors of an element belong to the set) as a product of Euler’s totient. The
interest of this kind of equalities lies in its links with arithmetic functions [1]
and in particular multiplicative functions (see [7, 8] for interesting remarks
about the last notion). During the last century, many generalizations of the
Smith theorem have been investigated. One of the way to extend this result
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consists on changing the set of the indices of the matrices. The more general
result is due to Li [10] in 1990, which gives the value of GCD determinant
for an arbitrary set of indices. The present paper is not devoted to this more
general determinants which can not be easily factorized. Beslin and Ligh [3]
gave a factorization of such a determinant when the indices run in a gcd-
closed set (i.e. the gcd of two elements belongs in the set) as a product of
certain functions evaluated in terms of Euler’s totient. The fact that these
determinants factorize can be seen as a particular case of a very elegant
theorem due to Lindström [11] which evaluates the determinant of GCD-
matrices whose indices are taken in a meet semilattice (i.e. a poset such that
each pair admits a greatest lower bound). An other way to generalize Smith
identity consists on computing multidimensional analogous. Lehmer [9] has
given in 1930 the first multi-indexed version of the Smith determinant. Other
related computation are collected in [16, 17]. More recently, Haukkannen
[12] gave a hyperdeterminantal generalization of the equality due to Beslin
and Ligh (note that in the same paper he has computed a multidimensional
version of the equality of Li [10]).

We will see in Section 2 that the main trick for computing these multidi-
mensional determinants is to consider it as a sum of (classical) determinants.
In the aim to highlight this method, i apply it for a more general object
DetF which is defined in Section 2. In Section 3, i recall shortly a classi-
cal technic and give a very slight generalization of the Lindström theorem.
Combined with the expansion of DetF in term of det, this allows to give a
multidimensional analogue of the Lindström theorem in Section 3.

2 Hyperdeterminants and F-determinants

The question of extending the notion of determinant to higher dimensional
arrays has been raised by Cayley [5, 6] few after he introduced the modern
notation as square arrays [4]. The simplest generalization is defined for a
kth order tensor on an n-dimensional space M = (Mi1,··· ,ik)1≤i1,··· ,ik≤n by the
alternated sum

DetM =
1

n!

∑

σ=(σ1,··· ,σk)∈Sk
n

sign(σ)Mσ,

where sign(σ) = sign(σ1) · · · sign(σk) and Mσ = Mσ1(1)...σk(1) · · ·Mσ1(n)...σk(n).
A straightforward computation gives DetM = 0 if k is odd.
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For any k (even if k is odd), one defines the polynomial

Det1M =
∑

σ=(Id,σ2,··· ,σk)∈Sk
n

sign(σ)Mσ. (1)

When k is even the two notions coincide but for k odd, only Det1 does not
vanish. This is a special cases of the ”less-than-full-sign” determinants theory
due to Rice [14].
If F denotes a map from Sk−2

n to a commutative ring. One defines a more
general object, the F-determinant DetF(M) of M , by

DetF(M) =
∑

σ=(σ2,··· ,σk)∈S
k−1
n

sign(σ2)F(σ3, . . . , σk)
∏

i

Miσ2(i)...σk(i).

It exists a very elementary method for computing DetF which consists on
considering the F-determinant as a sum of (n!)k−2 determinants

DetFM =
∑

σ3,...,σk

F(σ3, . . . , σk) det(Mσ3,...,σk) (2)

where Mσ3,...,σk denotes the n×n matrix such that M
σ3,...,σk

i,j = Mi,j,σ3(i),...,σk(i).
The more interesting property of Det is its invariance under the action of k

copies of the special linear group. It is a very classical result, which can be
recover as a straightforward consequence of (2) via the following result.

Proposition 2.1 The polynomial DetFM is invariant under the action of
linear group on M in the following sense

DetFg.M = det gDetFM (3)

where

g.M =

(

∑

1≤j2≤n

gi2j2Mi1,j2,i3··· ,ik

)

1≤i1,··· ,ik≤n

.

Proof It suffices to apply (2) to g.M

DetFg.M =
∑

σ3,...,σk
F(σ3, . . . , σk) det(g.Mσ3,...,σk)

=
∑

σ3,...,σk
F(σ3, . . . , σk) det g det(Mσ3,...,σk)

= det gDetFM.

�
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3 Hyperdeterminant on a semilattice

The factorization properties of the GCD determinants are the consequence of
the semilattice structure of the integers and can be stated in a more general
way. Consider a partially ordered finite set L so that every pairs (x, y) ∈ L2

has a greatest lower bound denoted by x ∧ y. Such a poset is called a meet
semilattice. One defines classically its ζ function

ζL(x, y) =

{

1 if x ≤ y

0 otherwise
(4)

and its Mobius function

µL(x, y) =







1 if x = y

−
∑

x≤z<y µL(z, y) if x < y

0 in the other cases
(5)

The two functions are reciprocal. If F and f are two functions verifying

F (x) =
∑

y≤x

f(y) =
∑

y∈L

ζL(y, x)f(y) (6)

one has
f(x) =

∑

y∈L

µL(y, x)F (y). (7)

The manipulations of the identities (6) and (7) are the keys of the proof
of the Lindström Theorem [11]. I recall its proof in a very slightly more
general version.

I will denote by zx an element of L lower than x and by Fx a function
from L to a C (or more generally in a commutative ring). Let M be the
matrix defined by

M = (Fx(zx ∧ y))
x,y∈L

. (8)

Remark that it suffices to define Fx(y) only when y ≤ x. In particular, one
can suppose that Fx(y) = F (y, x) is an incidence function (i.e. F (x, y) 6= 0
unless y ≤ x). One has the equality

Fx(zx ∧ y) =
∑

z∈L ζL(z, zx)ζ(z, y)fx(z). (9)

where fx(z) =
∑

y∈L µL(y, z)Fx(z). Hence, it follows det M = det φ. det Z

where Φ = (ζL(y, zx)fx(y))x,y∈L and Z = (ζL(x, y))x,y∈L. As Φ and Z are
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triangular det Z = 1 and

det Φ =
∏

x

ζL(x, zx)fx(x) =

{
∏

x fx(y) if zx = x for each x

0 otherwise,
(10)

one obtains the Linström Theorem.

Theorem 3.1 (Linström)

det (Fx(zx ∧ y))x,y∈L =

{
∏

x fx(x) if zx = x for each x

0 otherwise.
(11)

In the original Liström Theorem zx = x for each x, furthermore equality (10)
generalizes a Cesaro lemma

Lemma 3.2 (Cesaro)
Denote by gcdm(n) = gcd(m, n). One has,

(µ ∗ (f ◦ gcdm))(n) =

{

(f ∗ µ)(n) if m = n

0 otherwise
(12)

where ∗ is the Dirichlet convolution.

The Linström Theorem can be extended for F-determinants.

Theorem 3.3 (Linström Theorem for F-determinants)
Let L be a meet semilattice and set L = {x1, . . . , xn}. One has,

DetF

(

Fxi1
(xi1 ∧ · · · ∧ xik)

)

1≤i1,...,ik≤n
= F(Id, · · · , Id)

∏

x

fx(x) (13)

Proof Equality (2) allows to write

DetF (Fx1
(x1 ∧ · · · ∧ xk))x1,··· ,xk∈L =

∑

σ3,...,σk
F(σ3, . . . , σk) det

(

Fxi
(xi ∧ xj ∧ xσ3(i) ∧ · · · ∧ xσk(i)

)

i,j

(14)

and the result follows from the Linström Theorem (Theorem 3.1). �

Now, consider a sublattice S ⊂ L which is meet closed (ie closed for the
operation ∧) and fix a linear extension l = y1 . . . yn of S. As in [2], i denote
by x E yi the relation x ≤ yi and x 6≤ yj for each j < i. Consider a pair of
function f and F verifying

F (yi) =
∑

x≤yi

f(x) (15)

and set f̂(yi) =
∑

dEyi
f(x). One has
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Lemma 3.4
F (yi) =

∑

yk≤yi

f̂(yk) (16)

Proof This identities appears in [2] Theorem 4.1 p 7 and its proof is based
on a one-to-one correspondance between the terms in (16) and (15). I do not
repeat it here. �

Hence, using Theorem 3.3 and Lemma 15, one generalizes a result by Al-
tinisk, Sagan and Tuglu ([2] Theorem 4.1 p 7).

Corollary 3.5

DetF(Fyi1
(yi1 ∧ · · · ∧ yik)) = F(Id, · · · , Id)

n
∏

i=1

(

∑

x1Eyi

∑

x2∈L

µL(x1, x2)Fyi
(x2)

)

.

If we set F(σ3, . . . , σk) = sign(σ3) . . . sign(σk), one recovers the computation
of Lehmer [9] as a special case of Theorem 3.3 and the result of Haukannen
([12] Theorem 1. p 56) from Corollary 3.5.

References

[1] T. Apostol, Introduction to Analytic Number Theory, Springer (1976)

[2] E. Altinisik, B.E. Sagan, N. Tuglu, GCD matrices, posets and noninter-
secting path, Linear and Multilinear Algebra 53(2) (2005) 75-84.

[3] S. Beslin and S. Ligh, Another generalization of Smith’s determinant,
Bull. Austral. Math. Soc, 40: 413-415 (1989)

[4] A Cayley, On the theory of determinants, Trans. Cambridge Phil. Soc.
VIII (1843), 1–16.
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[7] A. Lascoux, Addition of 1, Séminaire Lotharingien, Mars 04. 8p.

6



[8] A. Lascoux, Multiplicative functions,
http://www.combinatorics.net/lascoux/courses/dvi ps/Moebiusps.rar

[9] D. H. Lehmer, the p dimensional analogue of Smith’s determinant,
Amer. Math. Monthly 37:294-296 (1930).

[10] Z. Li, The determinants of gcd matrices, Linear Algebra Appl., 134:137-
143 (1990)

[11] B. Lindström, Determinants on semilattices, Proc. Amer. Math. Soc. 20
(1969), 207-208.

[12] P. Haukkanen, Higher-Dimensionnal GCD matrices, Linear Algebra and
Its Applications, 170:53-63 (1992)

[13] C. Krattenthaler, Advanced determinant calculus: a complement, Linear
Algebra and Its Applications, 411 (2005), 68-166.

[14] L.H. Rice, P-way determinants with an application to transvectants,
Amer. J. Math. 40:242-262 (1918)

[15] H. J. S. Smith, On the value of certain arithmetical determinant, Proc.
London Math. Soc. (1) 7 (1876), 208-212 (p. 62)

[16] N P Sokolov, Spatial matrices and their applications (in Russian), Go-
sudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960.

[17] N P Sokolov, Introduction to the theory of multidimensional matrices
(in Russian), Nukova Dumka, Kiev, 1972.

7


