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ABSTRACT the STFT, and its application on a simulated signal and a dol-
Taking as signal model the sum of a non-stationnary deteiehin whistle.
ministic part embedded in a white Gaussian noise, this pa-
2. DIFFERENCE OF VARIANCE BETWEEN

per presents the distribution of the coefficients of the Shor
Time Fourier Transform (STFT), which is used to determine':'ROB'A‘BI LITY DISTRIBUTION OF STFT REAL AND
IMAGINARY PARTS

the maximum likelihood estimator of the noise level. We
then propose an automatic segmentation algorithm of the re
and imaginary parts of the STFT based on statistical feature
which is an alternative to the spectrogram segmentatioms co
sidered as image segmentations. Examples of segmented t|m
frequency space are presented on a simulated signal and of &
dolphin whistle. n+ e ——

1. INTRODUCTION Kol K= 3, almlfm —nle RS

J\/Id,fl

The STFT of a discrete signalm] is determined by com-
puting the discrete Fourier transform @&n overlapping seg-
ments centered om, which describes the spectral contents of
around the instant. The STFT is defined by

Ivld) 1
2

m=n—

Time-Frequency Representations (TFR) are useful tools faheref is the frequency indexp is the M,-length window

nonstationnary signal analysis by determining the tineetir  function andZ the zero padding. We will consider an energy-
ency patterns, which are time-varying areas containing-enenormalized window, so

getic signal. A segmentation task is a helpful step in such a Z o[m]? = 1. 3)
signal characterization by highlighting these patterngthw

a general model of signal considered as a nonstationnary deer the signal defined in (1), real and imaginary parts of the
terministic signaki[m] embedded in a white Gaussian noiseSTFT, X} [n, k] and X}[n, k], are sums of\/4 independant

n[m] of variances? Gaussian variablesY/;[n, k] and X} [n, k] thus are Gaussian
zlm] = d[m]+n[m], (1) variables, with mean respectively given by

we proposed ([1], [2]) a spectrogram segmentation based on nt el

statistical features. Given that spectrogram coefficiefssg- g (X3 [n, K)) Z d[m n] cos(—2mk m ) (@)

nal described in equation (1) have a non-centfatistribu- o My+ 2

tion while white Gaussian noise have a centratlistribution, mEnT T

segmentation task consists in discriminating non-cefrivat nt gt

centraly? distribution. ECC[n,K) = Y dim]élm — 1] Sin(_27rkML_|_Z)’ (5)
In this paper, we propose a new way of segmentation, by Mg

considering real and imaginary part of Short Time Fourier _ T

Transform (STFT). Instead of having& distribution, TFR ~ and variance by

coefficients have a Gaussian distribution, which allowsa si nt+ et

pler segmentation method. In section 2 we determine the reatar(X;[n, k]) = o? Z d[m — n)? cos(— 27rk ) (6)

and imaginary part of STFT distribution and show that their men_ Mo—1

respective variance are not always equal, in order to déterm o _f

an efficient noise level estimator in section 3. ) n+—%
In a second part, we use these results to propose a né(X}[n, k) = * Y ¢[m — n] sin(— 2mk ) (7

segmentation algorithm based on local statistical featofe men_ M1
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a 3. NOISE ESTIMATION FROM REAL PART OF

30 M R 1 STFT
x 25 0-8 In order to segment the time-frequency representation, we
g 20 0.6 need to know the noise level ofm). In this section we deter-
> ' mine a variance estimator using real part of STFT coeffisient
5] s 0.4 considering first that the deterministic part is null. Thea w
g 10 study the effect of the unknown deterministic part on the est
T 0.2 mator.

° 10 20 30 10 0 3.1. Centered white Gaussian noise

time index n

We consider a signal[m]| (1) of lengthNy, where the deter-
ministic partd[m] is null.

The Maximum Likelihood (ML) estimator of the variance
o2 is unbiased and optimal, and writes

— 1N0

o2 = x[m]?. (12)

No
0 m=1

Fig. 1. Variations ofa[n, k], for a STFT with a Blackman
window of 31 points, with a zero padding of 33. White points
are values ofv between 0.485 and 0.515.

We notice that means oX;[n, k] and X}[n, k] are respec-

tively real and imaginary part of the STFT @fim]. We want to estimate? with the real part of the STFT coeffi-
To compare the variances, we then defifje, k| as the ~cients. In section 2 we saw thﬁg [n, k] has a non constant

ratio of the variance of the real part of the STFT to the sum of/ariance equals ta[n, k]o?, wherea[n, k] is deterministic.

the two variances We thus define a new random variable of constant variance

Var(Xg[n, k]) X7 [n, k]
aln, k] - - (8) Xin k] = el (13)
Var(X%[n, k]) + Var(X%[n, k]) ol :
sl L' valn, k
Mgt . . [ . ] . .
nt 3 , mo Xj[n, k)" is a centered white Gaussian noise of variante
= E ¢[m — n]* cos(2mk M, + Z) (9 The variance can now be estimated as equation 12. The so-

M1 build estimator from the real part of STFT coefficients is a
ML estimator, which is optimal and remains unbiased.

m=n—

Relation (3) induces

Var(Xj[n, k]) + Var(Xj[n, k]) = o> (10) 3.2, Deterministic signal embedded in a white Gaussian
Using trigonometric identities, equation (9) writes noise
Lo Mg 1 We now consider a general case whefe| is a white Gaus-
ptn sian noise of unknown meatim]| (1)
afn, k] ==+ = ®[p]? cos(4nk .1 | _ _ .
I, k] 22 XM:W ) ( Mgy + Z) (1) X3[n, k] is a Gaussian variable of meélj[n, k], the real
LA part of the STFT ofi[m]. The mean of the rectified random

When the frequency value is far enough from 0 &fg-2, variable (13) is consequently

the frequency of the cosine function will be high enough com-
pared to the window variations to cancel the second term, so
the value ofa[n, k] will be 3. Otherwise,an, k] will dis- hich | K In th fa TER . ¢
criminate variances ok ;[n, k] and X [n, k]. Consequently, which is unknown. In the context of a segmentation o

a bias in the variance estimation appears and the spemmogre?n_ unknown deterministic _S|gnal, we cannot spemfy which
coefficients do not have ¢ distribution anymore. points are centered and which are not. When we estimate the

Fig. 1 shows the variations of along the time and fre- noise level, we will take non-centered points. ML estimator

i 2
quency indexes for a STFT computed with a Blackman win-thus overestimate* as

dow of lengthM,, = 31 and with a zero padding ¢f = 33. E (;5) - L Z E ((X;[n, k]’)2) (15)
This parameter extends the works of L.H. Koopmans [3], N n,k

Di[n, k]

E(Xjn k') = NG

(14)

N.L. Johnson and D.G. Long [4], who only determined that 1 D’ [n, k]2
the frequency bins where the spectrogram distributions-com = o’+ NK Z (j[n W (16)
puted without zero padding do not matchya distribution nk ’
M .
arek = 0 andk = =* for a rectangular window and= 0,  where N and K are the number of time and frequency in-

k=1k= % andk = % — 1 for a Hanning window. dexes.



4. TFR SEGMENTATION We first overestimate the noise variance over all the STFT
_ _ _ real part coefficients, which give the last unknown paramete

For the model of signal (1), we showed in section 2 that reabf the local variance distribution (18), and enable us to-com
and imaginary parts of STFT coefficients have a Gaussiapute the threshold,- (19).
distribution, where the mean depends on the deterministic We then selectn, k) sites whose local variance is higher
part. The segmentation task consists in identifying coeffithan the threshold,- to be candidates to the segmentation.
cients with non-zero mean, which are points containingrelete These sites are supposed to contain deterministic meamdue t
ministic signal, in order to reconstruct time-frequenayio®s  equations (16) and (18).
called spectral patterns. As seen in equation (16), nom-zer  Then, a "seed" with the highest local variance is choosen
means overestimate the value of the noise variance. The ide@ong the candidates, associated with a given lafesome
is to estimate local variances 6f, ) sites, and select with a of its neighbours in the TFR are candidates, they become new
threshold depending on the estimated noise level the poiints seeds of same label, which contaminate then their own neigh-

highest variance. bours. Iteratively, we create so a spectral pattern of label
Once most of the candidates have been segmented, we
4.1. Local variancedistribution and threshold estimate noise variance again with only the unlabelized coe

_ _ _ ficients. We thus obtain a less overestimated value. A new
Asin [1], we can|der a small cell o pointsCy, i, cente_red threshold is then computed on the new estima/;c%[d, k] dis-

on the (n, k) site of the real part of STFT. Local variance i ion, which gives new candidates to the segmentation.
estimator (12) of the rectified random variable (13) writes Consequently, at each iteration the estimated noise leveés

) 1 . N2 closer too2, which allow to segment more points containing
o*n k] = 5 > (Xpn k)" (17)  deterministic part.
Cn,k

The knowledge of the local variance distribution of points#-3- Segmentation control

without deterministic part allows us to propose a suitatlesh- \yg yse two criterions in this algorithm in order to supervise

old to discriminatén, k) sites without deterministic part from ;¢ performance. The first one is the Kolmogorov distadice
others with a given false alarm probabiljty,,. [5] defined as ’

For (n, k) sites without deterministic part, (17) is a sum of
P squared centered Gaussian variables. If they are indepen- dp = sup|F;(z)— F(z)], (20)

dant,o?[n, k| ha\T/e acc/antra%xp distribution. Due t0 STFT  \yhere F(z) represents the theoretical cumulative distribu-
construction{X§[n, |} are correlated, we thus have tion function andF*(z) the empirical cumulative distribu-

- 9 tion function. The Kolmogorov distances on the unlabelized
o2[n, k] ~ U—x§ (18)  points before and after contamination are compared to vali-
0 date a seed contamination. If the algorithm has effectively
where$ is an unknown degree of freedom, verifyifigc P. segmentedn, k) sites containing deterministic signal, the un-

This distribution has two unknown parameterd,which  labelized points will converge to a Gaussian distributiod a
depends on the analyzed signal, @nathich depends on the di Will decrease.
STFT construction. By computing the STFT of a centered Secondly, the kurtosis [6] defined as
white Gaussian noise of known variance, the only unknown I
parameter of the? distribution isd, which can be estimated K = (02)2 -3, (21)
with a maximum likelihood approach [2]. ) ) )

The second unknown parametet is estimated by ML wherep, is the fourth centered moment, is estimated on the

with equation (16). When the distribution (18) is fully esti- unlabelized points at each iteration, in order to stop tlge se

mated, we define a threshalgk mentation when it reaches 0. Indeed, when the algorithm does
not have anymore deterministic signal to segment, the unla-
ty2 [/ Prob{:fE[n, k] >ty2} = pra, (19) belized points have a zero mean Gaussian distribution, with

a null kurtosis. Moreover, it provides an indicator of execu
wherepy, is a given false alarm probability. The use of this tion of the algorithm. If the algorithm ends before the kaiso
threshold in a segmentation algorithm is described in tlxé ne reaches zero, we know that all spectral patterns do not have
subsection. been segmented.

4.2. Segmentation algorithm 4.4. Segmentation results

The proposed algorithm is a region growing algorithm, ap+ig. 2 shows the result of a synthetic signal TFR segmenta-
plied to the TFR. tion. It's a sum of a filtered noise of variance 1 and a freqyenc
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(b) Segmentation result of the simulated signal

(b) Segmentation result of the dolphin whistle

Fig. 2. Sum of a frequency-varying signal and a large band-ig. 3. Whistle of a dolphin. The spectrogram (a) is limited to
signal. The spectrogram (a) is segmented (b) in three regiorthe normalized frequendy.2, 0.34] to have a white Gaussian
from 0, set of points without deterministic signal, from 2. noise on the coefficients. Nine patterns are segmented (b).

varying cosine function of amplitude 0.5, embedded in agvhit 6. REFERENCES
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