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ABSTRACT

This paper deals with the probability distribution of spectro-
gram coefficients related to a correlated centered Gaussian
process. It is shown that the windowing operation and the
presence of correlation between input samples may introduce
heteroscedaticity and correlation between the real and imagi-
nary parts of the Short Time Fourier Transform. The impact
of this phenomenon on spectrogram distribution is evaluated
in terms of deviation from the chi-square distribution. A nu-
merical method to calculate the probability density function
of the spectrogram coefficients is provided and deviation from
the chi-square distribution is evaluated using the Kullback-
Liebler divergence. This measure of deviation is used to con-
trol the validity of a chi-square approximation.

1. INTRODUCTION

The spectrogram is a widely used time-frequency representa-
tion for the analysis of multi-components non-stationary sig-
nals. As a main advantage, it does not display any interfer-
ence terms as opposed with other quadratic time-frequency
representations like the Wigner-Ville distribution. However,
this feature is counterbalanced by a loss of energy concen-
tration. When the signal under investigation is random, its
spectrogram is a random field, and the energy at every time-
frequency location is distributed as a particular probability
law. In a time-frequency detection context, we have to de-
cide if a given time-frequency location contains energy that
originates from the signal or not. The determination of the
spectrogram probability laws corresponds to the first step for
the use of probabilistic approaches such as Bayesian ones.

In this paper we focus on the probability distribution of
spectrogram coefficients related to a centered stationary Gaus-
sian process with covariance matrixR. No hypothesis is made
on the whiteness of the process andR is thus not necessar-
ily diagonal. From a detection point of view, the case under
study corresponds to the null hypothesisH0 where only Gaus-
sian noise is present at the investigated time-frequency loca-
tion. Probability distributions of spectral estimates using pe-

riodogram have already been studied for correlated centered
Gaussian process [1][2][3]. The study presented here extends
the results in two ways. Firstly, previous works make no ref-
erences about the impact of the nature of the analysis window
that we found non negligible. Secondly, the probability dis-
tributions are given in terms of the generalized hypergeomet-
ric function, that may be expanded into a sum of exponential
functions [3]. These expressions are not easily practicable
for theoretical developments. We evaluate here the possibil-
ity to approximate the spectrogram coefficient distributions
with the well-definedχ2 law [4] that is known to be the exact
distribution for an uncorrelated Gaussian process.

We investigate the probabilities of spectrogram coefficients
defined as the squared modulus of the signal Short-Time Fourier
Transform (STFT). In section 2 we show how second order
statistical characteristics of the input process and window-
ing operation intervene in the STFT probability distribution.
Section3 proposes a simple way to compute the probability
density function of the squared modulus of a Gaussian vec-
tor. Deviation from theχ2 distribution is then evaluated using
the Kullback-Liebler Divergence. In section4, we propose
an illustration of the impact of the analysis window’s nature
for an exponentially correlated Gaussian sequence and finally
discuss the validity of aχ2 approximation in section5.

2. PROBABILITY DISTRIBUTION OF STFT REAL
AND IMAGINARY PARTS

Given a discrete analysis windoww[n] of lengthM , the Short-
Time Fourier Transform (STFT)Xw[n, k] of a discrete signal
x[n] is formed by the successive Discrete Fourier Transforms
of the windowed signal. The spectrogramSw

x [n, k] corre-
sponds to the squared modulus of the STFT or equivalently to
the sum of the squares of the STFT real and imaginary parts,
Xr

w[n, k] andX i
w[n, k] respectively. We thus start from the

following definitions:

Sw
x [n, k] = Xr

w[n, k]2 + X i
w[n, k]2, (1)



Xr
w[n, k] =

M−1
∑

m=0

x[n − m]w[m] cos(−2πk
m

M
), (2)

X i
w[n, k] =

M−1
∑

m=0

x[n − m]w[m] sin(−2πk
m

M
). (3)

In the sequel, we consider the random vector

X[n, k]T = [Xr
w[n, k] X i

w[n, k]].

Equations (2) and (3) express the real and imaginary parts
of the STFT as linear combinations of signal samples. As the
x[n] are centered Gaussian variables (not necessarily indepen-
dent),Xr

w[n, k] andX i
w[n, k] are also distributed as centered

Gaussian law.X[n, k] is thus a zero-mean Gaussian vector
defined by three parametersσ2

r , σ2
i andσ2

ri (for clarity of no-
tation we drop the time-frequency location[n, k] in the prob-
ability parameter notations):

X[n, k] =

(

Xr
w[n, k]

X i
w[n, k]

)

∼ N
{(

0
0

)

,

(

σ2
r σ2

ri

σ2
ri σ2

i

)}

.

From equations (2) and (3), we obtain

σ2
r = WT CkRCkW (4)

σ2
i = WT SkRSkW (5)

σ2
ri = WT CkRSkW (6)

whereW is the analysis window vector andCk (resp.Sk) is
the cosine (resp. sine) diagonal matrix,

WT = [w[0] · · ·w[M − 1]]

Ck = diag
[

cos(−2πk
m

M
)
]

m=0,M−1

Sk = diag
[

sin(−2πk
m

M
)
]

m=0,M−1

3. PROBABILITY DISTRIBUTION OF A GAUSSIAN
SQUARED MODULUS

From equation (1), the distribution of spectrogram coefficients
Sw

x [n, k] corresponds to the distribution of the squared mod-
ulus of the 2D Gaussian vectorX[n, k]. This section first
presents a simple way, based on geometrical considerations,
for the calculus of such a probability distribution in a gen-
eral case. Deviation from the chi-squared distribution is then
evaluated using the Kullback-Liebler divergence.

3.1. Numerical calculus of the probability density func-
tion of a Gaussian squared modulus

Let

G =

(

G1

G2

)

∼ N
{(

m1

m2

)

,

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)}
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Fig. 1. Central Gaussian squared modulus distributions and
corresponding experimental histograms for a) different corre-
lation coefficients and b) different ratio of variances. In each
case the dashed line corresponds to the centralχ2 distribution

be a 2D Gaussian vector andM2(m1, m2, σ
2
1 , σ2

2 , ρ) the dis-
tribution of its squared modulusX = G2

1 + G2
2, expressed in

terms of its five parameters.

Whenσ2
1 = σ2

2 = σ2 andρ = 0, X is proportional to
a chi-squared variable with two degrees of freedom and non-
centrality parameterm2

1 + m2
2. For other conditions,X de-

viates from aχ2 variable and may be identify as a quadratic
form in Gaussian variablesX = GT I2G whereI2 is the2×2
identity matrix. Distributions of this kind have been exten-
sively studied in the past [5]. Expression of the characteristic
function ofX are given in terms of the singular values of the
covariance matrix ofG. However the Fourier inversion lead-
ing to the probability density function remains difficult.

Here we propose a geometrical approach to compute the
probability density function (pdf) of the Gaussian squared
modulusX . This approach avoids the use of singular value
decomposition and Fourier inversion and has revealed com-
putationally very efficient. Looking in the(G1, G2) plan, the
pdfpG(g1, g2) of vectorG is a bidimensional Gaussian distri-
bution. The probabilityP [X = x] thatX equals a given value
x corresponds to the probabilityP [G2

1+G2
2 = x]. The density

of probabilitypX(x) thus corresponds to the density of proba-
bility of G over the circle centered at (0,0) with radius

√
x. To

adapt the notation to the problem’s geometry, we express the
pdf of G in cylindrical coordinates (pG(g1, g2) → pG(r, θ)).
This leads to the use of an unique integration on the angular
coordinate over[0 2π] for the calculation of the pdfpX(x) of
X . That is:

pX(x) =

∫ 2π

0

pG(
√

x, θ)dθ



wherepG(r, θ) =
1

2πσ1σ2

√

1 − ρ2
exp

−
1

2(1−ρ2)
A(r,θ)

,

A(r, θ) =
[

(r cos θ−m1)2

σ2
1

−

2ρ(r cos θ−m1)(r sin θ−m2)
σ1σ2

+
(r sin θ−m2)2

σ2
2

]

.

Spectrogram coefficient distributions for a correlated cen-
tered Gaussian process correspond to the central casem1 =
m2 = 0 with σ2

1 = σ2
r and σ2

2 = σ2
i . Figure 1 presents

some centered Gaussian Squared Modulus (GSM) distribu-
tions for different values of the correlation coefficient (figure
1-a)) and ratio of variancesσ2

1/σ2
2 (figure 1-b)). For each dis-

tribution, the histogram of106 realisations of the correspond-
ing variable is also plotted so as to validate the accuracy of
the method. We may note that heteroscedaticity (difference
of variances) tends to stretch the distribution along the quantil
axis, whereas correlation acts in the opposite way and tighten
the distribution near zero.

3.2. Deviation from a chi-square distribution

As mentioned above, when the components of vectorG have
the same variance and are decorrelated, the Gaussian squared
modulusX is proportional to aχ2 variable. We are here inter-
ested in the evaluation of the departure from this probability
distribution as heteroscedaticity and correlation increase be-
tween the vector’s components. For this purpose, we calculate
the Kullback-Liebler Divergence of the central GSM distribu-
tion from the centralχ2 distribution as a function of the ratio
of variancesσ2

1/σ2
2 and correlation coefficientρ. For a given

value of these parameters, we compute a set of106 realisa-
tions of the corresponding centered Gaussian vectorG. From
this set we estimate by a near maximum likelihood method
[6] the degree of freedomδ and proportionality coefficientα
of the nearest centralχ2 distribution. The Kullback-Liebler
DivergenceJ (M2||χ2) of the GSM distribution from theχ2

distribution is then calculated as

J (M2||χ2) =

∫ +∞

0

pM2(x) log

[

pM2(x)

pχ2(x)

]

dx.

Results are reported in figure 2. Figures 2-b) and 2-c) show
the KL-divergence profiles atρ = 0 andσ2

1 = σ2
2 respec-

tively. We can observe that the GSM distribution is highly
similar to aχ2 distribution when the ratio of variances does
not exceed1.5 or when the linear correlation coefficient lies
between−0.2 and0.2.

4. IMPACT OF WINDOWING FOR AN
EXPONENTIALLY CORRELATED PROCESS

For a centered process, the probability distribution of thespec-
trogram is defined by the second order statistical characteris-
tics of the STFT vectorX[n, k], namelyσ2

r , σ2
i andσ2

ri. In
section 2, we showed how these characteristics depend on the
analysis windoww[n] and the covariance matrixR of the sig-
nal (see equations (4), (5) and (6)). In this section, the impact
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of the nature and length of the window used for the Fourier
analysis of correlated process is evaluated. We use an ex-
ponentially correlated process, or Ornstein-Uhlenbeck noise,
whose autocorrelation function is

Γ(t) = Γ0 exp

(

−|t|
τc

)

whereΓ0 is set to1 in this experiment andτc is the correlation
time in the process. We compute the ratio of the STFT real
and imaginary part variancesσ2

r/σ2
i and their linear correla-

tion coefficientρ = σ2
ri/σrσi along frequencies using dif-

ferent types of analysis window. Results are only reported
for the rectangular and Hanning windows. The other win-
dows we used (Kaiser, Blackman, Gaussian and Hamming)
give similar results as the Hanning one. Experiments proved
that neither the window lengthM nor the correlation time
τc are determinant on their own as results are invariant for a
constant ratio of these two parameters. We thus define a cor-
relation time ratio

λ =
M

τc

and compute the results for several values of it.
Figure 3-a) depicts the correlation and ratio of variances

profiles along the frequency axis obtained with a rectangular
window. As the correlation time ratioλ increases, the ef-
fect of correlated noise tends to vanish: the STFT real and
imaginary parts tend to be decorrelated and of similar vari-
ances. However, when the length of the analysis window
is of the order of the correlation time (λ ≈ 1), significant
correlation between real and imaginary parts appears at mid-
frequencies and heteroscedaticity occurs at extreme frequen-
cies. When the Hanning window is used (Figure 3-b)), no
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Fig. 3. Correlation coefficientρ and ratio of variancesσ2
r/σ2

i

for exponentially correlated noise, using rectangular (a)or
Hanning (b) window, for different correlation time ratioλ.

such phenomenon appears: the real and imaginary parts of
the STFT remains uncorrelated and of similar variances re-
gardless to the value of the correlation time ratioλ and over
all the frequency axis (except for the two first and two last fre-
quency bins, which is a known result [1]). Results are similar
for Kaiser, Blackman, Gaussian and Hamming window.

As an example, pdfs for the rectangular window at mid
and extreme frequencies corresponding toλ = 0.5 are ob-
servable on figure 1 (dot-dashed curves) where the dashed
curve corresponds to the Hanning window. We deduce from
this experiment that the choice of the analysis window im-
pacts on the spectrogram distribution for correlated process.

5. DISCUSSION

Theχ2 distribution is a well known distribution that has re-
ceived extensive studies [4]. Particularly, its probability den-
sity function benefits from a known analytic formulation and
methods for the estimation of its parameters. This is not the
case for spectrogram distributions expressed in terms of hy-
pergeometric functions [3]. Consequently, it may seem ad-
vantageous to approximate the spectrogram distribution with
aχ2 distribution. We refer to the KL-divergence (section 3.2)
as a measure of the quality of this approximation.

From figure 2, aχ2 approximation seems perfectly rea-
sonable if the ratioσ2

r/σ2
i does not exceed 1.5 or when linear

correlation coefficientρ lies between−0.2 and0.2 (figures
2-b) and 2-c)). This is always the case when the Hanning
window is used. Regardless to the level of correlation con-
tained in the analysed process, theχ2 distribution perfectly
describes the spectrogram statistics.

When a rectangular window is used, the validity of aχ2

approximation will depend on the ratio between the corre-
lation time in the process and the length of the rectangular
analysis window. Generally, correlation in the process under
investigation is imposed. Use of long rectangular windows
is thus recommended ifχ2 distributions are used to describe
spectrogram coefficients probability. This remark is in accor-
dance with [1] where theχ2 law is derived under the assump-
tion of an infinite analysis window.

In a detection task formulation, presence of signal energy
at a given time-frequency location refers to the hypothesisH1.
When the noise embedding the signal is Gaussian and white,
spectrogram coefficients are distributed underH1 as a non-
centralχ2 variable. The non-centrality parameter of the law
corresponds to the spectral energy of the searched signal. The
impact of a correlated noise remains to be study for this case.

6. CONCLUSION

In this paper, we proposed a look at the distribution of the
spectrogram coefficients of a centered correlated Gaussian
process. We showed that the use of a rectangular analysis
window introduces correlation and heteroscedaticity between
the real and imaginary parts of the STFT of the signal. We
showed the impact of this phenomenon on the spectrogram
distribution. We also showed that depending on the level
of correlation in the analysed process and the length of the
rectangular window, aχ2 approximation may be reasonable.
For other windows like for example the Hanning one, spec-
trogram coefficients remains distributed as aχ2 law without
conditions on the correlation in the process.
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