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ABSTRACT riodogram have already been studied for correlated cehtere

This paper deals with the probability distribution of speet Gaussian process [1][2][31' The stuo!y presented here dsten
the results in two ways. Firstly, previous works make no ref-

gram coefficients related to a correlated centered Gaussian : o
. ) . . erences about the impact of the nature of the analysis window
process. It is shown that the windowing operation and th o S
. : : hat we found non negligible. Secondly, the probability-dis
presence of correlation between input samples may IntlEDdu%ributions are given in terms of the generalized hyperggome
heteroscedaticity and correlation between the real andiima 9 9 yperg

nary parts of the Short Time Fourier Transform. The impac{'c function, that may be expanded into a sum of exponential

. L unctions [3]. These expressions are not easily practcabl
of this phenomenon on spectrogram distribution is evatuate, . i
. - . L for theoretical developments. We evaluate here the pdssibi
in terms of deviation from the chi-square distribution. A nu

merical method to calculate the probability density fuoicti ity to approximate the spectrogram coefficient distribmtio

o ) . - with the well-definedy? law [4] that is known to be the exact
of the spectrogram coefficients is provided and deviatiomfr .~ .~ . :
i S T . distribution for an uncorrelated Gaussian process.
the chi-square distribution is evaluated using the Kulbac ) ] o o
Liebler divergence. This measure of deviation is used to con Ve investigate the probabilities of spectrogram coeffisien
trol the validity of a chi-square approximation. defined as the squared modulus of the signal Short-Time&ouri

Transform (STFT). In section 2 we show how second order
statistical characteristics of the input process and windo
ing operation intervene in the STFT probability distrilouti

: . . Section3 proposes a simple way to compute the probability
The spectrogram ISa W|dely used time-frequency _rep_resentaensity function of the squared modulus of a Gaussian vec-
tion for the ana_LIyS|s of mulU-c_omponents r?on-stanonz_igy S tor. Deviation from they? distribution is then evaluated using
nals. As a main advantage, it does not display any mterferthe Kullback-Liebler Divergence. In sectioh we propose

ence terms as opposed with other quadratic tlme-frequen% illustration of the impact of the analysis window’s natur

representations like the Wigner-Ville distribution. Howe, ¢, 5, exponentially correlated Gaussian sequence andyfinal
this feature is counterbalanced by a loss of energy concefis;ss the validity of a2 approximation in sectiof.

tration. When the signal under investigation is random, its
spectrogram is a random field, and the energy at every time-
frequency location is distributed as a particular probgbil
law. In a time-frequency detection context, we have to de-
cide if a given time-frequency location contains energy tha
originates from the signal or not. The determination of the
spectrogram probability laws corresponds to the first spep f Given a discrete analysis windawn| of length\//, the Short-
the use of probabilistic approaches such as Bayesian ones. Time Fourier Transform (STFTX., [, k] of a discrete signal

In this paper we focus on the probability distribution of z[»] is formed by the successive Discrete Fourier Transforms
spectrogram coefficients related to a centered stationamgG  Of the windowed signal. The spectrografif [n, k] corre-
sian process with covariance matfix No hypothesis is made sponds to the squared modulus of the STFT or equivalently to
on the whiteness of the process @Rds thus not necessar- the sum of the squares of the STFT real and imaginary parts,
ily diagonal. From a detection point of view, the case underX.,[n, k] and X, [n, k] respectively. We thus start from the
study corresponds to the null hypotheBiswhere only Gaus-  following definitions:
sian noise is present at the investigated time-frequermylo
tion. Probability distributions of spectral estimatesngspe- S¥n, k] = X" [n, k]* + X% [n, k]2, Q)

1. INTRODUCTION

2. PROBABILITY DISTRIBUTION OF STFT REAL
AND IMAGINARY PARTS
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In the sequel, we consider the random vector

X[n, k)T = X" [n, k] X5 [n, k]].

Equations (2) and (3) express the real and imaginary par
of the STFT as linear combinations of signal samples. As th
x[n] are centered Gaussian variables (not necessarily indepe

dent), X" [n, k] and X}, [n, k] are also distributed as centered

Gaussian law.X[n, k| is thus a zero-mean Gaussian vector

defined by three parameter$, o7 ando?, (for clarity of no-
tation we drop the time-frequency locatipn k] in the prob-

ability parameter notations):
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From equations (2) and (3), we obtain
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o2 = WTCLRC,W (4)
o2 = WIS RS, W (5)
o2 = WITCRRS,W (6)

wherelV is the analysis window vector artg, (resp.Sk) is
the cosine (resp. sine) diagonal matrix,

W = [wl0] -+ w[M — 1]

m
Cp=di —2k—
& iag {cos( T M)i|m:0,M71

727rkﬂ

Sk = diag [sin( i

)
m=0,M—1

3. PROBABILITY DISTRIBUTION OF A GAUSSIAN
SQUARED MODULUS

From equation (1), the distribution of spectrogram coedfits
S¥[n, k] corresponds to the distribution of the squared mo
ulus of the 2D Gaussian vect|n, k]. This section first
presents a simple way, based on geometrical consideratio
for the calculus of such a probability distribution in a gen-
eral case. Deviation from the chi-squared distributiorment
evaluated using the Kullback-Liebler divergence.

d

3.1. Numerical calculus of the probability density func-
tion of a Gaussian squared modulus
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Fig. 1. Central Gaussian squared modulus distributions and
corresponding experimental histograms for a) differenteso
lation coefficients and b) different ratio of variances. &tk
case the dashed line corresponds to the cextrelstribution

be a 2D Gaussian vector and?(m;, ms, 03,03, p) the dis-
tribution of its squared modulus = G? + G2, expressed in
terms of its five parameters.

Wheno? = 02 = o2 andp = 0, X is proportional to
a chi-squared variable with two degrees of freedom and non-
centrality parametem? + m3. For other conditionsX de-
viates from ay? variable and may be identify as a quadratic
formin Gaussian variable¥ = G7 I,G wherel, is the2 x 2
identity matrix. Distributions of this kind have been exten
sively studied in the past [5]. Expression of the charastieri
function of X are given in terms of the singular values of the
covariance matrix of7. However the Fourier inversion lead-
ing to the probability density function remains difficult.

Here we propose a geometrical approach to compute the
probability density function (pdf) of the Gaussian squared
modulusX. This approach avoids the use of singular value
decomposition and Fourier inversion and has revealed com-
putationally very efficient. Looking in th&&, G2) plan, the
pdfpa (g1, g2) of vectorG is a bidimensional Gaussian distri-
bSution. The probability?[ X = z] thatX equals a given value
= corresponds to the probabilify|G?+G3 = z]. The density
of probabilityp x (x) thus corresponds to the density of proba-
bility of G over the circle centered at (0,0) with radiys. To
adapt the notation to the problem’s geometry, we express the
pdf of G in cylindrical coordinatesyz (g1, g2) — pa(r,0)).

This leads to the use of an unique integration on the angular
coordinate ovef0 27| for the calculation of the pdfx () of

X. Thatis:
27
px(z) = / pa(v/, 0)d0
0
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Spectrogram coefficient distributions for a correlated cen
tered Gaussian process correspond to the centrahcase

0.002 |
2

mo = 0 with 07 = 02 ando2 = o?. Figure 1 presents .

3

some centered Gaussian Squared Modulus (GSM) distribt

0.004 |

0.5 100
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tions for different values of the correlation coefficieng(fie b) corretaton coeficient p = 9 Ot rateof variances /a,
1-a)) and ratio of variances’ /o3 (figure 1-b)). For each dis- 012 oo12
tribution, the histogram of0° realisations of the correspond- ~ °* 001
ing variable is also plotted so as to validate the accuracy ¢& ZZZZ < ZZZZ
the method. We may note that heteroscedaticity (differenc £ g
of yariances) tends to _stretch the distributio_n along tmm_u 0002 oo
ams,_wh_erez_as correlation acts in the opposite way andeight g L L
the distribution near zero. rate of variances o%/0? corelation coeficient p

o _ o Fig. 2. a) Kullback-Liebler Divergence of the GSM law from
3.2. Deviation from a chi-square distribution the 2 distribution as a function of ratio of variance$/ o2
and correlation coefficient b) KL-Divergence profile gb =

As mentioned above, when the components of veGthiave c ! > )
c) KL-Divergence profile aty = o5.

the same variance and are decorrelated, the Gaussian d;qua(?e
modulusX is proportional to &2 variable. We are here inter-
ested in the evaluation of the departure from this prolgbili of the nature and length of the window used for the Fourier
distribution as heteroscedaticity and correlation inseghe-  analysis of correlated process is evaluated. We use an ex-
tween the vector’s components. For this purpose, we cakulaponentially correlated process, or Ornstein-Uhlenbedge)o
the Kullback-Liebler Divergence of the central GSM distrib whose autocorrelation function is
tion from the centrak? distribution as a function of the ratio
of variancesr? /o3 and correlation coefficient. For a given I(t) = Tgexp <ﬂ)
value of these parameters, we compute a sdibfrealisa-
thns of the correspondlng centered (-Baussgan y@td?rom herel'y is set tol in this experiment and. is the correlation
this set we estimate by a near maximum likelihood methog. ~. :
. . L ime in the process. We compute the ratio of the STFT real
[6] the degree of freedom and proportionality coefficient : . . 9 -
0 g . and imaginary part variance$ /o2 and their linear correla-
of the nearest centraf* distribution. The Kullback-Liebler tion coefficientp — o2, /o, along frequencies using dif-
Divergence7 (M?||x?) of the GSM distribution from the? p = Ori/OrTi g freq 9
R ferent types of analysis window. Results are only reported
distribution is then calculated as : ) .
for the rectangular and Hanning windows. The other win-
91 o +Foo pag(T) dows we used (Kaiser, Blackman, Gaussian and Hamming)
TJMIIX7) = /0 prmz(7) log iz () d give similar results as the Hanning one. Experiments proved
that neither the window length/ nor the correlation time
Results are reported in figure 2. Figures 2-b) and 2-c) show, are determinant on their own as results are invariant for a
the KL-divergence profiles gt = 0 ando; = o3 respec- constant ratio of these two parameters. We thus define a cor-
tively. We can observe that the GSM distribution is highlyrelation time ratio

Te

similar to ax? distribution when the ratio of variances does N\ = M
not exceed .5 or when the linear correlation coefficient lies Te
between-0.2 and0.2. and compute the results for several values of it.
Figure 3-a) depicts the correlation and ratio of variances
4. IMPACT OF WINDOWING FOR AN profiles along the frequency axis obtained with a rectarrgula
EXPONENTIALLY CORRELATED PROCESS window. As the correlation time ratia increases, the ef-

fect of correlated noise tends to vanish: the STFT real and
For a centered process, the probability distribution ofibec-  imaginary parts tend to be decorrelated and of similar vari-
trogram is defined by the second order statistical chaliaeter ances. However, when the length of the analysis window
tics of the STFT vectoK[n, k], namelyo?, o7 ando?,. In is of the order of the correlation time\ (=~ 1), significant
section 2, we showed how these characteristics depend on tberrelation between real and imaginary parts appears at mid
analysis windoww[n] and the covariance matri of the sig-  frequencies and heteroscedaticity occurs at extremeérequ

nal (see equations (4), (5) and (6)). In this section, theaithp cies. When the Hanning window is used (Figure 3-b)), no
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Fig. 3. Correlation coefficienp and ratio of variances?/o?
for exponentially correlated noise, using rectangularag@)
Hanning (b) window, for different correlation time ratho

such phenomenon appears: the real and imaginary parts

approximation will depend on the ratio between the corre-
lation time in the process and the length of the rectangular
analysis window. Generally, correlation in the processaund
investigation is imposed. Use of long rectangular windows
is thus recommended jf? distributions are used to describe
spectrogram coefficients probability. This remark is inaec
dance with [1] where thg? law is derived under the assump-
tion of an infinite analysis window.

In a detection task formulation, presence of signal energy
at a given time-frequency location refers to the hypothHsis
When the noise embedding the signal is Gaussian and white,
spectrogram coefficients are distributed undiras a non-
centraly? variable. The non-centrality parameter of the law
corresponds to the spectral energy of the searched signal. T
impact of a correlated noise remains to be study for this.case

6. CONCLUSION

In this paper, we proposed a look at the distribution of the
spectrogram coefficients of a centered correlated Gaussian
process. We showed that the use of a rectangular analysis
window introduces correlation and heteroscedaticity leetw

®fe real and imaginary parts of the STFT of the signal. We

the STFT remains uncorrelated and of similar variances reshowed the impact of this phenomenon on the spectrogram

gardless to the value of the correlation time ratiand over
all the frequency axis (except for the two first and two last fr

distribution. We also showed that depending on the level
of correlation in the analysed process and the length of the

quency bins, which is a known result [1]). Results are simila rectangular window, a2 approximation may be reasonable.

for Kaiser, Blackman, Gaussian and Hamming window.

For other windows like for example the Hanning one, spec-

As an example, pdfs for the rectangular window at midirogram coefficients remains distributed ag’alaw without

and extreme frequencies corresponding\te= 0.5 are ob-

conditions on the correlation in the process.

servable on figure 1 (dot-dashed curves) where the dashed

curve corresponds to the Hanning window. We deduce from
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