N
N

N

HAL

open science

Representing Knowledge about Norms

Daniel Kayser, Farid Nouioua

» To cite this version:

Daniel Kayser, Farid Nouioua. Representing Knowledge about Norms. 2004, pp.363-367.

00085147

HAL Id: hal-00085147
https://hal.science/hal-00085147
Submitted on 11 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-


https://hal.science/hal-00085147
https://hal.archives-ouvertes.fr

Representing Knowledge about Norms

Daniel Kayser and Farid Nouioua*

Abstract Norms are esential to extend inference inferences based
on nams are far richer than those based onlogicd implications. In
the recent decades, much effort has been devoted to reason ona
domain, onceits norms are represented. How to extrad and express
those norms has receéved far lessattention. Extradion is difficult:
as the readers are suppased to know them, the norms of a domain
are seldom maede eplicit. For one thing, extrading norms requires
alanguage to represent them, and thisis the topic of this paper. We
apply this language to represent norms in the domain of driving,
and show that it is adequate to reason onthe caises of acddents, as
described by car-crash reports.

1. INTRODUCTION

Norms are esential in ou life. Our everyday behavior is guided by
our knowledge of the normal outcomes of an adion, and ou atten-
tionis naturaly driven towards what we perceve & abnormal in a
given situation.

A.l. has redized the importance of norms at several levels: ealy
systems, like frames [13] and scripts [15] |ed to the development,
in the late ‘ 70s and  80s, of non-monatonic reasoning systems with
more dealy stated forma properties (e.g. [1, 3]). Their goad isto
extend the set of conclusions beyondwhat is derivable on the strict
basis of logicd inference

As the notion d norm is used in severa contexts, we shoud
make dea that we mean here norms that rule mmonsense rea
soning, but not norms used for legal reasoning, which are dso a
subjed of growing interest in Al [2, 4, 6].

Little dtention has been paid to the way to extrad and express
the norms of a given damain. Today, large anourts of texts con-
cerning many domains are available for the cmputer. Extrading
the norms from the texts is however a difficult problem: as the
norms of a domain are generaly suppaed to be known by any
reaer, they are seldom made explicit.

Anyway, extrading them presuppases the eistence of a lan-
guage to represent them. The alequacy of a representation lan-
guage must be evaluated. Showing that a reasoning system using
the language is able to detea the same anomali es as those deteded
by ahuman reader is agoodcriterion.

An anticipated consequence of this work is to enrich the tradi-
tiona (truth-based) approach to natural-language semantics. Infer-
ences based on noms are indeel far richer than those based on
logicd implications. Consider e.g. thetext:

The car before me braked suddenly.

Inferences based ontruth contain statements like: “there exists a
timet and a ca c such that c was before me & t, and ¢ braked at t.”
Inferences based on norms add, among many others: “both ¢ and
me were driving in the same diredion, with no dher vehicle in
between. | had to brake in order to avoid an acddent.”

Sedion 2 describes the domain, sedion 3 dscusses the basic is-
sues, sedion 4 dfines the main feaures of the language, sedion 5
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shows how it is used to deted anomalies, sedion 6 povides an
example, sedion 7 describes the remaining steps of the projed and
opens perspedives of thiswork.

2. THE DOMAIN

We have seleded the domain of driving, for the foll owing reasons:

e The number of norms is presumably neither too large nor too
small; they are nat limited to those listed in the highway code,

* We have a1 easy accessto an urlimited amourt of short texts:
every insurance @mpany receves daily car-crash reports con
taining at most 5 lines describing the drcumstances of an acd-
dent,

e Eadh report implies a number of fads, which are nat logicdly
entail ed, requiring an abundant use of norm-based reasoning,

« The text reveds, both explicitly and implicitly, several anoma-
lies, including of course the acédent itself. The readers gener-
ally understand ore of them as being “basic”, and seeit as the
cause of the acedent; the other anomali es are derived from it.

Designing a amputer program that, for ead text, discovers the
same “basic” anomaly as human realers do, is an ambitious Al
objedive that noretheless gamsredistic.

The difficulty of the task consistsin describing the domain with
a relatively small number of predicaes, while maintaining the
possbility to discriminate anong cases that look rather similar, but
norethelesscdl to mind dstinct anomalies.

3. BASIC ISSUES

A ca-crash report, as all texts, is a structure over propasitions.
Eadh propasition describes something about a cntinuouwsly evolv-
ing world. Shoud the representation ke based on dscrete nations,
refleding the structure of the text, or on continuous ones, closer to
physicd redity? This dilemma is akin to rnaive vs. scientific
physics. The choice of scientific physics is more cmfortable: we
can wse what we have been taught abou speed, acceeration,
collisions, but here it is not only computationally expensive, but
representationall y inadequate. As a matter of fad, a physicd model
of the accdent would require fixing the value of a number of
parameters, which are neither present in, nor derivable from, the
text. Even worse, the texts are not written by experts in mechanics,
but by drivers likely to share the misconceptions abou force and
energy that are ammon in the popuation [10]: what makes ®nse
for them may not be trandlatable in terms of scientific physics.

We therefore use a ‘haive” approach. The propasitions are
modeled by discrete states conreded by atempora relationship. A
state is charaderized by a set of literals that refleds gatic as well
as dynamic properties; two states are distinct as ©on as one of
their literals has diff erent truth-values.



A second dlemma concerns the nature of the relation between
such states. The adion described takes place of course, in alinea
time, but the writer of the text often spends much spaceto justify
hig’her behavior in terms of attempts to achieve desirable goals or
to avoid undesirable ones. This is easily understandable, becaise
the texts are intended to establish resporsibiliti es in the accdent.
Now the states described as goals are not parts of the unfolding of
the adion. If we limit ourselves to the representation o adua
events, we miss much of the substance of the text. On the other
hand, creding a (sequence of) state(s) for every future that one of
the protagonistsis likely to have envisioned (like eg. McDermott's
chronicles [12]) would increase, withou necessty in our case, the
number of isuesto be solved.

Hypothesis: the detedion d anomalies requires only the repre-
sentation d states-of-affairs presented as having redly occurred;
the potential or counterfadual states play an implicit role to deter-
mine the expedations of the protagonists, their reasons for ading
or not ading, but need noexplicit representation.

Coroallary: the states can be represented by natural numbers.

The author focuses on anomalies, i.e. events which are onsid-
ered as abnamal with resped to the ‘normal’ unfolding of events
known by the realer. This phenomenon res motivated the nation o
script [15], but modeling it remains a difficult problem. For in-
stance, the number of scenes of a script, i.e. the granularity of an
adequate representation, is often the result of understanding the
text, not a prerequisite to understand it. Therefore the number of
states kegps changing during the analysis.

4. THE LANGUAGE

To be ale to quentify over variables representing names of predi-

cates, and thus get a better fadorizaion d the rules governing the

domain, we made the choice of afirst-order reified language.
Consequently, most of the statements will be under the form:

Holds (P, X, t)?

to state that P istrue of X at statet.

However, not all statements are state-dependent; for instance, to
represent the fad that whenever an effed F is observed, it is nor-
mally believed that an event VV occurred, we use:

Potentially_caused by (F, V) (abbr. Pcb (F, V))

A last kind d statement concerns modaliti es. Instead of making
use of modal conredives, we represent for instance the (moral)
necessty for agent X to get effed F at state't by:

Must (F, X, t)

Finally, inferencerules are ather strict (no exceptionis likely to
occur in the framework of our texts), or defeasible. Strict rules are
rendered by material implicaions, and defeasible ones by Reiter's
norma or semi-normal defaults [14]. The latter are needed as the
semi-monaonicity of normal theories forbids them to cope with
priorities among defaults [5].

The arity of Holds restricts this notation to unary predicaes. Where more
arguments are reguired, we use a binary function Combine. For instance,
to represent that the literal Q (X, Y) is true at state t, we write: Holds
(Combine (Q, Y), X, t). When nealed, afunction Neg applies on predicae
names and we have: Holds (Neg (P), X, t) « - Holds (P, X, t).

A: B
A: B abbreviates the normal default: 5
) A: BOC
A: B[C], the semi-normal default: 5

We now discuss with more details some of the predicates.

4.1. State-dependent predications

Norms, and hence anomalies, concern heterogeneous concepts of
the domain. To reduce the complexity, we divide the problem into
parts: issues related to the speed of vehicles in a file can be safely
isolated from, say, considerations about priorities at crossroads.
The predicates are therefore partitioned into layers. Layers are
partially ordered from “outside’ (the expected result of a parser) to
“‘inside” (a dozen or so of state -dependent predicates constituting
the kernel). The right-hand side of each inference rule contains
predicates that are not more “externa” than those of its left -hand
side, thus favoring the convergence of the reasoning towards the
predicates of the kernel.

The predicates of the kernel are chosen in such away that every
anomaly, once trandated at their level, is still recognizable as an
anomaly; naturally, many details are lost during the trandation, and
the explanation of the cause of the accident in terms of these predi-
cates |ooks awkward.

4.2. State-independent predications

State-independent predicates describe the nature of predicates and
their mutual relations. Reification allows providing some predi-
cates with types, without appealing to second order. Action (P) is
true iff P is the name of an action that an agent may perform vol-
untarily in order to achieve an effect. For instance, braking, turning
the steering wheel are actions. Driving slowly or turning right are
not actions, but effects of these actions. In our context, the number
of actionsisvery limited.

Event (P) istrueiff P isthe name of an event. From the point of
view of an agent, everything that happens independently of his/her
will is an event; for instance, the moves of other agents, the out-
break of an obstacle in hig’her visual field are events.

Actions and events are the only sources responsible of state
changes, i.e. in the fact the truth-value of some literals, called
effects, changes. We write Effed (P).

Effects caused by events may be undesired. The agent therefore
may want to maintain the current state, in order to avoid such
effects. For that purpose, a special action is at hisher disposal: for
every effect F, Combine (Kegp_State, F) is an action.

Among the effects resulting from action and events, some are
persistent, unless another action or event causes them to change:

Persistent (P) [THolds (P, X, t) : Holds (P, X, t+1)

This default expresses a forward persistence. Some effects are
aso backward persistent, but this is far less common. Therefore,
backward persistence is expressed on a case-by-case basis.

To reason efficiently on causes and effects requires knowing
how the different predicates involved are interrelated, independ-
ently of their occurrencein atemporal framework.

Therelation Incompatible (F, F') expresses that effects F and F’
cannot be simultaneoudly true in any state. In particular, for al F
we have: Incompatible (F, Neg (F)).

Causality is an extremely delicate issue, but we cannot escape it,
asit plays a central role in the detection of anomalies [11]. What is
needed here however, is not arelation Cause (Act, F) whatever this



may mean but, perhaps more simply, the expression of a belief,
written Pcb (F, P) [for Potentially caused by as said earlier], where
P is either an action or an event; this literal does not reflect a belief
of unicity: many other causes may have produced F, and the goal is
not to collect every factor yielding P, but only the ones that come
straight to the mind of a standard reader. The limited extent of the
domain keeps the number of such relations rather small, and we
postulate that:

Hypothesis: At most one voluntary action Act satisfies Pcb (F,
Act) [exception: if F is persistent, we also have Pcb (F, Combine
(Keep_State, F))].

For an action Act to reach an effect F which it is known to be a
potential cause of, the agent must perform it under adequate cir-
cumstances. This is the well-known qudifi cation problem [8].
Here too, we neither want to, nor can, list these circumstances.
Whenever some predicates P are likely to play a role to enable/
prevent the success of an action, we write Precond_Action (F, P)
for “P must be true for the (supposedly unique) action able to yield
effect F to succeed” and Precond_Av_Event (F, P) for “P must be
true for an agent to succeed in avoiding the effect F of an event”.

4.3. Modalities

Modalities are central for detecting (basic and derived) anomalies.
They are also helpful to reason on other elements of the language.
Their analysis in terms of a kripkean semantics requires severa
types of accessibility relation between states. As this analysis does
not shed more light on the problems discussed here, we omit it.

Modalities say something about forthcoming states, i.e. their
being true at state t generaly entails the truth of some (modal or
non-modal) statements at state t+1.

4.3.1. Basic modditi es

Norms and anomalies are related to what an agent must do. The
literal Must (F, X, t) istrueiff in state t, agent X has to get effect F.
As agents are expected to comply with their duties, we have:

Must (F, X, t) : Holds (F, X, t+1).

The modality Able To (F, X, t) expresses that in state t, agent X
can do an action having the effect F. This literal is true even if the
action eventually fails, as long as X cannot know that beforehand,
i.e. has no excuse for not undertaking such an action.

4.3.2. Basic and cerived ammalies

Basic anomalies come under two forms. The first one arises when-
ever an agent X must reach some effect F in state t and has the
ability to reach it (in the sense of the above modality); however, at
state t+1 an effect F' incompatible with F holds true:

Must (F, X, t) JAble To (F, X, t) OHolds (F’, X, t+1) O
Incompatible (F, F) - Anomaly

The second form corresponds to cases where a ‘disruptive
factor’ (see 85.) exists for the agent:

Holds (Combine (Disruptive Factor, C), X, t) - Anomaly

Derived anomalies correspond to situations where an agent did
not fulfill his’her duties because s/he was not in position to comply:

Must (F, X, t) [J=Able_To (F, X, t) OHolds (F", X, t+1) [J
Incompatible (F, F') — Derived_Anomaly

4.3.3. Definition d the moddity Able To

The crucial point for the detection of anomalies consists in assess-
ing whether an agent isin position to avoid atransition yielding an
undesired state. More information about the features of the actions
and events is generally needed to decide whether the modality
Able To holds.

The literal Predictable (V, X, t) expresses a property of event V
that can be state-independent (e.g. icy patches could aways be
considered as unpredictable causes of loss of control); it can aso
be inferred in specific situations by means of appropriate rules (e.g.
if X is an obstacle for Y, and X is not under control, then X is un-
predictable for Y).

An event V is said to be controllable by agent X at state t iff:
either V does not occur at time t, or it was predictable and X isin
position at statet to satisfy the precondition of its avoidance.

Event (V) O(=Holds (V, X, t) O(Predictable (V, X, t) [J
(Precond_Av_Event (F, P) — Holds (P, X, 1)))
Controllable (V, X, t).

An agent may undertake an action Act without knowing whether
it will succeed. The predicate Available is meant to express that, as
far as the agent knows, Act satisfies al its preconditions. The literal
Available (Act, F, X, t) is thus true iff if a state t, agent X decides
to execute Act with the belief that effect F will obtain. A default
assumption isthat every action is available:

Pcb (F, Act) [JAction (Act) : Available (Act, F, X, t).
This assumption forces to enumerate the situations where an ac-
tion is not available. Several cases of unavailability are considered:
* the presence of “technical problems’:

Holds (Combine (Tech_Pb, Act), X, t) [JHolds (Act, X, t) [JPcb (F,
Act) - —Available (Act, F, X, t)

 the precondition of the action being not satisfied:

Action (Act) [JPrecond_Action (F, P) [J=Holds (P, X, t) -
—-Available (Act, F, X, t)

* akeep-state action is available except if an uncontrollable event
leads to a state where F’ holds, and F’ isincompatible with F:

(CFV) (Pcb (F', V) OEvent (V) O-Controllable (V, X, t) O
Incompatible (F, F’)) « —Available (Combine (Kegp_Sate, F), F,
X, 1)

» theloss of control of avehicle makes every action of its driver
obviously unavailable:

=Holds (Contral, X, t) [JPcb (Act, F) » —Available (Act, F, X, t)

These predicates delimit the states where an agent is Able_To
undertake an action. Intuitively, agent X is able to reach effect F at
state t iff there exists an action Act that is a potential cause for F
and isavailablefor X at t:

Able To (F, X, t) « ({JAct) (Action (Act) [JAvailable (Act, F, X, t)
[JPchb (F, Act))



5.DETECTING ANOMALIES

Unpredictable events causing a lossof control are anong what we
cdled disruptive fadors:

Holds (Combine (Cause_No_Contral, C), X, t) [J=-Predictable
(Combine (Cause_No_Control, C), X, t) —» Holds (Combine
(Disruptive_Factor, C), X, t)

So-cdled “technicd problems’ are treded that way. They are
unpredictable causes of loss of control, and this is enough (see
§4.3.2.) to asdgn to them the resporsibility of a basic anomaly.
Unpredictable obstades other than vehicles are disruptive fadors
aswell (in the cae of vehicles, other fadors are privil eged):

Holds (Combine (Obstacle, O), X, t) [J=Predictable (Combine
(Obstacle, 0), X, 1) :
Holds (Combine (Disruptive_Factor, O), X, t) [ =Vehicle (O)]

A derived anomaly (84.3.2.) always occurs at the transition be-
tween two statest and t+1; the basic anomaly from which it derives
often ocaurs at the precaling transition t-1, t. Therefore an abduc-
tive reasoning hypothesizes that the precondtion d an adion Act
was not satisfied at state t, and attempts to find what went wrong at
state t-1. For instance, if Act is akeep-state adion, abduction works
through two rules:

» Thefirst one cncerns the cae of a predictable event producing
an effed F’ incompatible with the desired effed F. If the agent
has control but is unable to read F, the rule éducts that the
precondtion for avoiding the mnsequence of the event was not
satisfied.

Holds (Cortrol, X, t) OMust (F, X, t) O-Able To (F, X, t) [J
Holds (V, X, t) JEvent (V) OOPcb (V, F’) OIncompatible (F, F’) O
Predictable (V, X, t) [JPrecond_Av_Event (F’, P)

- =Holds (P, X, t)

» The secondrule propagates duties badkwards: if at some statet,
the agent must obtain effed F and a predictable event is known
to prodwe dfed F' incompatible with F, then the ayent must
satisfy at state t-1 the precondtion avoiding the consequence of
the event.

Must (F, X, t) [JHolds (V, X, t) OEvent (V) [OPcb (V, F’) [0
Incompatible (F, F’) OPredictable (V, X, t) [JPrecond_Av_Event
(F,P) - Must (P, X, t-1)

Similar abductive rules are written for situations where the duty
of the ggent is nat to courterad a predictable event, but to exeaute
an adion in order to get an effed F. If the ayent has control, meds
notechnicd problem, but does not get the dfed, the rule mncludes
that the preconditi on was not satisfied:

Holds (Controal, X, t) OMust (F, X, t) [7=Holds (F, X, t+1) [J
Pcb (Act, F) [JHolds (Act, X, t) [7-Holds (Combine (Tech_Pb,
Act), X, t) [JPrecond_Action (F, P) —» =Holds (P, X, t)

Finally, the badkpropagation o dutiesis expressed here by:

Must (F, X, t) [J-Holds (F, X, t) [JPrecond_Action (F, P) - Must
(P, X, t-1).

6. EXAMPLE

| was beginning to turn right when | saw Mr.L’s car coming in the
opposite direction and encroaching on my lane. As | was driving
slowly, | stopped at once. Mr.L, who drove faster, was unable to act
similarly, and rubbed his car all along on my front bumper.

| was not in position to catch sight of Mr.L earlier, because he
was driving on his left (he was overtaking a parked vehicle) in a
street masked by a hedge.

This text, the first report of our corpus, implies at least three
states. For al texts, state O contains the default assumption that
every vehicleisunder control, and novehicleis gopped:

Holds (Cortral, X, 0), =Holds (Stop, X, 0) (X L {A, B})

Predicates Control and Neg (Stop) are dedared as Persistent.
The aove literas thus remain true in the other states, unlessproof
of the contrary. The first state explicitly mentioned in the text,
state 1, contains the fad that A is turning right™:

Holds (Combine (Turn, right), A, 1)

At the same state 1, the text saysthat A and B drivein oppaite
diredions, and that B was partly on A’s normal lane, from which
one derives that B was not completely on its normal lane (we lean
later that it is becaise B was overtaking a parked vehicle):

= Holds (Combine (Sane_Way, A), B, 1), Holds (Combine
(Sarme_Lane, A), B, 1), =Holds (On_Normal_Lane, B, 1), Holds
(Is_Overtaking, B, 1)

Same_Lane has nat the expeded meaning that both vehicles are
entirely on the same lane; it is stisfied as ©onas at least part of
the vehiclesislocated onthe same lane — thisisthe important fad
to tradk anomalies—. According to the next sentence, at state 1,
vehicle A drove fairly dowly, and thiswas nat the cae of B.

Holds (Drive Fairly_Sow,A,1), =Holds (Drive Fairly Sow,B,1)

Thetext then presents a state 2, where A stopped, B did na stop,
and there was a shock between A and B:

Holds (Stop, A, 2), =Holds (Sop, B, 2),
Holds (Combine (Shak, A), B, 2)

We have arule that says that every vehicle must be on its nor-
mal lane, except if it is overtaking:

= Holds (Stop, A, t) : Must (On_Normal_Lane, A, t) [=Holds
(Is_Overtaking, A, t)].

This default is blocked for B at state 1, sincethe author provides
the necessry information, but it works for A at state O and yields
Must (On_Normal_Lane, A, 0). The default given in 843.1. uses
this fad to conclude: Holds (On_Normal_Lane, A, 1). No anomaly
is deteded for the moment. But ancther rule tells that when two
vehicles dare the same lane and in oppaite ways, they must stop:

Holds (Combine (Obstacle, X), Y, t) [JHolds (Combine
(Same_Lane, X), Y, t) [7-Holds (Combine (Sane_Way, X), Y, t) -
Must (Stop, X, t) Must (Stop, Y, t),

3 Actually, the text mentions the « beginning » of the turn; thisis akind of
rhetoricd figure, and we neglect it.



where Obstacle is defined in a rather extensive way: if two ve-
hicles crashed at state t, the default assumption is that they were
obstadesfor ead other at state t-1. Thisis expressed by:

Holds (Combine (Shock,X), Y, t) : Holds (Combine (Obstacle, X),
Y, t-1) [Vehicle (Y)]

We now get: Must (Sop, A, 1) and Must (Stop, B, 1). As we
have Holds (Stop, A, 2) and —Holds (Stop, B, 2), we know that
contrary to B, A complied with his duty. We have nealy all we
ned to find the anomaly, in the sense of 84.3.2. Whether it is a
basic or a derived ore depends on what B is Able To do. The
definition o Able_To (84.3.3.), instantiated with F = Stop X = B,
t = 1, shows that the axswer depends on the existence of an adion
Act, available for B, and such that Stop is patentially caused by it.
We do have Pcb (Stop, Brake), so the question is whether or not
Brake is avail able for B. The precondtion for Brake at t to reah
Sop a t+l is that the aent drives fairly dowly, i.e
Precond_Action (Stop, Drive_Fairly_Sow). The secmond case of
unavail ability of 84.3.3. has dl its premises stisfied, thus derives
that Brake is not available for B at state 1 (in the speda sense
given here, that is: Brake will not achieve Stop wheress it is the
adion known to read this goal). The uniquenesshypothesis (§4.2.)
alows using the last formula of §4.3.3. to conclude -Able_To (B,
Sop, 1), and by 4.3.2., we get the answer: Derived_Anomaly.

The basic anomaly remains to be found and it will be found ly
abduction. The last rule of 85 with F= Sop, X=B, t=1, P=
Drive Fairly_Sow concludes: Must (Drive_Fairly_Sow, B, 0).

We know that Pcb (Brake, Drive_Fairly_Sow). Noticethat it is
not a violation o the uniqueness hypaothesis: depending on the
situation, the outcome of the adion Brake can be aslow down or a
stop, but either one of these goalsisreaded by only one adion.

The default in 843.3. gives Available (Brake, Drive Fairly
Sow, B, 0) whence Able To (Drive_Fairly_Sow, B, 0). The first
rule of 84.3.2. derives Anomaly and the reasoning stops.

To sum up, the basic anomaly, i.e. what the author of this report
suggests as the cause of the acident, isthat, at the beginning of the
episode, vehicle B could brake and dd na so. This is the reason
why, in state 1, B could na stop, causing the acédent in state 2.

7. CONCLUSION and PERSPECTIVES

Spacelimitation forbids us to present the achitedure of the system
in progressof implementation, and a detailed status of ead of its
modues. We ae, as it were, digging a galery from both ends:
from the linguistic end, where we have aapted an existing tagger
for French, and written a spedal-purpose parser, and from the logi-
cd end, where we have defined, above the kernel, two more layers:
layer 2 copes with priorities, visibility, lanes, obstades, various
causes of lossof control; layer 3 deds with pasitions of vehiclesto
derive predicaes of layer 2. We have dso designed a set of around
50 predicae names that constitutes the language where the two
ends of the gall ery shoud med.

We have analyzed manually 60 reports of our corpus and de-
signed around 100rules alowing to find the anomaly that human
readers take @ the reported cause of the acédent. This result is not
meaningful yet, because the rules were aafted after examination o
the arpus;, we will shortly collead many more reports from insur-
ance @mpanies to chedk on a wider corpus whether this result
remains valid.

Except for “time dil atation”, i.e. the fad that during the reason -
ing, we have to insert states between those that result from the
linguistic enalysis of the text, the example presented in 86 shows

more or lessevery difficulty encourtered. The result of the parser
inevitably comes with spurious analyses, but we ae fairly corfi-
dent that most of them will merge into the same logicd form after a
coupe of inferences. Crude filters are being tested, in order to
eliminate the parts of the report that are purely argumentative. The
automatic identification d states, from linguistic (e.g. grammaticd
tenses [9], conjunctions) and extra-linguistic dues will be the next
truly difficult issueto tadkle.

An inference angine will hande the fads and rules. Although
non-monaonic reasoning systems belong to intradable complexity
classs, we ae rather optimistic, as we have found on a sample of
reports including head-on crashes, refusals to yield way at an inter-
sedion, pulling out while being overtaken, etc., that a rather small
amount of distinct state-independent predicaions was enough to
cover a variety of cases. Moreover, the size of the Herbrand uri-
verse for this kind d applications is snall; the predicaes being
stratified in layers, it shoud be eay to determine ealy in the proc-
ess which defaults are blocked. Finally, completeness is not a
crucial isae, since the reasoning is dopped as oon as the literal
Anomaly is derived; simple heuristics [7] might therefore speed up
the process whil e kegping areasonable rate of success

If adomain of the size of the one explored here can be handled
by a few hundeds rules, this opens the posshility to expressthe
norms, and thus to enrich the power of inference angines, for many
other domains of our everyday life.
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