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Abstract

We derive a mathematical model for eddy currents in two dimensional geometries
where the conductors are thin domains. We assume that the current flows in the x3-
direction and the inductors are domains with small diameters of order O(ǫ). The model
is derived by taking the limit ǫ → 0. A convergence rate of O(ǫα) with 0 < α < 1/2 in
the L2–norm is shown as well as weak convergence in the W 1,p spaces for 1 < p < 2.

1 Introduction

Mathematical modelling of eddy current problems often involves multiple conductors with
various sizes. Typically, electrotechnical devices involve thin conductors as wires or coils as
well as massive conductors. Numerical solution of such problems may then encounter serious
difficulties in the choice of the domain meshes which can in particular lead to ill conditioning.
Asymptotic analysis of these problems appears as an efficient tool to obtain limit problems
that are simpler to solve and better conditioned.
We consider, in the present work, a two-dimensional eddy current problem, formulated in
terms of a scalar potential in the whole plane. The electrically conducting domain consists
in a “thick” conductor Ω and two “thin” domains assumed to carry the same current with
opposite sign. In terms of the current conservation principle, this means that these inductors
are assumed to be virtually linked at the infinity. The derivation of the model for thin
inductors is obtained by assuming that these domains are of small diameters of order ǫ≪ 1.
We show that taking the limit when these diameters tend to zero leads to a singular elliptic
problem, the singularity being due to the presence of Dirac measures.
The outline of the paper is the following: We start in Section 2 by deriving the considered eddy
current model from a 3-D model. We emphasize on a careful modelling that takes into account
the total current flowing in the inductors. In Section 3, we state the main convergence result
and prove it through some preliminary lemmas. Section 4 is devoted to further convergence
results in W 1,p spaces.

2 Statement of the problem

Let Λ = Ω × R denote a cylindrical conductor where Ω is a domain in R2 with a smooth
boundary Γ. We assume that the domain Ω is the union of three connected domains Ωk with

1



respective boundaries Γk, k = 0, 1, 2 (see Figure 1), and that the closures of the domains Ωk

are disjointed. We shall also deal with the complement Ω′ = R2 \ Ω of Ω.
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Figure 1: A typical configuration of the conductors

In the following we shall make use of generic constants that do not depend on the small
parameter ǫ. Time harmonic eddy currents equations read:

curlH − J = 0 in Λ,

curlH = 0 in R
3 \ Λ,

iωµH + curl (σ−1
J) = 0 in Λ,

div (µH) = 0 in R
3.

(2.1)

Here the vector fields H and J denote respectively the magnetic field and the current density.
Moreover, σ and µ are respectively the electric conductivity and the magnetic permeability.
We assume for the sake of simplicity that σ and µ are positive constants. In order to take
advantage of the geometry of Λ, we seek unknowns in the form:

H(x1, x2, x3) = H1(x1, x2)e1 +H2(x1, x2), 0)e2,

J(x1, x2, x3) = J(x1, x2)e3,

where (e1, e2, e3) is the canonical basis of R3. Equations (2.1) become then

curlH − J = 0 in Ω, (2.2)

curlH = 0 in Ω′, (2.3)

iωµH + curl (σ−1J) = 0 in Ω, (2.4)

div H = 0 in R
2. (2.5)

where curl and curl denote respectively the scalar and vector curl operator in 2-D, i.e.

curl u :=
∂H2

∂x1
−
∂H1

∂x2
, curlϕ =

∂ϕ

∂x2
e1 −

∂ϕ

∂x1
e2.

Our aim now is to derive a simple model for eddy currents. Using Equation (2.5), we deduce
the existence of a scalar potential u : R2 → C such that

µH = curl u in R
2. (2.6)

Equation (2.2) yields
curl curl u = µJ in Ω,

curl curl u = 0 in Ω′,

2



or equivalently,
−∆u = µJ in Ω,

∆u = 0 in Ω′.
(2.7)

On the other hand we obtain from (2.4) and (2.6),

curl (iωu+ σ−1J) = 0.

Whence
iωσu+ J = σCk in Ωk, (2.8)

where Ck are complex constants, for k = 0, 1, 2. Replacing this in (2.7), we obtain

− ∆u+ iωµσu = µσCk in Ωk, k = 0, 1, 2,

∆u = 0 in Ω′.

Finally, various considerations dealing with interface conditions and the behaviour at the
infinity lead to the problem:

− ∆u+ iωµσu = µσCk in Ωk, k = 0, 1, 2,

∆u = 0 in Ω′,

[u] = 0 on Γ,
[∂u
∂n

]
= 0 on Γ,

u(x) = α+O(|x|−1) as |x| → ∞.

(2.9)

Here above, [ · ] denotes the jump of a function across the boundary Γ, this jump being equal
to the external trace minus the internal one. It remains to determine the constants Ck in
function of problem data. For this end, it turns out to be realistic to prescribe the total
current in each conductor. We then assume that this quantity, denoted by I is given as

∫

Ω1

J dx = −

∫

Ω2

J dx = I. (2.10)

Note that the first identity is imposed in order to enforce a current conservation principle.
For the same reason, we impose ∫

Ω0

J dx = 0.

Making use of these conditions, we obtain for the constants Ck, the values

C0 = iωũ1,

C1 = iωũ1 +
I

σ |Ω1|
,

C2 = iωũ2 −
I

σ |Ω2|
,

where |Ωk| stands for the measure of Ωk and ũk is the average of u on Ωk, i.e.

ũk :=
1

|Ωk|

∫

Ωk

u dx.

3



We obtain the problem:

− ∆u + iωµσ(u− ũ0) = 0 in Ω0,

− ∆u + iωµσ(u− ũ1) =
µI

|Ω1|
in Ω1,

− ∆u + iωµσ(u− ũ2) = −
µI

|Ω2|
in Ω2,

∆u = 0 in Ω′,

[u] = 0 on Γ,
[∂u
∂n

]
= 0 on Γ,

u(x) = α+O(|x|−1) as |x| → ∞.

(2.11)

Note that, owing to (2.10), the solution of Problem (2.11) is known up to an additive constant.
For this reason, we impose the condition

ũ0 = 0, (2.12)

which enforces a value for the constant α.
Let us prove that Problem (2.11)–(2.12) has a unique solution. We define, for this end, the
Beppo-Levi space (see [9]),

W 1(R2) :=
{
v; ρ v ∈ L2(R2), ∇v ∈ L2(R2)2

}
,

where ρ is the weight function given by

ρ(x) =
1

(1 + |x|) log(2 + |x|)
. (2.13)

We furthermore define the space

V := {v ∈ W 1(R2); ṽ0 = 0}.

It is well known (cf. [10]) that the semi-norm

|v|W 1(R2) :=
(∫

R2

|∇v|2 dx
) 1

2

is a norm on the space V , equivalent to the one induced by W 1(R2), i.e. we have in particular

‖ρ v‖L2(R2) ≤ C |v|W 1(R2) ∀ v ∈ V. (2.14)

Here and in the following |∇v| stands for the function

|∇v| =
( ∂v
∂x1

∂v

∂x1
+

∂v

∂x2

∂v

∂x2

) 1
2

.

A variational formulation of (2.11) consists in seeking a function u ∈ V such that

∫

R2

∇u · ∇v dx + iβ

2∑

k=0

∫

Ωk

(u− ũk)v dx = µI(ṽ1 − ṽ2) ∀ v ∈ V, (2.15)

where β = ωµσ and v is the complex conjugate of v.

4



Theorem 2.1. Problem (2.15) has a unique solution.

Proof. Let us define, for u, v ∈ V , the sesquilinear and antilinear forms,

a(u, v) :=

∫

R2

∇u · ∇v dx+ iβ

2∑

k=0

∫

Ωk

(u− ũk)v dx,

L(v) := µI(ṽ1 − ṽ2).

The forms a and L are obviously continuous. In addition, since

∫

Ωk

(u− ũk)v dx =

∫

Ωk

(u− ũk)(v − ṽk) dx,

then we have

a(v, v) =

∫

R2

|∇v|2 dx+ iβ

2∑

k=0

∫

Ωk

(v − ṽk)v dx

=

∫

R2

|∇v|2 dx+ iβ

2∑

k=0

∫

Ωk

|v − ṽk|
2 dx.

Then

Re (a(v, v)) =

∫

R2

|∇v|2 dx.

We deduce then that a is coercive on V and the Lax-Milgram theorem gives the existence
and uniqueness of a solution u ∈ V to (2.15).

We now consider that the domains Ω1 and Ω2 are thin in the following sense: we define the
domain Ωǫ

k := Ωk by

Ωǫ
k = zk + ǫ Ω̂k k = 1, 2,

where ǫ is a small positive number, zk ∈ R2, and Ω̂k is a smooth domain in R2. We assume
furthermore that the domains Ω

ǫ

k and Ω0 are disjointed for ǫ small enough. Furthermore, we
denote in the following by Ωǫ the union Ω0∪Ωǫ

1∪Ωǫ
2. Finally, let us mention that, throughout

this paper, C,C1, C2, . . . will stand for generic constants that do not depend on ǫ. Our aim
is to study the asymptotic behavior, as ǫ→ 0, of the solution u to Problem (2.11).

3 The limit problem

Let us first, for clarity, rewrite Problem (2.11) with the parameter ǫ. Denoting by χ0 and χǫ
k

the characteristic functions of Ω0 and Ωǫ
k, respectively, we have

− ∆uǫ + iβ

2∑

k=1

χǫ
k (uǫ − ũǫ

k) + iβχ0 u
ǫ = µI

( χǫ
1

|Ωǫ
1|

−
χǫ

2

|Ωǫ
2|

)
in R

2,

uǫ(x) = α+O(|x|−1) as |x| → ∞.

(3.1)

Let us recall that the condition (2.12) fixes the value of α.
We next define the weighted space that will be used for convergence results:

L2
ρ(R

2) = {v; ρv ∈ L2(R2)}.
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We also define a problem that will be defined as the limit problem. This one is the following:

− ∆u+ iβχ0 u = µI(δz1 − δz2) in R
2,

u(x) = α+O(|x|−1) as |x| → ∞,
(3.2)

where δzk
is the Dirac measure concentrated at zk. For Problem (3.2), we need a uniqueness

result. Let us define for this the notion of weak solution. We shall say in the sequel that u is
a weak L2

ρ–solution of Problem (3.2) if u ∈ L2
ρ(R

2) and if we have

∫

R2

u (−∆ϕ+ iβχ0 ϕ) dx = µI (ϕ(z1) − ϕ(z2)) ∀ ϕ ∈ D(R2), (3.3)

where D(R2) is the space of indefinitely differentiable functions with compact support in R2.

Lemma 3.1. Problem (3.2) has at most one weak L2
ρ–solution.

Proof. Let u1 and u2 denote two weak L2
ρ–solutions of (3.3). The difference u = u1 − u2

satisfies then ∫

R2

u (−∆ϕ+ iβχ0 ϕ) dx = 0 ∀ ϕ ∈ D(R2).

This relation is still true for all functions ϕ ∈ L2
ρ(R

2) with

∫

R2

ρ2uψ dx = 0 ∀ ψ ∈ L2
ρ(R

2),

where
−∆ϕ+ iβχ0 ϕ = ρ2ψ in R

2. (3.4)

Note that Equation (3.4) admits a unique solution in W 1(R2). Choosing ψ = u, we deduce

∫

R2

ρ2 |u|2 dx = 0.

This implies u = 0 and uniqueness follows.

We now state the first convergence result.

Theorem 3.1. The sequence (uǫ) converges in L2
ρ(R

2), when ǫ → 0, to the unique solution
of Problem (3.2).

The remaining of this section is devoted to the proof of Theorem 3.1. It is clear that the
structure of the right-hand side in Problem (3.1) suggests that the convergence cannot be
obtained in the space W 1(R2). To obtain a weaker result we resort to a duality technique
due to Lions-Magenes ([6], p. 177) and Damlamian-Ta Tsien Li [3].
Let, in the following, B denote a ball that contains the domains Ω0, Ω

ǫ

1 and Ω
ǫ

2 for all ǫ≪ 1.
Multiplying Equation (3.1) by a test function ϕ ∈ V ∩H2

loc(R
2), and using the Green formula,

we obtain

−

∫

R2

uǫ∆ϕ dx+ iβ

2∑

k=1

∫

Ωǫ
k

(uǫ − ũǫ
k)ϕdx+ iβ

∫

Ω0

uǫϕdx = µI(ϕ̃1 − ϕ̃2).

Since ∫

Ωǫ
k

(uǫ − ũǫ
k)ϕdx =

∫

Ωǫ
k

uǫ(ϕ− ϕ̃
ǫ

k) dx =

∫

Ωǫ
k

(uǫ − ũǫ
k) (ϕ− ϕ̃

ǫ

k) dx, (3.5)

6



we deduce that

∫

R2

uǫ
(
− ∆ϕ+ iβ

2∑

k=1

χǫ
k(ϕ− ϕ̃

ǫ

k) + iβχ0ϕ
)
dx = µI(ϕ̃1 − ϕ̃2). (3.6)

Let ψ denote a function in L2
ρ(R

2). Identity (3.6) can also be written as

∫

R2

ρ2uǫψ dx = µI(ϕ̃
ǫ

1 − ϕ̃
ǫ

2), (3.7)

where ϕǫ is the solution in V ∩H2
loc(R

2) of

−∆ϕǫ + iβ

2∑

k=1

χǫ
k(ϕǫ − ϕ̃ǫ

k) + iβχ0ϕ
ǫ = ρ2ψ in R

2. (3.8)

Lemma 3.2. We have the estimates:

‖∇ϕǫ‖L2(R2)2 + ‖ϕǫ‖L2(Ω0) + ǫ−1
2∑

k=1

‖ϕǫ − ϕ̃ǫ
k‖L2(Ωǫ

k) ≤ C ‖ρψ‖L2(R2). (3.9)

‖ϕǫ‖H2(B) ≤ C ‖ρψ‖L2(R2), (3.10)

for each ball B of R2 containing Ωǫ.

Proof. By the Green’s formula, we have from (3.8) and Identity (3.5)

∫

R2

|∇ϕǫ|2 dx+ iβ

2∑

k=1

∫

Ωǫ
k

|ϕǫ − ϕ̃ǫ
k|

2 dx+ iβ

∫

Ω0

|ϕǫ|2 dx =

∫

R2

ρ2ψ ϕǫ dx.

From this and (2.14) we deduce that
∫

R2

|∇ϕǫ|2 dx ≤ ‖ρψ‖L2(R2) ‖ρϕ
ǫ‖L2(R2) ≤ C ‖ρψ‖L2(R2) ‖∇ϕ

ǫ‖L2(R2)2 ,

and then ( ∫

R2

|∇ϕǫ|2 dx
) 1

2

≤ C ‖ρψ‖L2(R2). (3.11)

Therefore, the sequence (ϕǫ) is bounded in W 1(R2). The L2-error estimate is obtained by
using the Poincaré-Wirtinger inequality (see [1], p. 194). We have indeed by using (3.11), and
since the diameter of Ωǫ

k is an O(ǫ),

‖ϕǫ‖L2(Ω0) ≤ C1 ‖∇ϕ
ǫ‖L2(R2)2 ≤ C2 ‖ρψ‖L2(R2),

‖ϕǫ − ϕ̃ǫ
k‖L2(Ωǫ

k) ≤ C3ǫ ‖∇ϕ
ǫ‖L2(R2)2 ≤ C4ǫ ‖ρψ‖L2(R2), k = 1, 2.

In order to prove the H2–estimate, we use standard regularity results for elliptic equations
(See [5], p. 183 for instance). We obtain for any ball B of R2 containing Ωǫ, and any regular
domain D containing B,

‖ϕǫ‖H2(B) ≤ C1

(
‖ϕǫ‖H1(D) + ‖ρ2ψ‖L2(D) + ‖ϕǫ‖L2(Ω0) +

2∑

k=1

‖ϕǫ − ϕ̃ǫ
k‖L2(Ωǫ

k)

)

≤ C2 ‖ρψ‖L2(R2).

Note that the constant C2 depends on the domain B but does not depend on ǫ.

7



The estimates obtained in Lemma 3.2 enable concluding that a subsequence of (ϕǫ) converges
toward ϕ weakly in H2(B) for any ball B of R2. We now characterize the limit function.

Lemma 3.3. The sequence (ϕǫ) converges, when ǫ → 0, in W 1(R2) to the unique solution
of the equation:

−∆ϕ+ iβχ0ϕ = ρ2ψ in R
2, (3.12)

Moreover, we have the error estimates

2∑

k=1

‖ϕǫ − ϕ‖L2(Ωǫ
k) + ‖ϕǫ − ϕ‖H2(B) + ‖∇(ϕǫ − ϕ)‖L2(R2)2 ≤ Cǫ ‖ρψ‖L2(R2), (3.13)

for any ball B of R2 containing Ωǫ.

Proof. Let φǫ = ϕǫ − ϕ. Then φǫ ∈ V ∩H2
loc(R

2) and satisfies the variational equation

∫

R2

∇φǫ · ∇v dx + iβ

∫

Ω0

φǫv dx+ iβ
2∑

k=1

∫

Ωǫ
k

(ϕǫ − ϕ̃ǫ
k)v dx = 0 ∀ v ∈ V.

Choosing v = φǫ, we obtain

∫

R2

|∇φǫ|2 dx+ iβ

∫

Ω0

|φǫ|2 dx = −iβ
2∑

k=1

∫

Ωǫ
k

(ϕǫ − ϕ̃ǫ
k)φ

ǫ
dx.

Then using the estimates (3.9), we have

∫

R2

|∇φǫ|2 dx +

∫

Ω0

|φǫ|2 dx ≤ β
2∑

k=1

(∫

Ωǫ
k

|ϕǫ − ϕ̃ǫ
k|

2 dx
) 1

2
(∫

Ωǫ
k

|φǫ|2 dx
) 1

2

≤ C1ǫ ‖ρψ‖L2(R2) ‖∇φ
ǫ‖L2(R2)2 .

Therefore, we have the bounds

‖∇φǫ‖L2(R2)2 ≤ C1ǫ ‖ρψ‖L2(R2), (3.14)

‖φǫ‖L2(Ω0) ≤ C2 ‖∇φ
ǫ‖L2(R2)2 ≤ C3 ǫ ‖ρψ‖L2(R2). (3.15)

The sequence (ϕǫ) converges then to ϕ strongly in W 1(R2), which yields the limit problem
(3.12).
To prove the L2-error estimate, we have from (2.14) and (3.14), for k = 1, 2,

‖φǫ‖L2(Ωǫ
k) ≤ C1 ‖ρφ

ǫ‖L2(Ωǫ
k) ≤ C1 ‖ρφ

ǫ‖L2(R2) ≤ C2 ‖∇φ
ǫ‖L2(R2) ≤ C3ǫ ‖ρψ‖L2(R2).

The H2–estimate is handled in the following way: By subtracting (3.8) from (3.12), we obtain

−∆φǫ = −iβχ0φ
ǫ − iβ

2∑

k=1

χǫ
k(ϕǫ − ϕ̃ǫ

k) in R
2.

Using (3.9), (3.15) and classical regularity results for elliptic problems (See [5], p. 183 for
instance), we get

‖φǫ‖H2(B) ≤ C1

(
‖φǫ‖H1(D) + ‖φǫ‖L2(Ω0) +

2∑

k=1

‖ϕǫ − ϕ̃ǫ
k‖L2(Ωǫ

k)

)

≤ C2

(
ǫ ‖∇φǫ‖L2(R2)2 + ‖φǫ‖L2(Ω0) + ǫ ‖ρψ‖L2(R2)2

)

≤ C3 ǫ ‖ρψ‖L2(R2),
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for all compact subsets B of R2 and all regular domains D that contain B. Note that the
constant C depends actually on B.

We are now ready to obtain the first convergence result for uǫ.

Theorem 3.2. There exists a constant C, independent of ǫ, such that

‖ρ(u− uǫ)‖L2(R2) ≤ Cǫα/2 0 < α < 1,

Proof. Consider the problem (3.7) and the following one, for ψ ∈ L2
ρ(R

2),

∫

R2

ρ2uψ dx = µI (ϕ(z1) − ϕ(z2)). (3.16)

where ϕ is the solution of Problem (3.12). Then

∫

R2

ρ2(uǫ − u)ψ dx = µI
( 1

|Ωǫ
1|

∫

Ωǫ
1

ϕǫ dx− ϕ(z1)
)
− µI

( 1

|Ωǫ
2|

∫

Ωǫ
2

ϕǫ dx− ϕ(z2)
)
. (3.17)

Since ϕ ∈ H2(B) ⊂ C0,α(B) for all α with 0 < α < 1 (see [1] for instance) and all compact
subsets B of R2, we have for k = 1, 2,

∣∣∣
1

|Ωǫ
k|

∫

Ωǫ
k

ϕ(x) dx − ϕ(zk)
∣∣∣ ≤

1

|Ωǫ
k|

∫

Ωǫ
k

|ϕ(x) − ϕ(zk)| dx

≤ C
1

|Ωǫ
k|

∫

Ωǫ
k

|x− zk|
α dx

≤ C ǫα. (3.18)

Furthermore, we have from (3.13), the imbedding H2(B) ⊂ C0(B) and the mean value
theorem,

1

|Ωǫ
k|

∣∣∣
∫

Ωǫ
k

(ϕǫ − ϕ) dx
∣∣∣ ≤ C1 ‖ϕ

ǫ − ϕ‖C0(B)

≤ C2 ‖ϕ
ǫ − ϕ‖H2(B)

≤ C3ǫ ‖ρψ‖L2(R2). (3.19)

Recalling (3.17) and using (3.18), (3.19), we get

lim
ǫ→0

∫

R2

(uǫ − u) ρ2ψ dx = 0 ∀ ψ ∈ L2
ρ(R

2).

The sequence (uǫ) converges then weakly to u in L2
ρ(R

2). To obtain the strong convergence
of uǫ, we choose ψ = (uǫ − u) ∈ L2

ρ(R
2) in (3.17). We have by using again (3.18), (3.19),

‖ρ(uǫ − u)‖2
L2(R2) ≤ µI

2∑

k=1

∣∣∣
∫

Ωǫ
k

(ϕǫ − ϕ) dx
∣∣∣ + µI

2∑

k=1

∣∣∣∣∣
1

|Ωǫ
k|

∫

Ωǫ
k

ϕdx − ϕ(zk)

∣∣∣∣∣

≤ C4 ǫ+ C5 ǫ
α ≤ C ǫα.
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4 Sharper convergence results

The convergence result obtained in the previous section can be improved, as we shall show
hereafter, by using the technique of renormalized solutions for elliptic equations following
Boccardo – Gallouët [2] and Murat [7]. To simplify the settings, we shall sometimes resort to
writing Problem (3.1) as a system of two coupled equations involving real valued unknowns.
Let us denote, for a complex number z, by zR and zI its real and imaginary parts respectively.
Equation (3.1) can be written:

− ∆uǫ
R − β

2∑

k=1

χǫ
k (uǫ

I − ũǫ
k,I) − βχ0 u

ǫ
I = µI

( χǫ
1

|Ωǫ
1|

−
χǫ

2

|Ωǫ
2|

)
in R

2, (4.1)

− ∆uǫ
I + β

2∑

k=1

χǫ
k (uǫ

R − ũǫ
k,R) + βχ0 u

ǫ
R = 0 in R

2, (4.2)

uǫ
R(x) = αR +O(|x|−1) as |x| → ∞, (4.3)

uǫ
I(x) = αI +O(|x|−1) as |x| → ∞. (4.4)

We start by deriving L2 and L1 uniform estimates.

Lemma 4.1. We have the estimates:

‖ρ uǫ‖L2(R2) + ǫ−
1
2

2∑

k=1

‖uǫ − ũǫ
k‖L2(Ωǫ

k) ≤ C, (4.5)

‖ρ2uǫ‖L1(R2) + ǫ−
3
2

2∑

k=1

‖uǫ − ũǫ
k‖L1(Ωǫ

k) ≤ C. (4.6)

Proof. The estimate on ‖ρ uǫ‖L2(R2) is obtained from Theorem 3.2 and from the fact that
ρ u ∈ L2(R2). Next, The Hölder’s inequality gives

∫

R2

ρ2|uǫ| dx ≤

(∫

R2

|ρ uǫ|2 dx

) 1
2
(∫

R2

ρ2 dx

) 1
2

≤ C2

(∫

R2

|ρ uǫ|2 dx

) 1
2

.

Using a variational formulation of Problem (3.1), we then obtain the bound

∫

R2

|∇uǫ|2 dx ≤ C1

2∑

k=1

1

|Ωǫ
k|
‖uǫ‖L1(Ωǫ

k) ≤ C2 ǫ
−1.

The Poincaré-Wirtinger inequality yields for k = 1, 2,
∫

Ωǫ
k

|uǫ − ũǫ
k|

2 dx ≤ C1 ǫ
2

∫

R2

|∇uǫ|2 dx ≤ C2 ǫ.

Again, the Cauchy-Schwarz inequality gives the L1–estimate:

∫

Ωǫ
k

|uǫ − ũǫ
k| dx ≤ |Ωǫ

k|
1
2

( ∫

Ωǫ
k

|uǫ − ũǫ
k|

2 dx
) 1

2

≤ C ǫ
3
2 .

We now need a technical result before proving a convergence result. The result, which is a
variant of the Poincaré–Wirtinger inequality, can be established by an analogous proof.
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Lemma 4.2. There exists a constant C such that

‖v‖Lp(B) ≤ C ‖∇v‖Lp(B)2 ∀ v ∈ W 1,p(B) with

∫

Ω0

v dx = 0,

where 1 ≤ p <∞ and B is any compact subset of R2 that contains Ωǫ.

Theorem 4.1. The sequence (uǫ) converges weakly in W 1,p(B), 1 ≤ p < 2, toward the
unique solution u of Problem (3.2) in each ball B containing Ω

ǫ
.

Proof. For an integer m, we define a subset Bǫ
m of B by

Bǫ
m = {x ∈ B; 2m ≤ max{|uǫ

R(x)|, |uǫ
I(x)|} ≤ 2m+1}.

Let ψm stand for the truncature function defined by

ψm(s) :=






0 if 0 ≤ s ≤ 2m,

s− 2m if 2m ≤ s ≤ 2m+1,

2m if 2m+1 ≤ s,

extended to R by oddity. Multiplying Equation (4.1) by ψm(uǫ
R) and Equation (4.2) by

ψm(uǫ
I), integrating on R

2, using the Green formula and summing up, we get

∫

R2

ψ′
m(uǫ

R) |∇uǫ
R|

2 dx+

∫

R2

ψ′
m(uǫ

I) |∇u
ǫ
I |

2 dx− β

∫

R2

χ0u
ǫ
Iψm(uǫ

R) dx

+ β

∫

R2

χ0u
ǫ
Rψm(uǫ

I) dx− β

2∑

k=1

∫

R2

χǫ
k(uǫ

I − ũǫ
I,k)ψm(uǫ

R) dx

+ β

2∑

k=1

∫

R2

χǫ
k(uǫ

R − ũǫ
R,k)ψm(uǫ

I) dx =

∫

R2

rǫψm(uǫ
R) dx, (4.7)

where

rǫ = µI
( χǫ

1

|Ωǫ
1|

−
χǫ

2

|Ωǫ
2|

)
.

Note that we have
‖rǫ‖L1(R2) ≤ C. (4.8)

Since ψ′
m ≥ 0 and |ψm(uǫ)| ≤ 2m, we have by using (4.6),

1

2m

∫

Bǫ
m

|∇uǫ|2 dx ≤ C, (4.9)

where C is independent of ǫ and m. Let p denote a real number with 1 < p < 2. We have
from the Hölder inequality

∫

Bǫ
m

|∇uǫ|p dx ≤
(∫

Bǫ
m

|∇uǫ|2 dx
) p

2

|Bǫ
m|1−

p
2 . (4.10)

Since |uǫ| ≥ 2m on Bǫ
m, we have by using the Hölder inequality,

|Bǫ
m| ≤

1

2m

∫

Bǫ
m

|uǫ| dx ≤
1

2m

(∫

Bǫ
m

|uǫ|s dx
) 1

s

|Bǫ
m|

1
s′

11



for all s, s′ ≥ 1 with 1/s+ 1/s′ = 1. Hence

|Bǫ
m| ≤

1

2ms

(∫

Bǫ
m

|uǫ|s dx
)
.

Using (4.10) and (4.9) yields then
∫

Bǫ
m

|∇uǫ|p dx ≤
C

2m(s(1−p/2)−p/2)

( ∫

Bǫ
m

|uǫ|s dx
)1− p

2

.

We choose here s > p/(2 − p) so that s(1 − p/2) − p/2 > 0. Therefore

∑

m≥0

∫

Bǫ
m

|∇uǫ|p dx ≤ C
∑

m≥0

1

2m(s(1−p/2)−p/2)

( ∫

Bǫ
m

|uǫ|s dx
)1− p

2

. (4.11)

From the discrete Hölder inequality

∑

m

ambm ≤
(∑

m

ar
m

) 1
r
(∑

m

br
′

m

) 1
r′

for r, r′ ≥ 1,
1

r
+

1

r′
= 1,

Inequality (4.11) yields

∑

m≥0

∫

Bǫ
m

|∇uǫ|p dx ≤ C
( ∑

m≥0

1

2mr(s(1−p/2)−p/2)

) 1
r
( ∑

m≥0

(∫

Bǫ
m

|uǫ|s dx
)r′(1−p/2)) 1

r′

.

Choosing r′ = 2/(2 − p), we obtain

∑

m≥0

∫

Bǫ
m

|∇uǫ|p dx ≤ C
( ∑

m≥0

∫

Bǫ
m

|uǫ|s dx
)1− p

2

. (4.12)

We next define
B̃ǫ = {x ∈ B; 0 ≤ max {|uǫ

R(x)|, |uǫ
I(x)|} ≤ 1},

which clearly implies

B = B̃ǫ ∪ (
⋃

m≥0

Bǫ
m).

In order to estimate uǫ in W 1,p(B̃ǫ), we define the truncation function

T (s) =






1 if s ≥ 1

s if − 1 ≤ s ≤ 1

−1 if s ≤ −1.

Multiplying Equation (4.1) by T (uǫ
R), Equation (4.2) by T (uǫ

I), integrating on R2, using the
Green formula and summing up, we obtain

∫

R2

T ′(uǫ
R)|∇uǫ

R|
2 dx+

∫

R2

T ′(uǫ
I)|∇u

ǫ
I |

2 dx− β

∫

R2

χ0u
ǫ
I T (uǫ

R) dx

+ β

∫

R2

χ0u
ǫ
R T (uǫ

I) dx− β

2∑

k=1

∫

R2

χǫ
k(uǫ

I − ũǫ
I,k)T (uǫ

R) dx

+ β

2∑

k=1

∫

R2

χǫ
k(uǫ

R − ũǫ
R,k)T (uǫ

I) dx =

∫

R2

rǫ T (uǫ
R) dx.
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Using (4.6), the bound (4.8) and the properties |T (s)| ≤ 1, T ′ ≥ 0, we deduce

∫

B̃ǫ

|∇uǫ
R|

2 dx+

∫

B̃ǫ

|∇uǫ
I |

2 dx ≤ ‖rǫ‖L1(R2) + β
(
‖uǫ

I‖L1(Ω0) + ‖uǫ
R‖L1(Ω0)

+
2∑

k=1

‖uǫ
R − ũǫ

R,k‖L1(Ωǫ
k) +

2∑

k=1

‖uǫ
I − ũǫ

I,k‖L1(Ωǫ
k)

)

≤ C.

This yields ∫

B̃ǫ

|∇uǫ|p dx ≤ C. (4.13)

Combining (4.13) and (4.12), we have then in particular

∫

B

|∇uǫ|p dx ≤ C

(
1 +

( ∫

B

|uǫ|s dx
)1− p

2

)
for s >

p

2 − p
. (4.14)

We use successively the Gagliardo-Nirenberg (see Friedman [4], p. 27) and Lemma 4.2 to get

(∫

B

|uǫ|s dx
) 1

s

≤ C
(∫

B

|∇uǫ|p dx
) λ

p
(∫

B

|uǫ| dx
)1−λ

,

with 0 ≤ λ ≤ 1 and such that

λ =
1 − 1

s
3
2 − 1

p

.

Using (4.6) yields ∫

B

|uǫ|s dx ≤ C
(∫

B

|∇uǫ|p
)λs

p

,

where C = C(B). Whence, from (4.14),

∫

B

|∇uǫ|p dx ≤ C

(
1 +

( ∫

B

|∇uǫ|p dx
)λs(1−p/2)

p

)
, (4.15)

for all s > p/(2 − p) and 0 ≤ λ ≤ 1. Let us choose for s the value (1 + p)/(2 − p) that yields

λs

p

(
1 −

p

2

)
=

2 − p

3p− 2
< 1 for 1 < p < 2.

We then deduce from (4.15) the bound

∫

B

|∇uǫ|p dx ≤ C,

with C = C(B). Therefore, the sequence (uǫ) is bounded in W 1,p(B) for all balls B that
contain Ω

ǫ
. From this, we deduce that a subsequence of (uǫ), still denoted by (uǫ), satisfies

uǫ ⇀ u∗ in W 1,p(B).

From the compactness of the imbedding W 1,p(B) ⊂ Lq(B) for 1 ≤ q < 2p/(2 − p), we have

uǫ → u∗ in Lq(B) for 1 ≤ q <
2p

2 − p
.
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Theorem 3.2 implies u∗ = u. Thus, the subsequence of (uǫ) converges strongly to u in Lq(B).
Let us show that the convergence to the solution of (3.2) takes place in W 1,p(B)–weak for all
bounded balls B of R

2. We have from (3.1) for all ϕ ∈ W 1,p′

(B) extended by zero outside B,
with 1/p+ 1/p′ = 1,

∫

B

∇uǫ · ∇ϕdx+ iβ

2∑

k=1

∫

Ωǫ
k

(uǫ − ũǫ
k)ϕ+ iβ

∫

Ω0

uǫϕdx =
µI

|Ωǫ
1|

∫

Ωǫ
1

ϕdx−
µI

|Ωǫ
2|

∫

Ωǫ
2

ϕdx.

We have ∫

B

∇uǫ · ∇ϕdx→

∫

B

∇u · ∇ϕdx. (4.16)

Next, using (4.5), we have for k = 1, 2,

∣∣
∫

Ωǫ
k

(uǫ − ũǫ
k)ϕdx

∣∣∣ ≤ ‖uǫ − ũǫ
k‖L2(Ωǫ

k) ‖ϕ‖L2(Ωǫ
k) ≤ Cǫ

1
2 ‖ϕ‖L2(Ωǫ

k).

Therefore ∫

Ωǫ
k

(uǫ − ũǫ
k)ϕdx→ 0. (4.17)

For the term involving Ω0, we deduce from Lemma 4.1,
∫

Ω0

uǫ ϕdx→

∫

Ω0

uϕdx. (4.18)

Finally, since p′ > 2, then we have the imbedding of W 1,p′

(B) into C0(B), which implies

µI

|Ωǫ
1|

∫

Ωǫ
1

ϕdx−
µI

|Ωǫ
2|

∫

Ωǫ
2

ϕdx→ µIϕ(z1) − µIϕ(z2). (4.19)

Collecting (4.16)–(4.19), we find for u the equation
∫

B

∇u · ∇ϕ dx+ iβ

∫

Ω0

uϕdx = µI (ϕ(z1) − ϕ(z2)).

This implies that u satisfies the first equation of Problem (3.2) on B. Thanks to Lemma
3.1, the whole sequence (uǫ) converges to u weakly in W 1,p(B) and strongly in Lq(B), for
1 ≤ q ≤ 2p/(2 − p).

Let us conclude by some remarks:

1. It is clear that the analysis carried out in this paper can be easily extended to the case
where the physical properties µ and σ are not constant. We shall however assume, in
this case, that the magnetic permeability is a W 1,∞ function. This is necessary for H2

regularity results.

2. The obtained results are generalizable to an arbitrary number of (“thick” or “thin”)
conductors.

3. In the particular case where no “thick” conductor is present (i.e. Ω0 = ∅), the limit
problem becomes

−∆u = µI(δz1 − δz2) in R
2.

Clearly, the solution of this equation is given by

u(x) =
µI

2π
log

|x− z2|

|x− z1|
, x ∈ R

2.
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