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Abstract. We show how to solve in polynomial time the multicut

and the maximum integral multiflow problems in rings. For the latter

problem we generalize an approach proposed by Sai Anand and Er-

lebach for special cases of the call control problem in ring networks.

Moreover, we give linear-time procedures to solve both problems in

rings with uniform capacities.

keywords. Combinatorial problems, maximum integral multiflow, minimum multicut,

ring networks.

1. Introduction

Let R = (V, E) be a ring, i.e. a connected graph where all vertices have

degree 2, with a positive integral capacity, or weight, ue on each edge e

of E, and let L be a list of K pairs of terminals {sk, tk}, k ∈ {1, . . . , K},

set at the vertices of R. Such structures are encountered for instance in

telecommunications because of the deployment of fiber equipment (SONET:

Synchronous Optical Networks [3, 10]). The multicut problem MCP is to

find a minimum weight set of edges whose removal separates sk from tk

for each pair {sk, tk} of L. Associate a commodity with each pair {sk, tk}:

the maximum integral multiflow problem IMFP consists in maximizing the

sum over all commodities of the integral flow corresponding to a commodity

subject to capacity and flow conservation requirements. For K = 1 the

problems are the classical min cut-max flow problems solvable in polynomial

time but both problems are known to be NP-hard and APX-hard for K ≥ 3,

even in planar graphs [7].
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In an undirected (or bidirectional) ring the flow routed from sk to tk

is splittable into two parts. One part is routed in a clockwise direction

and the other in a counterclockwise direction. In order to separate sk from

tk, the multicut must contain at least one edge between sk and tk in each

direction. In a directed (or unidirectional) ring the flow from sk to tk is

routed entirely in a clockwise direction; the multicut must contain at least

one arc on the unique path from sk to tk. We will see that an instance of

IMFP or MCP in an undirected ring can be reduced to an instance of the

same problem in a directed one.

Consider a directed ring R = (V, A). Let pk be the only path from sk to

tk, let fk, k ∈ {1, . . . , K}, be the flow routed on pk, and let ce, e ∈ A, be

a binary variable such that ce = 1 if the arc e belongs to the cut, ce = 0

otherwise. MCP and IMFP can be stated as two integer linear programs

whose continuous relaxations are dual [6]:
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fk ≤ ue ∀e ∈ A (1)
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(P − MCP )

Min
∑

e∈A

ue ce

s. t.
∑

e∈pk

ce ≥ 1 ∀k ∈ {1, . . . , K} (2)

ce ∈ {0, 1} ∀e ∈ A

Except for some special cases like directed trees [4], there is generally a

gap between the optimal values of MCP and IMFP . This is also the case

in rings. An example is given by a directed ring with 3 vertices v1, v2, v3,

3 arcs of weight/capacity 5 and 3 pairs {sk, tk} such that s1 = t2 = v1,

s2 = t3 = v2 and s3 = t1 = v3. Here, the optimal values of MCP and

IMFP are 10 and 7 respectively.

If we consider the special case of IMFP where all the values on the edges

are equal to 1 we get MEDP , the maximum edge disjoint paths problem,
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which is polynomial in rings [11]. Some authors consider the multicom-

modity flow problem with demands in which one wishes to send dk units

of flow from sk to tk, k ∈ {1, . . . , K}. Let n be the number of vertices and

edges (or arcs) of R. Vachani et al. [10] proposed an O
(

n3
)

algorithm for

finding an integer multiflow with demands (whenever a solution exists) on

bidirectional rings with uniform capacities. The unsplittable flow problem

in ring networks, where each demand must be routed entirely in a clockwise

or a counterclockwise direction was shown to be NP-hard by Cosares and

Saniee in [3]. Note that the problem with demands cannot be reduced to

the corresponding maximization problem without loosing the ring structure

[5].

In this paper, we first propose some reductions (in Section 2). Then, in

Section 3, we show that in a ring MCP can be solved by using a polynomial

algorithm for chain networks [4] and that an approach proposed by Sai

Anand and Erlebach [2] for the call control problem can be used to solve

IMFP in rings; we also prove that the integrality gap is strictly smaller

than 1. In Section 4 we propose O(n) algorithms to solve IMFP and MCP

in uniform (reduced) rings, i.e. in rings where all the capacities are equal

and where all the reductions have been made.

2. Simplifications and reductions

To any instance of MCP or IMFP in an undirected ring we can asso-

ciate an equivalent instance in a directed ring by doubling the number of

terminal pairs. To each pair {sk, tk}, k ∈ {1, . . . , K}, we associate a new

pair {sk+K , tk+K} where sk+K (resp. tk+K) is located at the same vertex as

tk (resp. sk). The path from sk+K to tk+K in the directed ring corresponds

to the path from sk to tk in a counterclockwise direction of the undirected

ring. It is clear that to any solution of MCP or IMFP obtained in the

directed (resp. undirected) ring corresponds a solution with the same value

in the undirected (resp. directed) ring. Now, we show how to simplify a

directed instance in such a way that the resulting instance has a source

and/or a sink located at each vertex, and contains only proper pairs, i.e.

no path pi is included into pj for i 6= j.
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Contracting paths. A path without terminals, except for its endpoints,

can be replaced by a single arc, which is the lowest weighted arc of the path.

This arc is the one which limits any flow routed on this path and which

would possibly be selected in a minimum multicut: the other arcs do not

play any role and can be suppressed. Now, consider two adjacent arcs (u, v)

and (v, w) such that there is only a source sk located at v. If the capacity

of (u, v) is greater than or equal to the one of (v, w) then the arc (u, v) can

be contracted into a single vertex (u = v), since (v, w) can be preferred to

(u, v) in any minimal cut and since (v, w) is more constraining for the flow

than (u, v). Now, sk is located at u. In the same way, if there is only a sink

located at v and if the capacity of (u, v) is smaller than or equal to the one

of (v, w) then (v, w) can be contracted into a single vertex.

Suppressing pairs. Each pair {sk, tk} corresponding to a path pk

which contains as subpath (or which is equivalent to) a path pj can be

removed from the list L. Indeed, first, a multicut for L − {sk, tk} is a

multicut for L since if sj is separated from tj , so is sk from tk. Second,

any multiflow f with a positive subflow fk routed from sk to tk can be re-

placed by an equivalent multiflow f ′ with f ′
k = 0, f ′

j = fj + fk and f ′
i = fi

for all i 6= j, k. We call a set of pairs satisfying this property a “proper

set” of pairs (as in [2]). Note that a proper set of pairs contains at most

n pairs. Indeed, two pairs in L cannot have their sources at the same vertex.

The three reductions (contracting paths or arcs and suppressing pairs)

must be iterated recursively until no more reduction can be made. Since at

least one arc or one pair is suppressed by each reduction, the ring can be

reduced in O (K + n) time. Note that the suppressing pairs reduction can

be efficiently implemented by using a stack (each pair will be seen twice).

Therefore, for the remainder of the paper, it is no loss of generality to

consider a reduced ring, denoted by R = (V, A), directed in a clockwise

direction, and to assume that there is a source and/or a sink located at

each vertex and that the list L is a proper set of pairs. The vertices and the
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arcs are numbered from 1 to n, and the sources and the sinks are numbered

from 1 to K, K ≤ n, in a clockwise direction.

3. A polynomial algorithm in general rings

In this section, we give polynomial algorithms to solve MCP and IMFP .

Theorem 1. MCP can be solved in O
(

n2
)

time in rings.

Proof. The initial reduction of the ring runs in O (K + n). MCP in a

directed path can be solved by recursive algorithms in O(K + n) (e.g. [9]),

and thus in O(n) here. Any path pk of R must contain a cut arc. The

idea is to select a path, say pl, preferably the shortest one, and to compute

for each arc ei of pl the value of a minimum multicut on a directed path

µi obtained by removing ei from R (and all the pairs {sk, tk} such that

ei ∈ pk). If Ci denotes the minimal multicut on µi, then Ci ∪ {ei} is a

multicut for the initial ring and its value is v(Ci) + uei
, where v(Ci) is

the value of Ci. A minimal multicut C∗ in R is given by Ci∗ ∪ {ei∗} with

ei∗ = argminei∈pl
(v(Ci) + ui). It is obtained in O

(

n2
)

steps. ¤

Now, we show that IMFP is polynomial-time solvable in rings by using

ideas similar to the ones given in [2, pp. 26–29] to solve special cases of

the Pre-routed Call Admission Control problem (PCAC) in rings: roughly

speaking, PCAC in rings is equivalent (at least in the unweighted case) to

IMFP in directed rings when the flow routed from sk to tk can be either 0

or 1 for each k. We show the following theorem:

Theorem 2. IMFP can be solved in polynomial time in rings.

Proof. We make a binary search on the value of
∑K

i=1
fi ≤ Kumax, where

umax is the maximum arc capacity of the ring. Once the value of this sum is

fixed and equal to an integer F , we can add to (P − IMFP ) the constraint

(Λ0):
∑K

i=1
fi = F . Our problem is now a decision problem: does there

exist a feasible solution? Consider the constraint matrix of (P − IMFP ).

There are two kinds of rows: either the 1’s are consecutive or they are

not, and in this case the 0’s are consecutive (this property is known as the

circular 1’s property). For each constraint (Λ) involving non consecutive
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flows (i.e. where the 1’s are not consecutive), we define a new constraint

(Λ′) ← (Λ0) − (Λ) and remove (Λ): in (Λ′), all the 1’s are consecutive.

Therefore, we obtain an equivalent problem whose 0 − 1 constraint matrix

verifies the consecutive 1’s property (interval matrix) and thus is totally

unimodular [1], with an integer vector on the right-hand side. Hence, there

exists an integer solution if and only if there exists a fractional solution.

Since each interval matrix is a network matrix, the solution can be found

in strongly polynomial time [8]. ¤

Now, note that our approach also implies that:

Corollary 1. In rings, the gap between the value of the maximum fractional

multiflow and the value of the maximum integer multiflow is strictly smaller

than 1.

Proof. The existence of a fractional solution of value F ∗ implies the exis-

tence of a fractional solution of value F for each real F ≤ F ∗ and, in particu-

lar, for ⌊F ∗⌋. Now, apply the transformation of constraints described in the

proof of Theorem 2 with (Λ0):
∑K

i=1
fi = ⌊F ∗⌋. The resulting (equivalent)

program has a totally unimodular constraint matrix with an integral vector

on the right-hand side. This implies the existence of an integer solution of

value ⌊F ∗⌋. ¤

4. The case of uniform rings

In this section, we propose O(n) algorithms to solve MCP and IMFP

in uniform (reduced) rings, i.e. where all the arcs have the same capacity,

denoted by U . First, note that, in uniforms rings, we can assume w.l.o.g.

that there is exactly one source and one sink at each vertex of the ring.

This results from the reductions made in Section 2. Indeed, if only one

terminal is located at a vertex v then one of the two arcs indicent to v

is contracted. Hence, the number of terminal pairs is now equal to the

number of vertices, i.e. K = n, and all the paths have the same length,

denoted by L. As previously, let the terminal pairs be numbered from 1

to n in a clockwise direction: there are exactly L successive flows routed

through each arc, assuming that f1 follows fn.
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Now, we claim that optimal solutions for the continuous relaxations of

(P − IMFP ) and (P −MCP ) in rings with a uniform capacity U are easy

to obtain. Indeed, one has:

Lemma 1. fk = U
L

for all k ∈ {1, . . . , n} and ce = 1

L
for all e ∈ A are two

optimal solutions of value nU
L

of the continuous relaxations of (P −IMFP )

and (P − MCP ) respectively.

Proof. First, each arc belongs to exactly L paths pk, thus the constraints

(1) in (P − IMFP ) are satisfied since
∑

k st e∈pk
fk = LU

L
= U ∀e ∈ A.

Second, every path pk has L arcs, thus the constraints (2) in (P − MCP )

are also satisfied since here
∑

e∈pk
ce = L 1

L
= 1 ∀k ∈ {1, . . . , n}. Finally,

the values of both objective functions at these points are equal to nU
L

, thus,

by linear programming duality, they are optimal. ¤

Theorem 3. MCP can be solved in O(n) in uniforms rings.

Proof. From Lemma 1 and since ce is integral for each arc e, we obtain

∑

e∈A ce ≥
⌈

n
L

⌉

. This implies
∑

e∈A uece ≥
⌈

n
L

⌉

U . Eventually, one

can define a multicut of value
⌈

n
L

⌉

U (and thus optimal). Indeed, for

j ∈ {1, . . . , n}, set cej
= 1 if j ∈ {1 + pL, p ∈ {0, . . . ,

⌈

n
L

⌉

− 1}}, and

cej
= 0 otherwise. This provides a feasible multicut with

⌈

n
L

⌉

arcs in O(n).

¤

Consider now the following algorithm:

Algorithm 1 Maxmultiflow_uniform_rings

Ensure: An integral multiflow f̂ =
{

f̂j

}

j∈{1,...,n}
of value ⌊nU

L
⌋

f̂1 = ⌊U
L
⌋;

for j = 1 to n − 1 do

if j U
L
− ⌊j U

L
⌋ ≥ ⌈U

L
⌉ − U

L
then

f̂j+1 = ⌈U
L
⌉;

else

f̂j+1 = ⌊U
L
⌋;

end if

end for

The main idea of this algorithm is to round down or up the values of the

variables in the optimal continuous solution of Lemma 1 in order to keep
7



at each step j a gap smaller than one between the sum of the j + 1 first

integral flows and (j +1)U
L

, the corresponding sum of the continuous flows.

The aim is to obtain an integral multiflow of total value ⌊nU
L
⌋, and thus

optimal.

Lemma 2. For 1 ≤ k ≤ n, one has
∑k

j=1
f̂j = ⌊k U

L
⌋.

Proof. The result is obtained by induction on k. The property is true when

k = 1. Let k be in {1, . . . , n − 1} and assume that
∑k

j=1
f̂j = ⌊k U

L
⌋. We

have
∑k+1

j=1
f̂j = ⌊k U

L
⌋+f̂k+1. If in Algorithm 1 one has (k + 1) U

L
≥ ⌊k U

L
⌋+

⌈U
L
⌉ then, the right-hand part being integral, this implies ⌊(k + 1)U

L
⌋ ≥

⌊k U
L
⌋+⌈U

L
⌉. In this case we have f̂k+1 = ⌈U

L
⌉. We get ⌊(k+1)U

L
⌋ ≤ ⌊k U

L
⌋+

⌈U
L
⌉ =

∑k+1

j=1
f̂j ≤ ⌊(k+1)U

L
⌋ and finally

∑k+1

j=1
f̂j = ⌊(k+1)U

L
⌋. Otherwise

one has (k + 1) U
L

< ⌊k U
L
⌋ + ⌈U

L
⌉. That implies ⌊(k + 1)U

L
⌋ < ⌊k U

L
⌋ + ⌈U

L
⌉

and thus ⌊(k + 1)U
L
⌋ ≤ ⌊k U

L
⌋ + ⌊U

L
⌋. In this case we have f̂k+1 = ⌊U

L
⌋

and since ⌊k U
L
⌋ + ⌊U

L
⌋ ≤ ⌊(k + 1)U

L
⌋ we obtain

∑k+1

j=1
f̂j = ⌊k U

L
⌋ + ⌊U

L
⌋ =

⌊(k + 1)U
L
⌋. ¤

Theorem 4. IMFP can be solved in O(n) time in uniforms rings.

Proof. The complexity of Algorithm 1 is obviously O(n), and the integral

multiflow f̂ has a total value of ⌊nU
L
⌋ (it is the particular case of Lemma

2 where k = n). Thus we have just to prove that the multiflow f̂ actually

satisfies the capacity constraints on the arcs. Since any arc e belongs to

L successive commodities, we are going to prove that the sum of any L

consecutive integral flows is always less than or equal to U . We consider

two cases. First, assume that f̂1 or f̂n does not belong to the sequence of

flows. Thanks to Lemma 2, we have
∑L

j=1
f̂j = ⌊LU

L
⌋ = U and thus the

property is satisfied for the sequence f̂1, . . . , f̂L. Moreover, for 1 ≤ j ≤

L − 1, we have (L + j)U
L
− ⌊(L + j)U

L
⌋ = j U

L
− ⌊j U

L
⌋. This implies that

the test condition in Algorithm 1 will be the same for f̂j , f̂L+j ,. . . ,f̂αL+j

(α integer s.t. αL + j ≤ n). Let ak ∈ N, bk ∈ N, bk < L be such

that k = akL + bk; then f̂k+j = f̂akL+bk+j = f̂bk+j . For any sequence

f̂k+1, . . . , f̂k+L where 1 ≤ k ≤ n − L we get
∑L

j=1
f̂k+j =

∑L

j=1
f̂bk+j =

∑L

j=bk+1
f̂j +

∑L+bk

j=L+1
f̂j =

∑L

j=bk+1
f̂j +

∑bk

j=1
f̂j =

∑L

j=1
f̂j = U.
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Second, assume that f̂1 and f̂n belong to the sequence, which thus can

be written as f̂n−L+a+1, . . . , f̂n, f̂1, . . . , f̂a for some a. Applying Lemma

2 we get
∑a

j=1
f̂j = ⌊aU

L
⌋ (for k = a),

∑n−L+a

j=1
f̂j = ⌊(n − L + a) U

L
⌋ =

⌊(n + a) U
L
⌋ − U (for k = n − L + a), and

∑n−L+a

j=1
f̂j +

∑n

j=n−L+a+1
f̂j =

⌊nU
L
⌋ (for k = n). Thus we obtain

∑a

j=1
f̂j +

∑n

j=n−L+a+1
f̂j = ⌊aU

L
⌋ +

⌊nU
L
⌋ − ⌊(n + a) U

L
⌋ + U . Since ⌊aU

L
⌋ + ⌊nU

L
⌋ ≤ ⌊(n + a) U

L
⌋, we finally get

∑a

j=1
f̂j +

∑n

j=n−L+a+1
f̂j ≤ U .

¤

5. Conclusion

We have proposed polynomial-time algorithms to solve MCP and IMFP

in rings, and linear-time algorithms for reduced rings with uniform capaci-

ties. Generally the complexity and resolution of MCP and IMFP are af-

fected by considering directed or undirected graphs [5], but we have shown

that it is not the case in rings. Note that in these graphs the Multitermi-

nal Flow and Cut problems are trivially solved in O (K + n). Recall that

in these particular cases of IMFP and MCP , the pairs of terminals are

{sk, sk′} for all k 6= k′ in {1, . . . , K}. Here, both optimum values of these

problems are equal to the sum of the values of the edges remaining in the

ring after simplifications.
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