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ABSTRACT 

 
Within the frame of machinery maintenance, spectral analysis is a helpful tool. 

Therefore, an automatic spectral analysis tool, capable to identify each component 
of a measured signal would be of interest. This paper studies a new spectral 
analysis strategy for detecting, characterizing and classifying all spectral 
components of an unknown process. Indeed, any vibration signal can be considered 
as a mixture of components, a component being either a sinusoidal wave, or a 
narrow band one. We assume that a sum of an unknown number of these 
components is embedded in an unknown colored noise. The complete methodology 
we propose provides a way to feature each component in the spectral domain. 

The first idea is not to choose one specific spectral analysis method but, rather, to 
concatenate the results of complementary algorithms. For each one, the noise 
spectrum is estimated by a nonlinear filter and spectral component detection is 
managed with a local Bayesian hypothesis testing. This test is defined in frequency 
and takes account of the noise spectrum estimator. Thanks to a matching with the 
corresponding spectral window, each component detected is classified into one of the 
following four classes: Pure Frequency, Narrow Band, Alarm and Noise. 

The second main idea is then to propose a fusion of the classification results, 
leading to a complete description of each spectral component present in the signal. 
This spectral classification is particularly interesting within the context of condition 
monitoring. Examples are given on real vibratory signals and show the performance 
of the proposed automatic method, which is particularly well adapted to signals 
having a high number of components. 

 
 

INTRODUCTION 
 

Machine condition monitoring is of great interest for machinery maintenance as 
faults should be detected before they become serious. Vibration analysis is popular 
as a predictive maintenance procedure and as a support for machinery maintenance 
decisions. In spite of a huge research in spectral analysis, there is always a real 
need for an automatic spectral analysis tool, capable to identify each component of 
a measured signal. 

 



This paper studies a new spectral analysis strategy for detecting, characterizing 
and classifying spectral structures of an unknown stationary process. A spectral 
structure is defined as a sinusoidal wave called Pure Frequency (PF), a Narrow Band 
signal (NB) or a Noise peak (N). A sum of an unknown number of these structures is 
embedded in an unknown colored noise. Spectral analysis of such signals is 
interesting in several applications, including vibratory, acoustic, seismologic or radar 
signal processing. In these application fields, signals are rich in spectral components 
and therefore, windowed discrete Fourier Transform remains a useful tool even if the 
problem can after that be formulated in a more specific application framework. 

The strategy proposed is automatic and based on the use of complementary 
spectral analyses. An optimal method does not always exist and it seems to us to be of 
interest to take all the properties of diverse analyses into account. Few approaches 
have been actually published in this context. The spectral analysis developed in [1] is 
automatic but focused on the estimation of the period length of one periodic signal by 
minimizing a cost function in frequency. In [2], the authors define a local least square 
approach in the frequency domain, the signal being modeled by a sum of sinusoids 
and a white noise. More recently, the authors in [3] came up with the idea of using 
two different bandwidth resolutions but with two signal measurements, not always 
available. 

In this paper, we propose to match up a number of L spectral analysis methods. 
Within the framework of investigated signals, we focus on Fourier based methods, the 
choice being the result of a trade off between low variance, high frequency resolution 
and low window leakage properties [4]. These L methods provide L estimates of the 
Power Spectral Density (PSD) ( )γ̂ νi , i=1,…,L of the signal through, what we called, 
L cycles. The methodology proposed provides a way to calculate the identity card of 
each peak, similarly to a real I.D. card. Indeed, this I.D. card results from the fusion of 
L intermediate cards, calculated at each cycle, and permits the classification of each 
peak into the right class, PF, NB or N as mentioned above. Note that we have already 
published some part of this work in [4], [5]. After recalling the interpretation cycle 
and the classification in a nutshell, this paper aims at demonstrating the interest of 
such an automatic analyser in the field of vibration analysis. 

 
 

INTERPRETATION CYCLE 
 

The interpretation cycle is a two-step procedure. First, signal peaks are detected 
through a multi-PFA scheme. Second, a spectral adjustment with the spectral window 
of the estimator is applied to each peak detected, leading to the creation of the 
intermediate cards describing the spectral structure. 

 
Multi-PFA detection 
 

The first step of the interpretation cycle consists of making decisions about two 
possible statements; a peak of the PSD ( )γ νi  corresponds to noise (H0 hypothesis) or 
to signal (H1 hypothesis). At each frequency ν, this problem can be formulated as a 
hypothesis test where 

 ( ) ( ) ( ) ( ) ( )0 1: :γ ν γ ν γ ν γ ν γ ν= =i b i s bH H + , (1) 

 



with ( )γ νb  the continuous PSD of a zero mean stationary Gaussian noise and ( )γ νs

( )2

 

a PSD of a stationary random process or a deterministic signal belonging to RL . 

Since the distribution of ( )γ̂ νi  under H1 is not easy to find, the optimal test statistics 
cannot be found. However, we propose a test statistics of the following form 
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with ( )γ ν%b  an estimation of the noise PSD ( )γ νb  estimated by filtering ( )γ̂ νi . After 
having compared median, percentiles, morphologic and 2-pass mean filters [4], we 
propose an original iterative method combining detection steps and a nonlinear n-pass 
mean filter [4], [6]. Based on this, we are able to derive the distribution of the 
proposed test statistics (2) in the case of hypothesis H0. The distribution of T is a F-
distribution [10] and the decision threshold µ in (2) can be adjusted from a given 
Probability of False Alarm (PFA). 

Since the probability of non-detection under H1 is not easy to compute, we 
propose a multi-PFA test rather than fixing only one value of PFA. A set of PFA 
values is chosen. At each detected peak referred to as ( ),γ̂ νp i , p=1,…,Pi, (Pi being 

the peak number of ( )γ̂ νi ), we assign the lowest PFA, which has allowed detection. 
This PFA, called joint PFA, gives an indication about the local noise level of the peak. 

 
Spectral adjustment 
 

The second step of the interpretation cycle is classification of peaks detected in the 
first step. We propose an iterative adjustment between each peak and the spectral 
window related to the spectral estimator of cycle i. This window, denoted by ( ), νp iQ , 

is oversampled and centred on each peak ( ),γ̂ νp i  such that the normalized quadratic 
error defined as 
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is minimized given that ( )( )max ,ˆarg maxγ ν= p i kk
k .Values k1 and k2 are determined 

depending how the error is calculated, either from all of the points on the peak main 
lobe, or from points above the -3 dB level only. These quadratic errors are therefore 
denoted etot(p,i) and e-3dB(p,i) respectively. Contrary to a maximum likelihood 
approach, this method is suboptimal but incurs a rather low computational expense, 
which is a necessary requisite owing to a possible large number of peaks. Signals of 
interest can have hundred of components, see for example spectrum of signals in 
communication [7], in biomedical [8] or in vibratory mechanics [9]. 

Thanks to Monte Carlo (MC) simulations described in [5], the spectral structures 
investigated are identified as regions in the error space (etot(p,i), e-3dB(p,i)). We then 

 



define a distance, which can be considered as a measure of membership degree of a 
peak towards a specific region or class. So as to, at each region delimited by the 
thresholds shown in Figure 1, we associate an integer distance dkl where index k, 
ranged between 0 and 3, identifies the region, and index l a spectral pattern: l=0 for 
PF, l=1 for an uncertainty between PF and N, and l=2 for NB. 
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Figure 1 - Class contours defined from Monte Carlo simulations and parameterized by dkl. Class 
PF=d00; class NB=d32, class Noise=d31. Others regions are uncertainty classes. 

 
Class PF, characterized by the minimal distance d00, is located at low errors under 

the straight line TPF=0, defined as a line up to the PF cluster got at SNR equal to 0 dB 
in MC simulations. Afterwards, the more the errors increase, the more the peak 
departs from a PF. At the opposite, class N, characterized by the higher distance d31, is 
located at the highest errors above another straight line TN=0 defined as the line up to 
the PF and NB clusters got at SNR equal to -20 dB in MC simulations. Intermediate 
distances, d11 and d12, measure an uncertainty between PF and N peaks, delimited by 
the line Tun, and such as 

 00 11 21 310= < < <d d d d . (4) 

Class NB, characterized by a mean distance d32, is located under TN but above a 
third line TNB, defined, in the same way, as the line down the NB cluster got at SNR 
equal to 0 dB. The narrower the NB, the closer to the PF cluster. Thus, an increasingly 
weak distance is associated to these regions delimited by the same line Tun such as 

 00 12 22 320= < < <d d d d , (5) 

Tun, is defined as the separation between PF and NB clusters at SNR equal to –15 
dB. In the central region where TN≤0 and TPF>0, an uncertainty between PF 
below TNB, or N above TNB, at low SNR and NB at high SNR is removed with the 
joint PFA. A joint PFA equal to 10-5 or 10-6 will detect NB peaks. 

Finally, at each couple (k,l) is given a numerical value such as dkl=kd1l, with a 
given initial value d1l. This classification can be locally extended to multi-component 
signals embedded in a correlated Gaussian noise. At last, for each ( ),γ̂ νp i , a set of 
characteristics can be given: the adjusted central frequency, the time amplitude, the 
mean noise variance, the local SNR, the emerging SNR which depends upon the 
estimator (see Section Application), the adjustment errors, the frequency interval 
I(CiPp) or a peak frequency base defined as the –3dB bandwidth, the joint PFA 
referred to as PFAi and the distance (dkl)i. This list is referred to as an intermediate 
card of the peak. 
 
 

 



CARD FUSION AND CLASSIFICATION 
 

Intermediate cards are established for each ( ),γ̂ νp i  and for each cycle, i=1,L. A 
null card, with a distance higher than the value associated to noise, is added when a 
peak is not detected at one cycle. So as to associate cards corresponding to the same 
peak, a simple criterion is defined 

 I(CiPp) I(CjPp') ,∩ ≠∅ ≠i j , (6) 

with I(CiPp) being the frequency interval defined above. The connected cards form a 
set called a sequence. Owing to its construction, a sequence describes the same 
spectral structure, which is also represented by L points in the error space. 

In each sequence, the intermediate cards are merged according to the following 
procedure. If the sequence presents more than one uncertainty (non constant index l in 
dkl over the sequence), if alarms on PFA (two far PFA are not accepted) or on the 
noise level were set on, the peak is classified into an Alarm class, which points out a 
bad estimate of the noise spectrum. Afterwards, in each sequence, distances are 
combined as  
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The final distance  is defined as ,peak fd
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and determines the final spectral pattern of the peak. The standard deviation σpeak 
allows the computation of a stability index Stpeak, which indicates the stability of the 
results on the sequence with a known maximum standard deviation maxσ , 

 ( )max100 1 σ σ= −peak peakSt . (9) 

A final PFA, PFApeak, is calculated as 

 ( )1
1=

=∏
L

L
peak i

i
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The final card is called the spectral I.D. and gathers these new characteristics. The 
final distance dpeak is used to classify all the peaks in one of the following classes: PF, 
NB, N and Alarm. Finally, it is important to notice that the detection probability of a 
peak is high if the classification yields a high stability index  and a low final 
PFApeak simultaneously. 

peakSt

 
 
APPLICATION TO VIBRATION ANALYSIS 
 

A test was performed on an experimental platform in order to identify vibrations 
induced by the hydraulic noise of an oil station. Several devices such as a soft water 
pump and motors were operating on the platform. The data analysed in this section 
(see figure 2) were acquired by an accelerometer located close to the oil station of 

 



which we want to determine the vibration signature. The sampling frequency is 3 KHz 
and the anti-aliasing filter has a cut-off frequency equal to 1,25 KHz. The stationarity 
of the measure has been checked by applying the time-frequency detector described in 
[11]. The spectrum depicted in figure 2 also indicates the presence of a significant 
number of modes and of a non-white noise. The methodology presented in this paper 
is applied and we will discuss the results within the frequency range 0-100Hz only. 
 

 
Figure 2. Hydraulic noise in time (left) and in frequency (right) 

 
Main objective being PF detection, no frequency average is introduced and L is 

set at 5: an hybrid periodogram-correlogram with Blackman window (cycle 1), a 
Welch-Wosa first with Blackman window (cycle 2) then with Hanning window (cycle 
3), a Blackman-Tuckey first with Blackman window (cycle 4) then with Hanning 
window (cycle 5) [4]. Performance of the chosen methods are depicted in figure 3. 
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Figure 3 – Values of 5 criteria characterizing spectral analysis performance (up) and assessment of a 
mark at each cycle (down) of the PF strategy and for data presented in figure 2. 

The first criterion is referred to as the Delta Emergent Noise to Signal Ratio 
(NSR). The emergent NSR indicates how the method makes the peak more emerged 
in frequency. A low equivalent bandwidth of the spectral window as in cycle 5 leads 
to a high added value of 12.2 dB. Cycle 2 has the minimum adding value equal to 9.8 
dB. The other criteria are classical one in spectral analysis: the frequency resolution 
deduced from the –3dB bandwidth of the spectral window, the normalized variance, 

 



the percentage of energy ratio characterizing the spectral leakage and the statistical 
quality ratio defined by the product of the normalized variance and the normalized 
statistical bandwidth of the spectral window [4]. The assessment of a mark as derived 
in figure 3 reveals drawbacks and advantages of each cycle. 

Figure 4 summarizes the results of the detection and classification proposed in this 
paper. Left hand side of figure 4 presents spectra get from the 5 cycles mentioned 
above. The colored up peaks correspond to the peaks detected by test (2). As can be 
seen, the different estimated PSDs do not lead to the same detected peak set, 
reinforcing the idea of using jointly all these different analyses. Right hand side of 
figure 3 displays the results of 3 classes according to the stability index (9) and the 
final PFA (10) for the 38 peaks detected. The other classes have not been represented 
since they are all empty, except for the Alarm and N classes. 

 

 
 

           

 

 

  

Figure 4. On the left, zoom spectra of the hydraulic noise within the frequency range 0-100Hz for L 
cycles with L=5. Peaks detected are colored according to distance dkl (below the noise line) and to PFA 

(above the line spectrum). On the right, results of the classification proposed according to both the 
stability index (St) and the final PFA (exponent of the value) for class PF (d00), uncertain class between 

PF and N (d21) and class NB (d32). 

The final distance d00 has been assigned to 6 peaks at frequencies 29.8 Hz, 46.9 
Hz, 75.8 Hz, 76.6 Hz, 77.3Hz and 93.74 Hz with stability indexes greater than 80%. 
These peaks having the lowest final PFAs (equal to 10-6) are PF without doubt. We 
are less confident with the two peaks detected in class d21 at frequencies 24.8 Hz and 

 



62.9 Hz because of lowest stability index and final PFA. By the same way, the peak at 
30.1 Hz with a distance d32 belongs to class NB but with even less confident, 73 % 
only, whereas the four other ones, at frequencies 32.4 Hz, 32.6 Hz, 45.2 Hz et 45.3 
Hz, have a too high final PFA and a too low stability index to be considered. The 
other peaks, 38 were detected over the frequency range studied, belong to class N or 
to the Alarm class. The analysis of the complete frequency band, not presented in this 
paper, conclude to the occurrence of two families of harmonics, one with a 
fundamental at 46.9 Hz and another one at 76,6 Hz. This last one has two lateral 
bands with an harmonicity of 0.8 Hz. The methodology proposed focused on the 
detection of PF and NB embedded in an unknown non-white noise. So the wide band 
structure at frequency 51.4 Hz is not and cannot be detected. Future works are in 
progress for adding this class in the system. 
 
CONCLUSION 
 

The strategy of spectral analysis presented in this paper leads to an automatic 
process for detecting, characterizing and classifying sinusoidal waves and narrow 
band signals of an unknown stationary process. This kind of tool is of interest for fault 
detection and machinery maintenance. The idea of fusion of different spectral analysis 
methods is original in signal analysis field. Operating spectral estimator properties 
allows a rigorous and accurate identification of spectral peaks, which breaks free from 
a visual interpretation. 
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