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Abstract

The non linear description of laminar premixed flames has been very suc-

cessful, because of the existence of model equations describing the dynamics

of these flames. The Michelson Sivashinsky equation is the most well known
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of these equations, and has been used in different geometries, including three-

dimensional quasi-planar and spherical flames. Another interesting model,

usually known as the Frankel equation, which could in principle take into ac-

count large deviations of the flame front, has been used for the moment only

for two-dimensional expanding and Bunsen flames. We report here for the

first time numerical solutions of this equation for three-dimensional flames.

Keywords: laminar reacting flows
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1 Introduction

The Michelson Sivashinsky equation, or simply Sivashinsky equation, depending on

the author [1], is a good example of a non linear model equation that has obtained

results far beyond any expectations. While originally derived for flames with a low

heat release (which are rather rare indeed, since in typical flames the burnt gases have

a temperature five times higher than the fresh gases) this equation has succeeded

in providing a qualitative description of the dynamics, even for large heat release.

This equation has been used for fronts in different geometries (planar on the average

[2], expanding flames[3], oblique flames [4]), but with always the limitation that the

deviation (actually the variation of the slope) from the unperturbed geometry must

be relatively small, and that the front has to be described by a function (of the

lateral coordinate, of an angle ...)

Another possible description [5] has been proposed in 1990 by Frankel and does

not suffer from these drawbacks, i.e. its formulation is coordinate-free, with no

privileged direction. It was pointed out to the author by one referee that an approach

similar to Frankel’s (using a potential approximation for the flame generated flow

field) had already been used in a 1982 article by Ghoniem, Chorin and Oppenheim

[6], which could justify changing the name of the equation (usually called Frankel

equation). However, contrary to [5], the front was not described in a lagrangian way
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by a set of markers, but was calculated using a SLIC method [7]. Another difference

is that turbulence was described in [6] with vortex methods. The two approaches

are thus not completely equivalent. However, it is true that several aspects of the

work of Frankel were used by other authors before the 1990 paper (see for instance

[8][9]).

In [5], the flow is supposed potential everywhere, fresh and burnt gases, and

the problem is transformed into an integro-differential equation involving Green’s

functions and the position of the front. This may at first seem completely ridiculous;

after all, it is known that for large heat release, vorticity is generated at the front

and has to be present in the burnt gases, even if the flow is potential in the fresh

gases. But actually, this approximation is close to the low heat release limit of

the Sivashinsky equation, and it has been shown in the 1990 Frankel article (a

very important point of this paper) that this equation reduces to the Sivashinsky

equation for plane on the average and circular flames. Surprising as it may seem, the

success of the Sivashinsky equation is actually a (qualitative) success of the potential

approximation. However, contrary to the Sivashinsky equation, the Frankel equation

has not been for the moment derived rigorously from an expansion in powers of the

density ratio starting from the hydrodynamic equations. Higher order expansions in

power of the density ratio have lead in the plane case to the derivation of extensions
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of the Sivashinsky equation [13] (see also [14]). An alternative method has been

proposed [12] , based on a weak-nonlinearity approximation. This approximation

has been criticized in [13].

The good qualitative agreement of the potential model with experiments (see

for instance the comparison in [10] or the figures of the current article) is thus

less surprising: the same behavior is seen in the related Sivashinsky equation case.

Naturally, the author does not claim that the agreement is quantitative, as the po-

tential approximation is well-known to change the linear growth rate of the Landau

instability [11]. For large heat release, the potential model does not satisfy the cor-

rect conservation laws at the front, particularly the pressure jump condition, which

explains this discrepancy.

In this article, however, we will limit ourselves to the potential model. Numerical

solutions of this equation for two dimensional flames are much more difficult than

in the Michelson Sivashinsky case, where typically periodic boundary conditions

and fast Fourier transforms are used. In the coordinate-free case, the front, which

is a line, is discretized with different marker points, which move because of the

fluid velocity and the flame speed. Nevertheless, simulations of this equation have

appeared in the expanding flame [16][17] [18][19] and the Bunsen burner case[10].

But for the moment no numerical solution of this equation has been obtained for
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three dimensional flames, where the front has to be described by a surface and

not a line. On the contrary, the Michelson Sivashinsky equation has been solved

numerically for these flames (see for instance planar flame solutions without and

with gravity [2] [20] and a recent paper on spherical flames[21])

In this article we will show the first numerical solutions of the Frankel equation

for three dimensional flames, in the Bunsen burner geometry. The equation will be

presented, along with some technical details of the numerical solution. Then results

for flames with different forcings and for polyhedral flames will be shown.

2 Model and numerical method

Let us first recall some notations. The flame velocity relative to premixed gases

will be noted ul( and will have the constant value 1 in all the simulations presented

in this article) . If we define ρu the density of fresh gases, ρb the density of burnt

gases, γ = ρu−ρb

ρu
is a parameter measuring gas expansion (γ = 0 without exothermic

reactions, γ being close to 1 for large gas expansion). This difference in density

between fresh and burnt gases is the main cause of the Darrieus-Landau instability

of premixed flames. We use in this article an equation relative to fresh gases, in the

Bunsen burner geometry, as in [10], contrary to the original article [5], where the

6



equation was written relative to burnt gases for the case of an expanding flame. The

unburnt gases are injected at the velocity U . We will consider in Section 3 that U is

constant in space and that the flame is attached on a circle (i.e. we define points on

this circle that do not move during the simulation). In Section 4, on the contrary,

we shall see that in order to obtain the polyhedral flames observed experimentally,

a boundary layer has to be considered.

κ is the mean curvature at a given point on the flame , ε is a constant number

proportional to the Markstein length, −→n is the normal vector at the current point

on the front, in the direction of propagation. After some calculations similar to [5],

an evolution equation is obtained, valid for an arbitrary shape of the front, which is

here a surface, contrary to [10], where it was only a line.

V (−→r , t) = ul +εκ+
−→
U .−→n +

1

2

γ

1 − γ
ul−

ul

4π

γ

1 − γ

∫

S

(

−→
ξ −

−→r
)

.−→n
∣

∣

∣

−→
ξ −

−→r
∣

∣

∣

3
dSξ +

−→
V boundary.

−→n

(1)

This equation gives the value of the normal velocity V on the front as a sum

of several terms, the laminar flame velocity with curvature corrections, the velocity

of the incoming velocity field and an induced velocity field (all the terms where γ

appears) which contains an integral over the whole shape (indicated by the subscript

S in the integral ). This integral is a sum of electrostatic potentials.
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The term Vboundary is a potential velocity field (continuous across the flame) added

to the equation in order to satisfy the boundary conditions. Here the condition is

simply that

(

−→
V induced +

−→
V boundary

)

.−→n = 0

at the injection location, where −→n is parallel to
−→
U , so that Vboundary is given

by the same type of integral as Vinduced , but over the image of the front (see [10]),

which is a front symmetric of the real flame in the symmetry z→ −z (actually we

have chosen z→ −z−0.01 in order to prevent problems from occurring when a front

crosses its image)

When the velocity V (−→r , t) is obtained from equation (1), the marker points

which define the surface are moved :

d−→r

dt
= V −→n

where −→r denotes the position of the current point of the front.

The different marker points of the surface are linked by triangles. A LGPL

C library, gts [22] written by Stéphane Popinet, has been used to describe the

triangulated surface, perform the integrals in equation (1), and calculate the mean

curvature and the normal at any given point. The calculation of the curvature is

done by a method proposed in [23]. Let us note that gts itself is implemented using
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glib, a well-known general purpose library that is also used directly from the author’s

program in order to manipulate lists and hash tables. A zoom of a surface shown

later (from a different angle) in Figure 3 (right part of the figure) can be seen in

Figure 1. As we use a large number of points, typically 20000, the different points

cannot be seen if the whole mesh is shown.

Problems typically encountered in Lagrangian descriptions of two-dimensional

flames as discontinuities [24] [25] are also present here. First of all, there is a need

to adapt the mesh, adding and removing points where necessary. As a result, the

type of algorithm used here is inherently noisy, and the noise is higher when there is

a rapid time variation. On the other hand, the spatial precision of these Lagrangian

descriptions is generally higher than for Eulerian methods, but there is the problem

of self-intersections, which occur very often and must be accounted for. One of the

interest of this article is to show that it can be done even for three-dimensional

flames.

As in [24], we perform the reconnections after the intersection has taken place:

we first detect the triangles that self-intersect (this is actually a gts function, which

is performed in an efficient way), then these triangles are removed from the surface

(except on the boundary). We also remove triangles which are not connected any-

more to the main surface after the first triangle removals. At this stage, the surface
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has one or more holes. We detect the contours of the different holes, and construct

small surface patches which are added to the main surface. At this stage, the surface

has no hole left, but the patches can have normals oriented in the wrong direction.

In order to get a common orientation for the whole surface, we traverse the surface

starting from the boundary, looking in a recursive way at each neighbor of a given

triangle in order to ensure that the orientation of the whole surface is compatible.

In the simulations that will be presented, we remove pockets created during self-

intersections, but actually it would have been very simple to keep pockets with a

sufficient number of points. We have programmed a function splitting a surface in

its connex components, which are then sorted according to their number of points.

Instead of keeping only the main surface (with the largest number of points), it

would have been only a matter of two lines of code to apply a different criterion.

But the previous experience of the author with two-dimensional flames described

in a Lagrangian way has shown that the formation of pockets is generally not very

important, except occasionally and for very special forcings. But it is important to

discard very small pockets, which can produce all kind of disagreements: further

(absolutely unrealistic) splitting of small pockets which forces to reduce the time

step, and global inversion of the normal of a small pocket, which actually would have

collapsed had the time step been smaller. For real flames naturally, the flame speed
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is higher when two fronts are very close, which let these small pockets disappear

quickly.

Another problem of these simulations, once the intersections are under control,

is that the calculations of the integral in equation (1) is very expensive, if done

exactly. The problem is exactly an N-body problem (coulombian interaction), where

an exact solution for N points, is proportional to N2. As has been already done

in a combustion context [17], it is possible to use approximate algorithms which

reduce the number of operations. The author himself had always used the exact

algorithm when solving the potential model for two-dimensional flames, but the extra

dimension has forced him to look at alternatives. There are two main approximate

algorithms for the N-body problem. The Greengard and Rokhlyn algorithm [26]

(fast multipole expansion) approximates the field by a multipole expansion, the

algorithm is O(N) but the prefactor is very high. We have preferred to use the

Barnes Hut algorithm [27] which is O (N log N). The idea of this algorithm is to

represent the field at a given point by the action of a list of masses, where masses

sufficiently far are concatenated in order to provide a good approximation of the

field, the masses at the different levels being organized in a tree. The source code

of this algorithm can be found in Joshua Barnes’ web site [28].
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3 Flames in the presence of forcing

We consider here Bunsen burner flames, with position of the flame imposed on

the boundary, i.e. the boundary point must be on a circle of radius R (in all the

simulations, the value R=0.5 will be chosen) with a value z=0 (z is the vertical

coordinate). Other boundary conditions will be considered in section 4. In a first

step, we would like to show that the three-dimensional Frankel equation contains

effects qualitatively similar to those observed with the two-dimensional version in

the same geometry [10]. The last article contained evidence of the amplification and

saturation of cells created by the Darrieus-Landau instability, which were convected

toward the tip of the flame by the incoming flow. Furthermore, a repulsion effect of

the side of the flame where forcing was imposed on the other side was observed in

the simulations. This effect was very close to the experimental observations of [29].

Here, instead of having a two-dimensional geometry, i.e. a very long rectangular

Bunsen flame where the forcing is the same on the long side, we have the usual

round burner Bunsen flame.

Let us impose a localized forcing on the flame. We take a sinusoidal forcing,

where a term 2 sin (ωt) is added to the normal velocity, in a small window z ∈

[ 0.4, 0.45] θ ∈ [ 0, π/10], θ being the polar angle. We take the value ω = 200

which is rather high, but allows to form several wavelengths on the flame. The
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other parameters are U = 12, γ = 0.85, ε = 0.1. The last parameter and the

radius will have the same value in all the simulations presented. The time step is

∆t = 5 10−5 and will keep the same value in all the simulations. This value of the

time step is chosen to keep the self-intersections occurring on the front simple. If the

time step is too high, very large self-intersections can occur at each time step close

to the tip and the precision of the lagrangian description becomes low. We obtain

a situation presented in Figure 2. This figure contains three flames. Actually, we

had some difficulties in producing different figures of flames with the same scale, so

we have included several flames in the same figures. This also makes comparisons

easier. The two flames on the left are the same, but seen from a different angle, and

correspond to a flame soon after the perturbations produced by the Darrieus-Landau

instability reach the tip. If one looks first at the middle image, it can be seen that

the sinusoidal forcing is very localized and produces a small perturbation close to the

base of the Bunsen flame. But this perturbation develops, is amplified because of

the Landau instability, is convected toward the tip and extends laterally, which was

of course not observed in two-dimensional experiments and simulations. It is also to

be noted that the cells produced by the instability, once sufficiently developed, have

a geometry very close to the hexagonal cells well-known in the planar on average

configuration. However, when the cell is near the tip, this hexagonal shape becomes
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less apparent and the cell can be closer from a rectangle.

If one looks now at the side view of the same flame (left of Figure 2), the repulsion

effect of the side submitted to perturbations on the other seen in two-dimensional

configurations is also present here. As a consequence, there is a slow deflection of

the unperturbed side toward the right. This repulsion effect was explained quali-

tatively by an electrostatic analogy in [10] (let us remember that the model used

here is potential). But here this deflection seems smaller, and is seen clearly only

when the lateral extension of the perturbations is sufficiently large. Actually, the

two-dimensional situation corresponds to a lateral extent infinite in the transverse

direction, which explains why in the three-dimensional case, a large lateral extent is

needed to obtain the same effect.

The third flame image (right of Figure 2), is a flame with the same physical

parameters, but some time later. This flame is higher (the height of the flame

fluctuates typically in this way during the temporal evolution). But the main effect

is that two cells are merging close to the tip. Apparently, the way we have imposed

the forcing does not produce absolutely regular cells, possibly because the forcing

zone is too extended. It has happened that one cell had a smaller amplitude close

to the base of the flame, and during its translation toward the tip, its amplitude

and longitudinal extension have slowly reduced, and now clearly this cell (second
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cell from the tip, which is very small) is being captured by the third cell, which is

very large. This cell merging is absolutely typical of the Landau instability and is

well known in the planar configuration, where it helps produce the one-cell flame

obtained for every domain size in the Michelson-Sivashinsky equation. Actually, for

very large flame height, self-similar mergings have been predicted theoretically [14]

[4].

After this study of the effect of a sinusoidal forcing on the flame, we are now

interested in the effect of a white noise forcing applied at the base of the flame

(sufficiently far from the boundary to prevent problems). To be specific, we have

added to the normal velocity at points where z ∈ [ 0.4, 0.6] a term 20 ∗ rnd, where

rnd is a random number chosen between 0 and 1. The white noise is different at

each time step and at each point of the mesh. Because the noise is not correlated

in space and time, the amplitude must be taken much higher than in the sinusoidal

case (a lot of the wavelengths generated by this white noise are quickly damped by

diffusion and we wanted to produce a very perturbed flame).

The result of this white noise is shown in Figure 3. We present also here two

flames. The flame on the left is a totally unstationary flame obtained soon after

the first perturbations reach the tip. The physical parameters are U = 12, γ =

0.85, and as usual ε = 0.1 R = 0.5.The initial condition of this calculation was
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a stationary, unperturbed flame, with slightly different parameters. Starting from

the base of the flame, the fine grained perturbations directly caused by the white

noise are first seen. Then these perturbations develop because of the instability,

leading to cells where this time, it is difficult to recognize any hexagon. Then as

in the sinusoidal case, the wavelength of the cells increase because of cell merging.

These mergings do not necessary happen in the same way as the one in Figure 2,

where a small cell was swallowed by a large one. More symmetrical situations are

also possible, where the separation between cells disappear with both cells having

approximately the same size. Finally, when the tip is approached, the perturbations

organize in order to produce a sinuous shape.

This kind of sinuous shape was also observed for two-dimensional flames [10],

and an explanation was proposed. But this sinuous character becomes smaller for

typical flames obtained later. We have an example of one typical flame in the right

part of the figure. The forcing zone, first cells, wavelength increase and finally

sinuous zone can also be seen. It must be admitted however that the flame is

much less sinuous than the flame on the left. The main cause of this difference is

that as the perturbations develop, the flame height becomes smaller, which can be

observed when one compares the two flames in the figure. We can also insist on

the three-dimensional structure of the sinuous zone to just say that the shape is
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almost never truly helical (the author was thinking at the beginning of this work

that it was the natural generalization of the sinuous two-dimensional shape, but this

is apparently not the case). Before closing this section, one last word, even if we

have not performed simulations of turbulent flames, the two flames of Figure 3 can

give us some hope that it can be done with the current three-dimensional model.

But naturally, it would be very expensive, since it is necessary to either simulate or

generate a substitute of turbulent flow. Future growth in computer power will help,

the computations of this article being done on a relatively standard PC (2.8 Ghz

Pentium 4). It must be noted that the flame lagrangian surface solver used in this

article fits naturally with a lagrangian description of vorticity.

4 Polyhedral flames

In the previous section, the positions of the boundary points were imposed and the

injection velocity was constant. This is a reasonable approximation of a flame with

a very small boundary layer. In this section however, we are interested in polyhedral

flames, which are well-known experimentally, see for instance [30]. A theoretical (and

experimental, but we will be mainly interested in the theoretical part) article has

appeared some time ago [30] on this subject. The polyhedral flames were described
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by using a modified version of the Kuramoto-Sivashinsky equation, i.e. making the

assumption that the instability was of thermal-diffusive origin. This type of model

was able to produce polyhedral flames, which is the way cellular flames look like

in the Bunsen burner geometry (the following figures show these type of flames).

However, with the boundary conditions used in the previous section, we have not

been able to produce polyhedral flames, although we have not made an extensive

search, for a lot of parameters (the calculations for three-dimensional flames are

expensive).

So we are faced with a problem. It would not be a nice situation to conclude

that the thermal diffusive instability gives more realistic results than the hydrody-

namic one, as the author, among others, has claimed in different papers that the

hydrodynamic mechanism is the most realistic. And although not everyone agrees

even now, a common belief seems to be that the thermal diffusive mechanism could

only account for special cases, like lean hydrogen flames. This is probably why the

experiments in [31] were performed with hydrogen.

Before concluding that the hydrodynamic model does not contain polyhedral

flames, there is another thing different in [31] from the simulations of the previous

section : the boundary conditions. In [31], the vertical position of the boundary

points was not imposed, and a flame-holder term was added, following Buckmaster
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[32], to the Kuramoto-Sivashinsky equation, in order to modelize attraction of the

flame to the burner rim.

So let us just apply here these same conditions. However, we shall not apply

these conditions unmodified, as we have a slight problem. The vertical coordinate

on the boundary is fixed by an equilibrium between the injection velocity, supposed

constant everywhere, and the flame-holder term (and also the integral terms in

equation 1). As a result we have found, and actually it can be seen in the original

article, that the stationary position of the flame is very far from the flame holder.

We propose here, in order to describe flames stabilized close to the injection zone,

to shift this stationary position toward the flame holder by including the fact that

there is a boundary layer, and that as a result the injection velocity close to the

boundary is much smaller than in the middle of the tube.

We use the following formula for the injection velocity:

u(r, z) = U − 0.9U exp
(

− (a (r − R) /R)4
)

− βz exp
(

− (a (r − R) /R)4
)

(2)

where U is the injection velocity at the center of the tube, a and β are constant

coefficients. . The first exponential term is there to describe the boundary layer.

The β term is the flame holder term used in [31]. The exponential variation with r is

the one used in this paper, with coefficient a controlling the stiffness and width of the

boundary layer (proportional to the inverse of the width). Furthermore, contrary to
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the previous section, just on the boundary, the x and y coordinates keep the same

values, but not the z coordinate, which is free to move, being actually computed as

a mean value over the neighbors.

In Figure 4, we show that these modifications of the boundary conditions succeed

in making polyhedral flames possible with the Frankel equation. So what is actually

important for these flames is not the mechanism in itself, hydrodynamic or thermal-

diffusive, but what happens close to the boundary, boundary layer, flame holder

term. Actually two flames can be seen in Figure 4 with parameters γ = 0.85,

ε = 0.1 R=0.5, a = 2, β = 0.4,U = 12, (left) and U = 6(right). These

parameters only differ in the injection velocity, showing that, as also observed in

the thermal-diffusive case, this parameter does not significantly change the cellular

structure of the flame. The eight cells left solution was obtained by taking as initial

condition a flame with no cell, but the eight cells solution on the right was actually

obtained starting from the solution on the left, and apparently this solution is never

completely stationary, as seen in the Figure.

In [31], it was also observed that the parameter β, was more important than

U , and leads to a well-defined transition. As β is increased, the flame is no more

cellular. This is also the case here in the hydrodynamic case, see Figure 5, where

two flames are shown, the one on the left with β = 0.4 (same flame as in Figure 4,
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left) , and on the right with β = 20, all the other parameters being the same. It can

be seen that although this increase in β succeeds in smoothing the flame, the typical

values achieving this result are very high. We have not searched the precise value of

the bifurcation, but for instance the flame is still weakly cellular with β = 8. This

very high value has the consequence that the flame is closer from the injection (and

above all, closer for a longer distance from the boundary, which is why the flame

height is smaller) and very flat close to the boundary, which apparently makes this

zone stable. On the contrary, for the small values of β used in the other simulations

of this article, the role of the flame holder term seems small.

We have also here another parameter, the width of the boundary layer, which did

not appear in [31]. In Figure 6, the effect of this parameter is shown. We take a = 2

(left, large boundary layer), a = 4 (right, smaller boundary layer) and U = 12,

γ = 0.84, ε = 0.1 R=0.5, β = 0.4. Larger boundary layers correspond to more

unstable flames, a prediction which can tested experimentally (with some caution,

i.e. without changing the flame holder term). This effect could also help explain why

it is observed experimentally that larger injection velocities (and smaller boundary

layers) lead to flames without any cell. It is unclear at the moment if this effect is

sufficient in itself to explain this stabilization.

This effect suggests the following interpretation of the formation of polyhedral
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Bunsen flames. The cellular perturbations form in the boundary layer. This zone

is probably absolutely unstable, and large boundary layers give more time for the

perturbations to develop, which thus have a larger amplitude at the exit of this zone.

Then the perturbations enter another zone, probably corresponding to a convective

instability, and are convected toward the tip. If the perturbations have not reached

their amplitude at saturation in the boundary layer, they can continue to amplify

during this second phase, leading to cells which appear at a certain distance from

the base of the flame, as in Figure 6 (right), where these cells are very weak. These

type of solutions have indeed been experimentally observed in [31] (not in their

simulations however). If one follows this line of reasoning, the boundary layer width

should be compared to typical unstable wavelengths ( most unstable or neutral

wavevectors). If this width is much smaller than the unstable wavelengths, the

polyhedral flames should be unlikely to be observed. This picture is complicated

by the effect of the flame holder term (Figure 5) which probably changes locally

the unstable wavelengths, one effect being that flames close to the injection are also

closer from their mirror image, which damps the Landau instability.

22



5 Conclusion

In this article, we have solved for the first time the Frankel equation for three-

dimensional flames, in the particular case of the Bunsen burner configuration. This

daunting task has been made possible in a reasonable amount of time by using tools

(triangulated surface library and N-body problem algorithm) made freely available

by their authors, see below the acknowledgments and the references sections. Even

with this help, the treatment of intersections is by no means easy, and our program

far from perfect. We have tried to explain here the algorithms used to overcome

these difficulties. Extensions to other geometries and to turbulent conditions would

be interesting.

On the Bunsen burner case, we have shown that this equation can at the same

time describe effects absolutely typical of the hydrodynamic Darrieus-Landau in-

stability (Section 3) and also describe polyhedral flames (section 4) in a manner

very close to the existing results obtained with the thermal-diffusive instability. We

have also emphasized the possible importance of the boundary layer width in this

problem.
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List of Figures

Figure 1 : zoom on a triangulated surface used in the simulation (right of Figure

3)

Figure 2 : Flame submitted to a sinusoidal forcing. Parameters U = 12,

γ = 0.85, ε = 0.1 R=0.5 ω = 200 Left and middle flame: same flame, seen

from two angles, showing the development of the Landau instability toward the tip.

Right: same flame some time later, showing a merging of two cells close to the tip.

Figure 3 : Flame submitted to a white noise at the base. Left: A flame soon

after the instabilities have reached the tip Right: typical flame some time later. Note

the sinuous shape of the flames close to the tip. parameters U = 12, γ = 0.85,

ε = 0.1 R=0.5
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Figure 4 : Polyhedral flames obtained for two different values of the injection

velocity parameters γ = 0.85, ε = 0.1 R=0.5,β = 0.4, a = 2, U = 12 (left),

U = 6 (right)

Figure 5: Flames obtained for two different values of the flame holder parameter

β = 0.4 and 20 other parameters U = 12, γ = 0.85, ε = 0.1 R=0.5, a = 2

Figure 6: Flames obtained for two different values of the boundary layer thick-

ness, a = 2 (left), a = 4 (right) other parameters U = 12, γ = 0.84, ε = 0.1

R=0.5, β = 0.4
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