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Abstract

We consider the Euler equations on the Lie algedb(d, C) with a diagonal quadratic
Hamiltonian. It is known that this system always admits ¢hfenctionally independent
polynomial first integrals. We prove that if the system haatmnal first integral function-
ally independent of the known three ones then it has a polyaddirst integral that is also
functionally independent of them (so called fourth intédgrahis is a consequence of more
general fact that for these systems the existence of Darpolyxomial with no vanishing
cofactor implies the existence of polynomial fourth intdgr

1 Introduction

For a given system of (polynomial) ordinary differentialuatjons depending on parameters,
the question arises, how to recognize those values of tremmers for which the equations
have (rational or polynomial) first integrals? Except fom&simple cases, this problem is very
hard and there are no satisfying methods to solve it.

In this paper we obtain a partial result concerning this [@wbrelevant for the so-called
Euler equations on Lie algebrdfl], B,[3,[6/IB[ 14]. For these equations also the problem is
largely open.



Let us recall their definition. LetL,[-,-]) be a finite dimensional (real or complex) Lie
algebra.L* its dual. Forf, g € C*(L*) their Lie-Poisson bracke{ f, ¢} is defined by

{f, 9} (@) = (2, [df (x), dg(x)]),

wherex € L*, df (z), dg(x) € (L*)* = L** =~ L, and where forr € L* andy € L, (x,y) =
z(y).

Recall that the functiod’ € C>°(L*) is aCasimir functiorof the Lie algebrd. if {f, F'} =
0 for everyf € C(L*).

Elementz € L* can be writterw = > "  wef; x; € C°(L*), 1 < i < n, where
{e7,... e} } is the basis dual to a fixed badis, . .., e,} of L.

For a given functiorH € C*°(L*), the system of differential equations

W HY, 1<i<n, (1.1)
dt
is calledEuler equations on the Lie algebiawith the HamiltonianH.

It is easy to se€[]13] that a functidi defined onL* is a first integral of systenj (1.1) if
and only if{ F, H} = 0. In particular the Hamiltonia#/ and any Casimir function of the Lie
algebral are first integrals of systerp (I..1).

Only for HamiltoniansH that are functionally independent of the Casimir functjoine
right sides of systenj (1.1) does not vanish identically.t Thahy we will always suppose that
the Hamiltonian and Casimir functions are functionallyependent.

¢From now on we will concentrate only on complex six dimenaid.ie algebrao(4, C) -
the Lie algebra of the complex Lie group SA{}and study one of the simplest examples of
Euler equations on it - the Euler equations correspondirtgecso calleddiagonal quadratic
Hamiltonian

The Lie algebraso(4, C) admits two functionally independent polynomial Casimindu
tions. Thus any system of Euler equations on it always adimite functionally independent
first integrals.

For this Lie algebra, on the level manifolds of two functitpandependent Casimir func-
tions any Euler system, at least locally, can be reducedastiindard Hamiltonian equations
with two degrees of freedom (see Secs. 6.1-6.2 and Theozrfrém [IJ]).

In appropriate basis of Lie algebsa(4, C) (see [1]), the Euler equations corresponding to
a diagonal quadratic Hamiltoni@wZ?:1 \;z?, take the following elegant form:

dx
d—f}l = (A3 — A2)Tox3 + (Ag — A5)T576,
dx
d—; = ()\1 — )\3)371373 + ()\4 - )\6)374376,
d[[’g

— = (A2 — Az + (A5 — \g)xgs,
(1.2)

dx
d—t4 = ()\3 — )\5)373375 —+ ()\6 - )\2)372376,
dx
d—755 = (A — A3)xzzy + (A1 — Ng)x126,
dx
6 (A2 — Ag)zazs + (A5 — A1) 225,
dt



where\ := ()\1,...,\s) € C® Exactly the same construction takes place for Lie algebra
so(4,R), where) := (\y,. .., \s) € RS and equationd (1.2) remain unchanged.
They always have three first integrals:

6 6
Hy = xy14 + wows + w306, Ho = nga Hjz = Z )\zx? (1.3)
i=1 i=1

Unless all the\;, 1 < i < 6, are equal, in which case the right hand sides of sysferh (1.2)
vanish, these three integrals are functionally independen

The first integrald?; and H, are Casimir functions of the Lie algebya(4, C).

Whatever the chosen notion of integrability the systenj)(X®be integrable needs a sup-
plementary first integrall,, functionally independent dif;, H, andHj, called shortly dourth
integral. The only known cases when the fourth integral exists aréthieakov casedefined
by the condition

M - )\1)\4()\2 —|- )\5 - )\3 - )\6) + )\2)\5()\3 + )\6 - )\1 - )\4) + )\3)\6()\1 + )\4 - )\2 - )\5) - 0,
and theproduct casedefined by the conditions
)\1 = )\47 )\2 = )\57 )\3 = )\6'

In both cases the fourth integral can be found among the paiyais of degree 2 at most
(see [1[T0]). As in[[1j0] the table of these first integrals wascorrectly printed, for the sake
of completeness we reproduce its correct form in Appendix.

We will concentrate only offourth rational integrals As is well known, their absence im-
plies the absence of algebraic fourth integrgl$ [B], 18, $9yell as the absence of meromorphic
fourth integrals defined on some neighbourhood of C¢ [2Q].

The main aim of this paper is to prove the following theorem.

Theorem 1.1. If for some) € CS, the Euler equationd (1.2) admit a rational fourth integral
then they admit a polynomial fourth integral.

Let us note that from the validity of Theordm]1.1 in completting, its validity in real one
follows immediately.

The proof of Theorer 1].1 is based on the study of so c&edoux polynomial¢see Sec.
£.1) for Euler equationg (3.2) and the rich symmetry proesif these equations.

Let us underline that the following conjecture remains open

Conjecture . In both casesso(4,C) andso(4, R), Euler equations[(1]}2) have a polynomial
fourth integral only either in the Manakov case or in the proticase.

See [1IBH]6,1%,17] for partial results which confirm it.

The paper is organized as follows. In S¢t. 2 we collect alllimy facts needed for the
proof. In Sec[]3 Theorem 1.1 is obtained as a direct consegqueEfrmore general Theorem 3.1
concerning Darboux polynomials. Let us stress that all fsrace completely elementary.

Finally let us note that in[[9] an exact counterpart of ThewsE..1 and 3]1 is proved for so
called natural polynomial hamiltonian systems of arbytrdegree of freedom.



2 Prdiminaries

2.1 Darboux polynomials
Consider a polynomial system of ordinary differential eguas defined irC"

dz;
dt
For a holomorphic functio” defined on some open subset®f let us define

The operatorl is called aderivationassociated with system of differential equations|(2.1).
A polynomial P € Clzy, ..., z,] \ Cis called aDarboux polynomiabf system [[Z]1) if for
some polynomiab € Clzy, ..., z,] one has

d(P) = SP. (2.2)

The polynomialS is called acofactorof the Darboux polynomiaP. WhensS # 0, P is called
aproperDarboux polynomial. Whes' = 0, P is nothing but a first integral of systen (2.1).
Here we mention some properties of the Darboux polynomials:

(D1) Let P, and P, be non-zero relatively prime polynomials that are not firgegrals of
system [(2]1). Then the rational functidti/ P is a first integral of systeni (2.1) if and
only if P, and P, are its proper Darboux polynomials with the same cofactor.

(D2) All factors of a Darboux polynomial of systein (2.1) atsceits Darboux polynomials.

(D3) If P, and P, are two Darboux polynomials of systern (2.1) with cofactSisand S,
respectively, the®, P; is also its Darboux polynomial with cofactéf + Ss.

(D4) Let us suppose that the right-hand sides of sysferh é2elhomogeneous polynomials of
the same degree. Lét be a Darboux polynomial of systerh (2.1). Then its cofactor
is homogeneous and all homogeneous componemnftsané also Darboux polynomials of

system|[2]1).

See [IP] for more details.

2.2 Permutational symmetries

The Euler equationg (1.2) possess invariant propertycpkbemutational symmetryThe per-
mutational symmetries can be described generally as fellovetz = (zq,...,z,) € C",
A= (A1,...,\y) € C" and letV (z, \) = (Vi(x,N),...,V,(z, X)) depends holomorphically
on(x, \) € C?". Let us consider the following system of differential edoas

dx

— =V(x, ). 2.3

= V() (2.3)
Leto be an element of the symmetric grotip i.e., the group of all permutations ¢f, ..., n}.
Fora = (ai,...,a,) € C* we willnoteo(a) = (asq); - - - Ao(n))-

4



A permutations € S,, will be called apermutational symmetrgf system [2]3) if for all
(z,\) € C*, one has

Vi(o(z),0(N)) = eVouy(x, A), 1 <k<n,

wheree = +1 is a constant independent bf All permutational symmetries of systern (2.3)
form a group.

Theorem 2.1. Leto be a permutational symmetry of syst¢m|(2.3).
(a) LetF = F(z) be afirst integral of systerf (2.3). Then the functior- F oo~ ! is afirst

integral of the system

dx
i V(z,o(N)). (2.4)

(b) Let P = P(z) be a Darboux polynomial of systefi {2.3) (S€€](2.2)). Let ts dthe
derivation associated with system {2.4). Then

whereP = Poo~tandS = Soo!.

For the proof of (a) see Sec. Il df'J10]. The proof of (b) is ekaalong the same lines.
The group of permutational symmetries of the Euler equat{@r®) consists of 24 elements.
Among others it contains the following five permutations:

7(1,2,3,4,5,6) = (2,1,3,5,4,6),
73(1,2,3,4,5,6) = (3,2,1,6,5,4),
74(1,2,3,4,5,6) = (4,2,6,1,5,3), (2.5)
75(1,2,3,4,5,6) = (5,4,3,2,1,6),
76(1,2,3,4,5,6) = (6,2,4,3,5,1).

For more details see Sec. Il dfJ10] where, in its notations= o, 73 = 03, 74 = o7,
Ts = 0g 0 07 and7g = o7 0 03.

Let P be a proper Darboux polynomial of system]1.2), thai(iB) = SP, whered is the
corresponding derivation arl € C[xzy, ..., 26]\{0}, S(z) = 30, auxi, a1, ..., a6 € C and
at least one of them is non-zero, say # 0.

According to [2.b)r;,(ig) = 1. Now, Theorenj 2]1b implies that without any restriction of
generality, one can always assume that~ 0. This fact will be used in the proof of Theorem

L1

Furtherd will always denote the derivation associated with the Eetprations[(T]2).

2.3 Another invariance property

Beside permutational symmetries, the Euler equation pbgsess also another invariant prop-
erty related to the change of signs of the couples of varsale x,), (z2,z5) and (xs, z6)
respectively. More precisely, let us note:

7'14(371,.1’2,.1’3,1‘4,1‘5,.1‘6) = (—.Tl,x27.r37 _x47x57x6)7
725(3717562,563,374,565,566) = (5617 —T2, T3, Ty, —375,506)7 (2.6)

736($1,$2,$3,$4,$5,$6) = ($1,$2, —I3, T4, Ts, —$6)-

o



It is easy to see that fdij) = (14), (ij) = (25) and(ij) = (36),
Tijil odo Tij == —d,

that means that under these transformations, the righbéidguations[(1]2) changes of sign.
For the polynomial’ € C[z4, ..., z¢), let us not€l|;; := T or;;. ThusifTis a first integral
of the system[(T]2), thel{,4), T(25) andT s also are first integrals of this system.
Moreover, ifP is its Darboux polynomial, that ié(P) = SP, thend(Pyj;)) = —S5)Pj)-
In particular if

d(P)(r) = (11 + Ty + 33 + s + @525 + apze) P(2), (2.7)

then
d(P(14)>(.T) = (061371 — Qg — (X33 + Ly — A5y — OZGSL’G)P(l4) (.T) (28)

and
d(P(Qg,))(ZL‘) = (—Oéll‘l + o9 — (N3X3 — gy + a5ls — Oé@l‘@)P(Qg,) (ZL‘) (29)

2.4 Explicit form of somelinear differential operators

Forl <i < j <6 letus denote byX;; the linear differential operator defined by the formula

a(Hla H27 H37 G)

( ) ¢ 3(:1:1,...,fi,...,;f:j,...,x(;)

whereG is a holomorphic function andg,. means the absence «of.

These operators play a crucial role in the proof of Thedréln Ib. particular, for this proof
we need the explicit formula for some of them.

To simplify the notations, we writed;; = A\, — \; fori # j, 1 < 4,5 < 6. The needed
formulas are:

A64T2TaT6 + Ay5T3T4T5 + >\56$1$59€6)

a

3:

VS

ENE

+ | AsT17226 + 51212375 + )\653745654176)

S

Q

Xyq

0
2 2
A61T1%6 + A\aT1T3T4 + >\46!E4$6> a

+ 8375

/N

0
+ )\15:cf:c5 + A1 T12224 + )\54:@21335) E
X6

VS

2 2
X25 = )\63.1’1563376 + )\34563374 + )\46.1’4566)

)
)

2 2
A3127T3 + A\aZ1 2426 + >\43$3$4>

VS

2 2
M6T1T6 + A1 010374 + NeaTiTe

+

S

2 2
)\131’1373 —+ )\61551376 —+ )\36.1’31’4376

_l’_
/N

+

9

o5 Q o5 o))
FlofleF]e e

RS

0
A53T123%5 + A34ToT3Ty4 + AapTaT526 ) m—

Xog =

VS



0
+ (A15!E%$5 + A1 T2y + >\54!E421$5> G
Zs3

+ <)\13$L’1372563 + X511 2576 + )\353735544175)

0

8$‘5’

dxy
+ (A31!E%$3 + A1 2476 + >\43$3$i>
0

X35 = ()\623:1:62:176 + Aoy ox34 + )\4655437556’6) s
1

0
+ (Aw!ﬁ%%‘ + ApnT1T374 + >\64$i$6> G
€2

0
+ <)\12$U1372553 + N6171Z5T6 + >\263725€4376> B
4

0
+ (}\21[[’%1’2 + A1 1475 + >\425752$421> Oz’
L6

X3 = ()\5237156’2375 + >\24SU§£174 + )\45374SU§> B
1

2 2 d
+ <>\15$1$5 + A T1T2y + >\54!E4$5> 5
8372

+

0
()\121’1373 + )\511’137? + )\25.1’21’4375) —8

XLy
0

+ (}\21[[’%1’2 + A1 1475 + >\425752$421> E
Is

0
X6 = ()\23331:62:1:3 + AaoToz476 + )\3455337456’5) —6:70
1

0
+ ()\211’13721’6 + )\13.1’11’3375 + )\32.1’21’3374) %
4

2 2
+ (As12773 + Aaz1 2476 + >\43$3$4>

Oy
0

+ 8—1‘3

2 2
AM2Z1 T2 + A1 212425 + >\24!E2$4>

It is easy to see that outside of some very special subcaslee bfanakov case, all differential
operatorsX;;, 1 <1i < j < 6 are not identically zero. Note thaf;;(H,) = 0,1 <r < 3, and
moreoverXij(l’i) = XU(SL’]) =0,1<1 <7< 6.

2.5 Linear partial differential equations

Let us consider the following linear partial differentigjueation

Z a;(x) oF 0, (2.10)

i=1 Om;
wherea;, 1 < i < n, are holomorphic functions defined on some open subsetC".

Theorem 2.2. Letz, € U be such that not alk;(z,), 1 < ¢ < n, vanish. Let us suppose
that £, ..., F,,_1, F' are holomorphic ori/ solutions of equatio (Z.]L0). Let us suppose that



the vectorggrad F;)(z) are linearly independent. Then there exists a neighbouthoof x,
VY C U and a holomorphic functiof defined orV, such that for every € V one has

F(z) = QF (), ..., Foi(2)). (2.11)

Seet31 of [4] and alsd156 of [I§]. For modern treatment see tHelomorphic Rectifica-
tion Theorem(Theorem 1.18) in[]7], which immediately implies Theorgrd.2.

Further/ denotes a subset 6F defined by the condition that for all< i < j < 6, and any
pointz € U, the vectorggrad Hy)(z), (grad Hs)(2), (grad Hs)(z), (grad z;)(2), (grad z;)(z)
are linearly independent. Unless aJl 1 < i < 6, are equall/ is always an open dense subset
of C°.

Further saying that identity (2]11) is locally fulfilled, wederstand that this is so on some
neighbourhood of some point frobh

3 Proof of Theorem 11

Let us suppose that the irreducible rational fractiyii P,, whereP,, P, € Clxy, ..., z¢, IS @
first integral of system[(1.2) and th& (and thus alsd>) is not its first integral. Then (D1)
from Sec[Z]1 implies tha®?, and P, are proper Darboux polynomials of systgm](1.2). Since the
right-hand sides of syster (1.2) are homogeneous of the dagnee then from (D2) and (D4) it
follows that system[(1].2) admits also an irreducible honmege:s proper Darboux polynomial

P and its cofactor is a homogeneous linear form, i.e.

6
S = E ;1
i=1

whereq;, 1 < ¢ < 6, are some constants. Sine# 0, then at least one of its coefficients is
not zero. As explained in Sec. P.2, without any loss of gditgrae can assume that; # 0.
TheorenT 1]l is now a direct consequence of

Theorem 3.1. If for some\ € C¢, the Euler equationg(J.2) have a proper Darboux polynomial
then they have a polynomial fourth integral.

Proof. It is quite long and it is naturally divided on three almostépendent parts.

Part 1. Construction of polynomial first integral.

Let P be a proper Darboux polynomial of the Euler equatigng (1F2pm (2.7) and[(2]8)
it immediately follows thatR = P P4 is a Darboux polynomial of systerp (IL.2) with cofactor
2(0&1371 + 044564), i.e.

d(R)(x) = 2(a1xy + auzy) R(2), (3.1)

Thus, from [2.9), one deduces that for the polynorbiak R .5
d(U)(z) = —2(anz1 + agzy)U(z),
and finally (see (D3) from Se¢. 2.1) that

where
V:= RU = RR) = (PP(14))(PP(14))(25) = PPuayPas) P14)2s)-

8



This means thal’ is a polynomial first integral of the Euler equatiops)(1.2).

The main difficulty is to decide wheW is a fourth integral. We will prove that this is always
the case outside of some very special subcases of the Macakev This is proved iRart 2
when the polynomialg? andU are relatively prime and ifart 3 when this is not the case.
As in the Manakov case the polynomial fourth integral alweyists (see Appendix), this will
prove Theorem 3] 1.

Part 2. R andU are relatively prime polynomials.

We have to decide when the first integrdls, H,, H; (see [1.8)) and” are functionally
independent. Let us suppose that they are functionallyrakpe.

Thenforalle;, 1 <i<6

We will prove that outside of very special subcases of thed&kaw case this contradicts # 0.
As one supposes that polynomidsandU are relatively prime, therf (3.2) shows that either
R dividesX;;(R), i.e.
Xij(R) = fiR, (3.3)
where f;; is a homogeneous polynomial of second degree¥ ofR) = X;;(U) = 0. For the
first possibility, according td (3.2) anf (B.3), we have that

X;;(U) =—f;U. (3.4)

In particular Xo5(R) = fos R and Xo5(U) = —fo5U. Applying to the first identity the
change of variables,; (see Sec. 2.3), we conclude théf;(U) = ( fo5 o 795)U and finally that
Jos = — fas 0 To5.

But this is impossible becauge;, cannot depend om, andzs. Indeed, the maximal powers
of z, and ofx; in Xo5(R) respectively are never greater than their respective mabpowers
in R. Thusf,; = 0 and consequentlXss(R) = Xo5(U) = 0.

Hence we have proved thatsatisfies the equation

a(H17 H27 H37 R)
a(xlu T3, Ty, .T6)

Xo5(R) = det =0. (3.5)

This is a linear homogeneous partial differential equat@nR. It has five solutiondd;,
H,, Hs, x5 andzs that are never functionally dependent unl@ss= A3 = Ay, = A\¢ (a subcase
of the Manakov case). Thus by Theorgm 2.2 (see Sec. 2.4.)awethat locally

R: @(Hl,HQ,Hg,I‘Q,ZL‘5), (36)

where® is some holomorphic function.

Let us note that not onl{/ = R o 7y5, but alsoU = R o 735. This is so becaus® is
a homogeneous polynomial of even degree and contains ontpmials that have only even
sum of the powers af, andz,. Thus the monomials ok containing even sum of the powers
of x5 andxs contain also even sum of the powersmgfandz¢ and respectively, the monomials
of R containing odd sum of the powers @f andz; contain odd sum of the powers of and
Zg.

As U = R o 734, exactly in the same way aks (B.5), one proves fhat= 0, or equivalently
that
a(H17 H27 H37 R)
a(xlu T2, Ty, .T5)

X36(R) = det = 0.

9



This equation has five solution&f;, H,, H3, x3 andzg that are never functionally dependent
unless\; = A\, = \; = X5 (a subcase of the Manakov case). So that locally

R = Q(H17H27H37x37x6)7 (37)

for some holomorphic functiod.
¢From [3B) and(3.4) we know that

X56<R) = f56R (38)

and
X56(U) = _f56U- (39)

where ;s is @ homogeneous polynomial of degree twoXgg(R) = X56(U) = 0.

We prove thalfss cannot depend om,, x3, x5 andzs. Indeed, applying to identity (3.8) the
change of variables,; (see [2.6)) we conclude thats(U) = —(fs6 © 725)U. Then [3.P) leads
to f56 = [f56 © Tos.

Thus f5¢ either does not depend an andz; or is a quadratic polynomial of them. The
later is impossible because the biggest sum 3 of z,%25” in X56(R) is never bigger than the
same sum irR plus 1. Thusfss does not depend ory andzs.

Exactly the same arguments but applied to the change otblesiag lead to the conclusion
that f5¢ does not depend ary andxs. Thus fxg, if it is not zero, is a homogeneous quadratic
function only ofz; andz,.

Completely analogous considerations show that the polyaiserfys, fog andfss, if they are
not zero, are homogeneous quadratic functions only, @ndzx.

Assume now that at least one of the polynomigls fs35 and fo6 is not zero. First let us
examine the case whefigs # 0. We have

X35(R) _ @
X56<R) f56
Hereafter for all representations Bfas a function of{,, H,, Hs and two of the coordinates

(see for example[(3.6) anfl (B.7)) we denotedbythe partial derivative with respect teth
variable,1 <i < 5. We have

(3.10)

X35(R) = X35(12)04®(Hy, Hy, H3, 2, 75),

3.11
Xs56(R) = X56(22)04P(Hy, Hy, H3, 22, x5). ( )

Let us note thad, ®(H,, Hy, Hs, x2, x5) # 0 because otherwise we would hafig = 0. Thus
(B-1I0) leads to

2 2
_ Xss(m2) | AeTims + AnT17374 + AeaTiTe  fas

A = = = )
Xs6(x2) )\3137%553 + ANux1T476 + )\4337355421 f56

The polynomialsfs; and f5¢ depend only on;; andx, while A; depends omy, x3, x4 andg.

Thus by necessity we have
0A

Oz

Simple computations show that the last condition is eqaiviaio

=0.

)\13)\161‘411 — ()\%4 + )\16>\43 + )\13)\46)1‘%1‘2 + )\43)\461‘3 =0. (312)

10



Let us consider representatidh) of R: R = V(H;, Ho, H3, x3, x6) and vector fieldX .
As above we have
Xos(R) _ fos

X56(R) - f56.
Taking into account tha®, W (H,, Hy, Hs, x3,16) # 0 becausefss # 0, we deduce from this
equation that

~ Xos(wz)  MisaTas + dumiaors + Asaries  fas

© Xse(m3)  Moa?mo + AnTi@aZs + Aaaox?  frg

The polynomialsfss and f5¢ depend only on:; andx, while A, depends ony, x3, x4 andxs
and therefore

Ay

0% _y,
81‘2
The last condition is equivalent to
)\51)\211‘411 - ()\%4 -+ )\24)\51 + )\21)\54)1‘%1‘2 -+ )\54)\241‘3 = 0. (313)

Let us investigate when (3]12) is fulfilled. This happensyonithe following four cases:
1. Az =Mz = 0;

2. Mig = =0;
3. Mg = M3 =0;
4. )\16 = )\46 = 0

In case 1 K13 = A3 = 0) Xs6(x2) = 0, thus by [BI1)X56(R) = 0 and finally f56 = 0.
This contradicts our assumption thgg # 0 and we do not consider this case now.

Case 2 {13 = M\ = 0) and case 3X;s = \y3 = 0) are particular cases of the Manakov
case.

Let us consider case 4{; = Ay = 0). Equating to zero e.g. the coefficientafin the left
hand side of[(3.13) we conclude that eithgr = 0 or \5; = 0. Both possibilities together with
the condition of case 4 lead to particular cases of the Mane&se.

When f3;5 # 0, in the same way as above we come to the following expressions

Bl _ X56(5C2> _ )\3137%563 + )\14.1’1564376 + )\43373563 _ @
Xas(x2) Mgtz + Auz1232 + Aqatizs  fas)
By — Xos(x6) _ Ais@ixs + A1 21222y + Asaxxs _ @
Xss(w6)  Aorize + AMuz124ms + Moo fis

and therefore
0B, 0 0B,

(‘3903 o 61‘2
As in the previous case the last two equations lead to péaticases of the Manakov case.
When f55 # 0, we come to the expressions:

=0.

Cl X23($C5) _ )\6137%376 + )\14.’171373374 + )‘4637421376 _ @
Xog(zs)  Asizizs + Auz1246 + Aazx3r]  fos
CQ . X56(5C3> _ )\1237%562 + )\41.1’1564565 + )\24372563 _ @
Xog(xs)  Aisizs + Auz12omg + Asazizs  fos
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that give
8373 8:62
These equations also lead to particular cases of the Marcass:
Let us suppose now thdts = f35 = f56 = 0. From the equatiotX;s(R) = 0 we conclude
that (out of the subcasg = Ay = A3 = )\, of the Manakov case) locally, for some holomorphic
function© one has

R - @(Hla H27 H37 Ts, .CCG)-
Wheno,0(H,, Hy, Hs, x5, x6) # 0, the equationX3s(R) = 0 leads to

<)\211‘%$2 + A\uz1T475 + >\42$2$i) 04O(Hy, Hy, H3, x5, 26) = 0,

On the other hand the equatiofs(R) = 0 gives

()\31x%x3 + A\uT12476 + )\43$3$Z>34@(H17 H,, H3, x5, 26) = 0,

i.e. \31 = Ay = A3 = 0 that, together with[(3.14), leads to the already excludee sa =
Ay = A3 = A4
What happens whet,©(H,, Hy, Hs, x5, x¢) = 0? In this case we have

65@(H1, Hy, H3, s, 1’6) #0

because otherwise it will follow that is functionally dependent o, H, and Hs. But this is
not so. Indeed, as follows frorh (B.1%,is a proper Darboux polynomials because# 0. The
equationXy;(R) = 0 gives

()\31x%x3 + A\uT1 2476 + )\43$3l’i) 0s0(Hy, Hy, H3, x5, 26) = 0,

)\31 = )\14 = )\43 =0. (315)
The equations;(R) = 0 gives

(>\2137%562 + A\uT1 2475 + )\42$2$i>35@(H17 H,, Hs, x5, 26) = 0,

i.e. \a; = A\ig = Ay = 0 that, together with[(3.]15), leads to the already excludee ca
Thus the assumption that,, H,, H3 andV are functionally dependent whehandU are
relatively prime can eventually be true only in some verycsgesubcases of the Manakov case.

Remark. We have to note here that there really are some subcases Mbtiekov case when
our procedure does not lead to a fourth integral. For exampEn\; = Ay = A5 = A\ =0
and); = —\; (subcase of case 4) the polynomiak= x5 + 3 is a proper Darboux polynomial
of the Euler equation$ (1.2). However, applying our procedunP, one obtains a polynomial
first integral that is functionally dependent éf. But we know that in the Manakov case there
always exists a polynomial fourth integral (cf. AppendiXhat is why we do not exclude the
Manakov case from the condition of the theorem.
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Part 3. R andU are not relatively prime polynomials.
We have forR andU

R = PPuy and U = Pos Puayes)-

Since the polynomiaP is irreducible, the polynomials),,), P25y and P45 are also irre-
ducible.
Thus polynomiald? andU are not relatively prime only in the following 8 cases:

1. P = Ppg);
2. P = —Py);

3. P= P(14)(25);

4. P = —P(14)(25);

5. Pusy = Pps) thatis equivalent to 3;

6. Pu4y = — P25 that is equivalent to 4;

7. Pusy = Puaayes) thatis equivalent to 1;
8. Pus = — P25 thatis equivalent to 2.

Let us examine case 1. The cofactorfofs
Q11 + QaTo + Q3T3 + 4Ty + A5T5 + QeTe-
According to [Z.P) the cofactor df s is
—QT] + QaTe — 3T3 — 4Ty + Q5T5 — QL.
P and P,5, are equal in the case under consideration. Comparing thedfactors we find
a1 =0, a3=0, ay =0, ag =0.

However this contradicts our assumption that# 0. In the same way, cases 2, 3 and 4 also
lead toa; = 0. O

As an example of application of the procedure for the cowesitya of the fourth integral
described in the above proof, let us consider the produetwagn)\; # )\, and)\; # A\3. One
can easily see that in this case the polynomial

A A
P:%$2+$3+%$5+ZC6,

wherec = /A13\21, iS @ proper Darboux polynomial of system {1.2) with cofacta;; + z4).

HereP = P4 and thusR = PPy = P? andU = (P?)2s5) = P(225). Finally the polynomial

A 2
V =RU = (PP(25))2 = —)\—E(ZEQ + 1‘5)2 + (1‘3 + :E6)2

13



is a fourth integral of[(1]2). In fact, in this example, aliga’ P»s) is a fourth integral.

The explicit form of the polynomial fourth integral whens # \; and A, # A3 or when
A3 # A and\; # A, follows now from Theorer 2.1b applied to the permutatioyaisetries
T = 7, o 73 and7? respectively.

Remark. When comparing our systerp (L.2) with its "twin brother” - tBeler-Poisson equa-
tions of heavy rigid body motion (sef [2[3] I4] [[3, 18]) wedalade from [2]L] (see alsd11])
that for these equations the exact counterpart of Theprdnhdlds. Nevertheless, the exact
counterpart of Theorerp 3.1 for Euler-Poisson equatioris.fdndeed, in the non-integrable
so-called Hess-Appelrot case, the proper Darboux polyabemists.

Appendix

Here we explicitely write down the fourth integral for the Mekov case and product case in form obtaineﬂh [10].

The table below covers all the space of paramdtess << satisfying the Manakov condition. In this table
all cases are explicitly written down, unless they can baided one from another by the permutational symmetry
argument. Last column in this table contains necessaryufidisnt conditions for functional independence of the
integrals. The generic case in the table is defined explibifithe conditions of functional independence of first
integralsH,, Ho, H3 and F’ given in the last column. For last four rows the listed firgegrals are functionally
independent except for the trivial case when all componginisare equal. The results given in this table remain
valid also when € CS.

Functionally independent first integrals for the Manakaoseca

Case First integrals Conditions
Generic H,, Hy, Hj, [A16] + [A62| > 0 and
F = )\16)\24$i+ |>\16| + |>\51| > 0 and
>\51)\62$g — >\16)\62$% |)\24| + |)\62| > 0 and
|>\13| + |>\32| >0
A6 = Ag2 =0 Hy, Hy, H3, [Aaz] + [As3] >0
(Casel) G =} + ] +a?
M3 =Xs3 =0 | Hy, x3, x4, x5 no conditions
Mg =A51 =0 Hi, H,, Hs, |)\43|+|)\63| > 0 and
(Case ) G = AoaAaszi+ [A43] 4 |A24] > 0 and
)\24>\63:17§ — )\43)\62$% |>\24| + |>\62| > 0 and
|>\13| + |>\32| >0
M3 =MXe3s =0 | Hy, Hy, H3, x5 no conditions
A3 =Aog =0 Hl, HQ, IT[?,7 x5 no conditions
Aog = Ag2 = 0 Hl, HQ, IT[?,7 Te no conditions
)\13 = )\32 =0 Hl, HQ, Hg, 1 no conditions

In the product case, one can take as a fourth integral
Hy = Mz124 + Aawaxs + A3wswe,

which when(A1, A2, A3) # (¢, ¢, ¢) for somec € C, is always functionally independent &f,, H> andHs.
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