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Abstract

We consider the Euler equations on the Lie algebraso(4, C) with a diagonal quadratic
Hamiltonian. It is known that this system always admits three functionally independent
polynomial first integrals. We prove that if the system has a rational first integral function-
ally independent of the known three ones then it has a polynomial first integral that is also
functionally independent of them (so called fourth integral). This is a consequence of more
general fact that for these systems the existence of Darbouxpolynomial with no vanishing
cofactor implies the existence of polynomial fourth integral.

1 Introduction

For a given system of (polynomial) ordinary differential equations depending on parameters,
the question arises, how to recognize those values of the parameters for which the equations
have (rational or polynomial) first integrals? Except for some simple cases, this problem is very
hard and there are no satisfying methods to solve it.

In this paper we obtain a partial result concerning this problem relevant for the so-called
Euler equations on Lie algebras[1, 2, 3, 6, 13, 14]. For these equations also the problem is
largely open.
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Let us recall their definition. Let(L, [·, ·]) be a finite dimensional (real or complex) Lie
algebra.L∗ its dual. Forf, g ∈ C∞(L∗) theirLie-Poisson bracket{f, g} is defined by

{f, g}(x) = 〈x, [df(x), dg(x)]〉,

wherex ∈ L∗, df(x), dg(x) ∈ (L∗)∗ = L∗∗ ≈ L, and where forx ∈ L∗ andy ∈ L, 〈x, y〉 =
x(y).

Recall that the functionF ∈ C∞(L∗) is aCasimir functionof the Lie algebraL if {f, F} =
0 for everyf ∈ C∞(L∗).

Elementx ∈ L∗ can be writtenx =
∑n

i=1 xie
∗

i ; xi ∈ C∞(L∗), 1 ≤ i ≤ n, where
{e∗1, . . . , e∗n} is the basis dual to a fixed basis{e1, . . . , en} of L.

For a given functionH ∈ C∞(L∗), the system of differential equations

dxi

dt
= {xi, H}, 1 ≤ i ≤ n, (1.1)

is calledEuler equations on the Lie algebraL with theHamiltonianH.
It is easy to see [13] that a functionF defined onL∗ is a first integral of system (1.1) if

and only if{F, H} = 0. In particular the HamiltonianH and any Casimir function of the Lie
algebraL are first integrals of system (1.1).

Only for HamiltoniansH that are functionally independent of the Casimir functions, the
right sides of system (1.1) does not vanish identically. That is why we will always suppose that
the Hamiltonian and Casimir functions are functionally independent.

¿From now on we will concentrate only on complex six dimensional Lie algebraso(4, C) -
the Lie algebra of the complex Lie group SO(4,C) and study one of the simplest examples of
Euler equations on it - the Euler equations corresponding tothe so calleddiagonal quadratic
Hamiltonian.

The Lie algebraso(4, C) admits two functionally independent polynomial Casimir func-
tions. Thus any system of Euler equations on it always admitsthree functionally independent
first integrals.

For this Lie algebra, on the level manifolds of two functionally independent Casimir func-
tions any Euler system, at least locally, can be reduced to the standard Hamiltonian equations
with two degrees of freedom (see Secs. 6.1-6.2 and Theorem 6.22 from [13]).

In appropriate basis of Lie algebraso(4, C) (see [1]), the Euler equations corresponding to
a diagonal quadratic Hamiltonian1

2

∑6
i=1 λix

2
i , take the following elegant form:

dx1

dt
= (λ3 − λ2)x2x3 + (λ6 − λ5)x5x6,

dx2

dt
= (λ1 − λ3)x1x3 + (λ4 − λ6)x4x6,

dx3

dt
= (λ2 − λ1)x1x2 + (λ5 − λ4)x4x5,

dx4

dt
= (λ3 − λ5)x3x5 + (λ6 − λ2)x2x6,

dx5

dt
= (λ4 − λ3)x3x4 + (λ1 − λ6)x1x6,

dx6

dt
= (λ2 − λ4)x2x4 + (λ5 − λ1)x1x5,

(1.2)
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whereλ := (λ1, . . . , λ6) ∈ C
6. Exactly the same construction takes place for Lie algebra

so(4, R), whereλ := (λ1, . . . , λ6) ∈ R6 and equations (1.2) remain unchanged.
They always have three first integrals:

H1 = x1x4 + x2x5 + x3x6, H2 =
6

∑

i=1

x2
i , H3 =

6
∑

i=1

λix
2
i . (1.3)

Unless all theλi, 1 ≤ i ≤ 6, are equal, in which case the right hand sides of system (1.2)
vanish, these three integrals are functionally independent.

The first integralsH1 andH2 are Casimir functions of the Lie algebraso(4, C).
Whatever the chosen notion of integrability the system (1.2), to be integrable needs a sup-

plementary first integralH4, functionally independent ofH1, H2 andH3, called shortly afourth
integral. The only known cases when the fourth integral exists are theManakov case, defined
by the condition

M = λ1λ4(λ2 + λ5 − λ3 − λ6) + λ2λ5(λ3 + λ6 − λ1 − λ4) + λ3λ6(λ1 + λ4 − λ2 − λ5) = 0,

and theproduct case, defined by the conditions

λ1 = λ4, λ2 = λ5, λ3 = λ6.

In both cases the fourth integral can be found among the polynomials of degree 2 at most
(see [1, 10]). As in [10] the table of these first integrals wasnot correctly printed, for the sake
of completeness we reproduce its correct form in Appendix.

We will concentrate only onfourth rational integrals. As is well known, their absence im-
plies the absence of algebraic fourth integrals [8,18,19] as well as the absence of meromorphic
fourth integrals defined on some neighbourhood of0 of C6 [20].

The main aim of this paper is to prove the following theorem.

Theorem 1.1. If for someλ ∈ C
6, the Euler equations (1.2) admit a rational fourth integral,

then they admit a polynomial fourth integral.

Let us note that from the validity of Theorem 1.1 in complex setting, its validity in real one
follows immediately.

The proof of Theorem 1.1 is based on the study of so calledDarboux polynomials(see Sec.
2.1) for Euler equations (1.2) and the rich symmetry properties of these equations.

Let us underline that the following conjecture remains open.

Conjecture . In both cases,so(4, C) and so(4, R), Euler equations (1.2) have a polynomial
fourth integral only either in the Manakov case or in the product case.

See [1,3,5,6,15,17] for partial results which confirm it.
The paper is organized as follows. In Sec. 2 we collect all auxiliary facts needed for the

proof. In Sec. 3 Theorem 1.1 is obtained as a direct consequence of more general Theorem 3.1
concerning Darboux polynomials. Let us stress that all proofs are completely elementary.

Finally let us note that in [9] an exact counterpart of Theorems 1.1 and 3.1 is proved for so
called natural polynomial hamiltonian systems of arbitrary degree of freedom.
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2 Preliminaries

2.1 Darboux polynomials

Consider a polynomial system of ordinary differential equations defined inCn

dxj

dt
= Vj(x1, . . . , xn), 1 ≤ j ≤ n. (2.1)

For a holomorphic functionF defined on some open subset ofCn let us define

d(F ) =
n

∑

i=1

∂F

∂xi

Vi.

The operatord is called aderivationassociated with system of differential equations (2.1).
A polynomialP ∈ C[x1, . . . , xn] \ C is called aDarboux polynomialof system (2.1) if for

some polynomialS ∈ C[x1, . . . , xn] one has

d(P ) = SP. (2.2)

The polynomialS is called acofactorof the Darboux polynomialP . WhenS 6= 0, P is called
aproperDarboux polynomial. WhenS = 0, P is nothing but a first integral of system (2.1).

Here we mention some properties of the Darboux polynomials:

(D1) Let P1 and P2 be non-zero relatively prime polynomials that are not first integrals of
system (2.1). Then the rational functionP1/P2 is a first integral of system (2.1) if and
only if P1 andP2 are its proper Darboux polynomials with the same cofactor.

(D2) All factors of a Darboux polynomial of system (2.1) are also its Darboux polynomials.

(D3) If P1 and P2 are two Darboux polynomials of system (2.1) with cofactorsS1 and S2,
respectively, thenP1P2 is also its Darboux polynomial with cofactorS1 + S2.

(D4) Let us suppose that the right-hand sides of system (2.1)are homogeneous polynomials of
the same degree. LetP be a Darboux polynomial of system (2.1). Then its cofactorS
is homogeneous and all homogeneous components ofP are also Darboux polynomials of
system (2.1).

See [12] for more details.

2.2 Permutational symmetries

The Euler equations (1.2) possess invariant property called permutational symmetry. The per-
mutational symmetries can be described generally as follows. Let x = (x1, . . . , xn) ∈ Cn,
λ = (λ1, . . . , λn) ∈ Cn, and letV (x, λ) = (V1(x, λ), . . . , Vn(x, λ)) depends holomorphically
on (x, λ) ∈ C2n. Let us consider the following system of differential equations

dx

dt
= V (x, λ). (2.3)

Let σ be an element of the symmetric groupSn, i.e., the group of all permutations of{1, . . . , n}.
Fora = (a1, . . . , an) ∈ Cn we will noteσ(a) = (aσ(1), . . . , aσ(n)).
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A permutationσ ∈ Sn will be called apermutational symmetryof system (2.3) if for all
(x, λ) ∈ C2n, one has

Vk(σ(x), σ(λ)) = εVσ(k)(x, λ), 1 ≤ k ≤ n,

whereε = ±1 is a constant independent ofk. All permutational symmetries of system (2.3)
form a group.

Theorem 2.1. Letσ be a permutational symmetry of system (2.3).
(a) LetF = F (x) be a first integral of system (2.3). Then the functionF̃ = F ◦σ−1 is a first

integral of the system
dx

dt
= V (x, σ(λ)). (2.4)

(b) LetP = P (x) be a Darboux polynomial of system (2.3) (see (2.2)). Let us note d̃ the
derivation associated with system (2.4). Then

d̃(P̃ ) = S̃P̃ ,

whereP̃ = P ◦ σ−1 andS̃ = S ◦ σ−1.

For the proof of (a) see Sec. II of [10]. The proof of (b) is exactly along the same lines.
The group of permutational symmetries of the Euler equations (1.2) consists of 24 elements.

Among others it contains the following five permutations:

τ2(1, 2, 3, 4, 5, 6) = (2, 1, 3, 5, 4, 6),

τ3(1, 2, 3, 4, 5, 6) = (3, 2, 1, 6, 5, 4),

τ4(1, 2, 3, 4, 5, 6) = (4, 2, 6, 1, 5, 3),

τ5(1, 2, 3, 4, 5, 6) = (5, 4, 3, 2, 1, 6),

τ6(1, 2, 3, 4, 5, 6) = (6, 2, 4, 3, 5, 1).

(2.5)

For more details see Sec. II of [10] where, in its notations,τ2 = σ1, τ3 = σ3, τ4 = σ7,
τ5 = σ8 ◦ σ1 andτ6 = σ7 ◦ σ3.

Let P be a proper Darboux polynomial of system (1.2), that isd(P ) = SP , whered is the
corresponding derivation andS ∈ C[x1, . . . , x6]\{0}, S(x) =

∑6
i=1 αixi, α1, . . . , α6 ∈ C and

at least one of them is non-zero, sayαi0 6= 0.
According to (2.5)τi0(i0) = 1. Now, Theorem 2.1b implies that without any restriction of

generality, one can always assume thatα1 6= 0. This fact will be used in the proof of Theorem
1.1.

Furtherd will always denote the derivation associated with the Eulerequations (1.2).

2.3 Another invariance property

Beside permutational symmetries, the Euler equations (1.2) possess also another invariant prop-
erty related to the change of signs of the couples of variables (x1, x4), (x2, x5) and (x3, x6)
respectively. More precisely, let us note:

τ14(x1, x2, x3, x4, x5, x6) = (−x1, x2, x3,−x4, x5, x6),

τ25(x1, x2, x3, x4, x5, x6) = (x1,−x2, x3, x4,−x5, x6),

τ36(x1, x2, x3, x4, x5, x6) = (x1, x2,−x3, x4, x5,−x6).

(2.6)
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It is easy to see that for(ij) = (14), (ij) = (25) and(ij) = (36),

τij
−1 ◦ d ◦ τij = −d,

that means that under these transformations, the right sideof equations (1.2) changes of sign.
For the polynomialT ∈ C[x1, . . . , x6], let us noteT(ij) := T ◦ τij . Thus ifT is a first integral

of the system (1.2), thenT(14), T(25) andT(36) also are first integrals of this system.
Moreover, ifP is its Darboux polynomial, that isd(P ) = SP , thend(P(ij)) = −S(ij)P(ij).

In particular if

d(P )(x) = (α1x1 + α2x2 + α3x3 + α4x4 + α5x5 + α6x6)P (x), (2.7)

then
d(P(14))(x) = (α1x1 − α2x2 − α3x3 + α4x4 − α5x5 − α6x6)P(14)(x) (2.8)

and
d(P(25))(x) = (−α1x1 + α2x2 − α3x3 − α4x4 + α5x5 − α6x6)P(25)(x). (2.9)

2.4 Explicit form of some linear differential operators

For1 ≤ i < j ≤ 6 let us denote byXij the linear differential operator defined by the formula

Xij(G) = det
∂(H1, H2, H3, G)

∂(x1, . . . , x̂i, . . . , x̂j , . . . , x6)

whereG is a holomorphic function and̂xr means the absence ofxr.
These operators play a crucial role in the proof of Theorem 1.1. In particular, for this proof

we need the explicit formula for some of them.
To simplify the notations, we write:λij = λi − λj for i 6= j, 1 ≤ i, j ≤ 6. The needed

formulas are:

X23 =
(

λ64x2x4x6 + λ45x3x4x5 + λ56x1x5x6

) ∂

∂x1

+
(

λ16x1x2x6 + λ51x1x3x5 + λ65x4x5x6

) ∂

∂x4

+
(

λ61x
2
1x6 + λ14x1x3x4 + λ46x

2
4x6

) ∂

∂x5

+
(

λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5

) ∂

∂x6

,

X25 =
(

λ63x1x3x6 + λ34x
2
3x4 + λ46x4x

2
6

) ∂

∂x1

+
(

λ16x
2
1x6 + λ41x1x3x4 + λ64x

2
4x6

) ∂

∂x3

+
(

λ13x1x
2
3 + λ61x1x

2
6 + λ36x3x4x6

) ∂

∂x4

+
(

λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4

) ∂

∂x6
,

X26 =
(

λ53x1x3x5 + λ34x2x3x4 + λ45x4x5x6

) ∂

∂x1
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+
(

λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5

) ∂

∂x3

+
(

λ13x1x2x3 + λ51x1x5x6 + λ35x3x4x5

) ∂

∂x4

+
(

λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4

) ∂

∂x5
,

X35 =
(

λ62x1x2x6 + λ24x2x3x4 + λ46x4x5x6

) ∂

∂x1

+
(

λ16x
2
1x6 + λ41x1x3x4 + λ64x

2
4x6

) ∂

∂x2

+
(

λ12x1x2x3 + λ61x1x5x6 + λ26x2x4x6

) ∂

∂x4

+
(

λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4

) ∂

∂x6
,

X36 =
(

λ52x1x2x5 + λ24x
2
2x4 + λ45x4x

2
5

) ∂

∂x1

+
(

λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5

) ∂

∂x2

+
(

λ12x1x
2
2 + λ51x1x

2
5 + λ25x2x4x5

) ∂

∂x4

+
(

λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4

) ∂

∂x5

,

X56 =
(

λ23x1x2x3 + λ42x2x4x6 + λ34x3x4x5

) ∂

∂x1

+
(

λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4

) ∂

∂x2

+
(

λ12x
2
1x2 + λ41x1x4x5 + λ24x2x

2
4

) ∂

∂x3

+
(

λ21x1x2x6 + λ13x1x3x5 + λ32x2x3x4

) ∂

∂x4
.

It is easy to see that outside of some very special subcases ofthe Manakov case, all differential
operatorsXij , 1 ≤ i < j ≤ 6 are not identically zero. Note thatXij(Hr) = 0, 1 ≤ r ≤ 3, and
moreoverXij(xi) = Xij(xj) = 0, 1 ≤ i < j ≤ 6.

2.5 Linear partial differential equations

Let us consider the following linear partial differential equation

n
∑

i=1

ai(x)
∂F

∂xi

= 0, (2.10)

whereai, 1 ≤ i ≤ n, are holomorphic functions defined on some open subsetU ⊂ Cn.

Theorem 2.2. Let x0 ∈ U be such that not allai(x0), 1 ≤ i ≤ n, vanish. Let us suppose
that F1, . . . , Fn−1, F are holomorphic onU solutions of equation (2.10). Let us suppose that
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the vectors(grad Fi)(x0) are linearly independent. Then there exists a neighbourhoodV of x0,
V ⊂ U and a holomorphic functionΩ defined onV, such that for everyx ∈ V one has

F (x) = Ω(F1(x), . . . , Fn−1(x)). (2.11)

See§31 of [4] and also§156 of [16]. For modern treatment see theHolomorphic Rectifica-
tion Theorem(Theorem 1.18) in [7], which immediately implies Theorem 2.2.

FurtherU denotes a subset ofC6 defined by the condition that for all1 ≤ i < j ≤ 6, and any
point z ∈ U , the vectors(gradH1)(z), (gradH2)(z), (gradH3)(z), (gradxi)(z), (gradxj)(z)
are linearly independent. Unless allλi, 1 ≤ i ≤ 6, are equal,U is always an open dense subset
of C6.

Further saying that identity (2.11) is locally fulfilled, weunderstand that this is so on some
neighbourhood of some point fromU .

3 Proof of Theorem 1.1.

Let us suppose that the irreducible rational fractionP1/P2, whereP1, P2 ∈ C[x1, . . . , x6], is a
first integral of system (1.2) and thatP1 (and thus alsoP2) is not its first integral. Then (D1)
from Sec. 2.1 implies thatP1 andP2 are proper Darboux polynomials of system (1.2). Since the
right-hand sides of system (1.2) are homogeneous of the samedegree then from (D2) and (D4) it
follows that system (1.2) admits also an irreducible homogeneous proper Darboux polynomial
P and its cofactor is a homogeneous linear form, i.e.

S =

6
∑

i=1

αix1,

whereαi, 1 ≤ i ≤ 6, are some constants. SinceS 6= 0, then at least one of its coefficients is
not zero. As explained in Sec. 2.2, without any loss of generality we can assume thatα1 6= 0.

Theorem 1.1 is now a direct consequence of

Theorem 3.1. If for someλ ∈ C6, the Euler equations (1.2) have a proper Darboux polynomial
then they have a polynomial fourth integral.

Proof. It is quite long and it is naturally divided on three almost independent parts.
Part 1. Construction of polynomial first integral.
Let P be a proper Darboux polynomial of the Euler equations (1.2).From (2.7) and (2.8)

it immediately follows thatR = PP(14) is a Darboux polynomial of system (1.2) with cofactor
2(α1x1 + α4x4), i.e.

d(R)(x) = 2(α1x1 + α4x4)R(x), (3.1)

Thus, from (2.9), one deduces that for the polynomialU = R(25)

d(U)(x) = −2(α1x1 + α4x4)U(x),

and finally (see (D3) from Sec. 2.1) that

d(V ) = 0,

where
V := RU = RR(25) = (PP(14))(PP(14))(25) = PP(14)P(25)P(14)(25).
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This means thatV is a polynomial first integral of the Euler equations (1.2).
The main difficulty is to decide whenV is a fourth integral. We will prove that this is always

the case outside of some very special subcases of the Manakovcase. This is proved inPart 2
when the polynomialsR andU are relatively prime and inPart 3 when this is not the case.
As in the Manakov case the polynomial fourth integral alwaysexists (see Appendix), this will
prove Theorem 3.1.

Part 2. R andU are relatively prime polynomials.
We have to decide when the first integralsH1, H2, H3 (see (1.3)) andV are functionally

independent. Let us suppose that they are functionally dependent.
Then for allαi, 1 ≤ i ≤ 6

Xij(V ) = Xij(R)U + Xij(U)R = 0. (3.2)

We will prove that outside of very special subcases of the Manakov case this contradictsα1 6= 0.
As one supposes that polynomialsR andU are relatively prime, then (3.2) shows that either

R dividesXij(R), i.e.
Xij(R) = fijR, (3.3)

wherefij is a homogeneous polynomial of second degree, orXij(R) = Xij(U) = 0. For the
first possibility, according to (3.2) and (3.3), we have that

Xij(U) = −fijU. (3.4)

In particularX25(R) = f25R andX25(U) = −f25U . Applying to the first identity the
change of variablesτ25 (see Sec. 2.3), we conclude thatX25(U) = (f25 ◦ τ25)U and finally that
f25 = −f25 ◦ τ25.

But this is impossible becausef25 cannot depend onx2 andx5. Indeed, the maximal powers
of x2 and ofx5 in X25(R) respectively are never greater than their respective maximal powers
in R. Thusf25 = 0 and consequentlyX25(R) = X25(U) = 0.

Hence we have proved thatR satisfies the equation

X25(R) = det
∂(H1, H2, H3, R)

∂(x1, x3, x4, x6)
= 0. (3.5)

This is a linear homogeneous partial differential equationfor R. It has five solutionsH1,
H2, H3, x2 andx5 that are never functionally dependent unlessλ1 = λ3 = λ4 = λ6 (a subcase
of the Manakov case). Thus by Theorem 2.2 (see Sec. 2.4.), we have that locally

R = Φ(H1, H2, H3, x2, x5), (3.6)

whereΦ is some holomorphic function.
Let us note that not onlyU = R ◦ τ25, but alsoU = R ◦ τ36. This is so becauseR is

a homogeneous polynomial of even degree and contains only monomials that have only even
sum of the powers ofx1 andx4. Thus the monomials ofR containing even sum of the powers
of x2 andx5 contain also even sum of the powers ofx3 andx6 and respectively, the monomials
of R containing odd sum of the powers ofx2 andx5 contain odd sum of the powers ofx3 and
x6.

As U = R ◦ τ36, exactly in the same way as (3.5), one proves thatf36 = 0, or equivalently
that

X36(R) = det
∂(H1, H2, H3, R)

∂(x1, x2, x4, x5)
= 0.
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This equation has five solutions:H1, H2, H3, x3 andx6 that are never functionally dependent
unlessλ1 = λ2 = λ4 = λ5 (a subcase of the Manakov case). So that locally

R = Ψ(H1, H2, H3, x3, x6), (3.7)

for some holomorphic functionΨ.
¿From (3.3) and (3.4) we know that

X56(R) = f56R (3.8)

and
X56(U) = −f56U. (3.9)

wheref56 is a homogeneous polynomial of degree two, orX56(R) = X56(U) = 0.
We prove thatf56 cannot depend onx2, x3, x5 andx6. Indeed, applying to identity (3.8) the

change of variablesτ25 (see (2.6)) we conclude thatX56(U) = −(f56 ◦ τ25)U . Then (3.9) leads
to f56 = f56 ◦ τ25.

Thusf56 either does not depend onx2 andx5 or is a quadratic polynomial of them. The
later is impossible because the biggest sumα + β of x2

αx5
β in X56(R) is never bigger than the

same sum inR plus 1. Thusf56 does not depend onx2 andx5.
Exactly the same arguments but applied to the change of variablesτ36 lead to the conclusion

thatf56 does not depend onx3 andx6. Thusf56, if it is not zero, is a homogeneous quadratic
function only ofx1 andx4.

Completely analogous considerations show that the polynomialsf23, f26 andf35, if they are
not zero, are homogeneous quadratic functions only ofx1 andx4.

Assume now that at least one of the polynomialsf56, f35 andf26 is not zero. First let us
examine the case whenf56 6= 0. We have

X35(R)

X56(R)
=

f35

f56
. (3.10)

Hereafter for all representations ofR as a function ofH1, H2, H3 and two of the coordinates
(see for example (3.6) and (3.7)) we denote by∂i the partial derivative with respect toi-th
variable,1 ≤ i ≤ 5. We have

X35(R) = X35(x2)∂4Φ(H1, H2, H3, x2, x5),

X56(R) = X56(x2)∂4Φ(H1, H2, H3, x2, x5).
(3.11)

Let us note that∂4Φ(H1, H2, H3, x2, x5) 6= 0 because otherwise we would havef56 = 0. Thus
(3.10) leads to

A1 =
X35(x2)

X56(x2)
=

λ16x
2
1x6 + λ41x1x3x4 + λ64x

2
4x6

λ31x2
1x3 + λ14x1x4x6 + λ43x3x2

4

=
f35

f56
.

The polynomialsf35 andf56 depend only onx1 andx4 while A1 depends onx1, x3, x4 andx6.
Thus by necessity we have

∂A1

∂x3
= 0.

Simple computations show that the last condition is equivalent to

λ13λ16x
4
1 − (λ2

14 + λ16λ43 + λ13λ46)x
2
1x

2
4 + λ43λ46x

4
4 = 0. (3.12)
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Let us consider representation(3.7) of R: R = Ψ(H1, H2, H3, x3, x6) and vector fieldX26.
As above we have

X26(R)

X56(R)
=

f26

f56
.

Taking into account that∂4Ψ(H1, H2, H3, x3, x6) 6= 0 becausef56 6= 0, we deduce from this
equation that

A2 =
X26(x3)

X56(x3)
=

λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5

λ12x2
1x2 + λ41x1x4x5 + λ24x2x2

4

=
f26

f56
.

The polynomialsf26 andf56 depend only onx1 andx4 while A2 depends onx1, x2, x4 andx5

and therefore
∂A2

∂x2

= 0.

The last condition is equivalent to

λ51λ21x
4
1 − (λ2

14 + λ24λ51 + λ21λ54)x
2
1x

2
4 + λ54λ24x

4
4 = 0. (3.13)

Let us investigate when (3.12) is fulfilled. This happens only in the following four cases:

1. λ13 = λ43 = 0;

2. λ13 = λ46 = 0;

3. λ16 = λ43 = 0;

4. λ16 = λ46 = 0.

In case 1 (λ13 = λ43 = 0) X56(x2) = 0, thus by (3.11)X56(R) = 0 and finallyf56 = 0.
This contradicts our assumption thatf56 6= 0 and we do not consider this case now.

Case 2 (λ13 = λ46 = 0) and case 3 (λ16 = λ43 = 0) are particular cases of the Manakov
case.

Let us consider case 4 (λ16 = λ46 = 0). Equating to zero e.g. the coefficient ofx4
1 in the left

hand side of (3.13) we conclude that eitherλ21 = 0 or λ51 = 0. Both possibilities together with
the condition of case 4 lead to particular cases of the Manakov case.

Whenf35 6= 0, in the same way as above we come to the following expressions:

B1 =
X56(x2)

X35(x2)
=

λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4

λ16x2
1x6 + λ41x1x3x4 + λ64x2

4x6
=

f56

f35
,

B2 =
X23(x6)

X35(x6)
=

λ15x
2
1x5 + λ41x1x2x4 + λ54x

2
4x5

λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4

=
f23

f35

and therefore
∂B1

∂x3

= 0,
∂B2

∂x2

= 0.

As in the previous case the last two equations lead to particular cases of the Manakov case.
Whenf26 6= 0, we come to the expressions:

C1 =
X23(x5)

X26(x5)
=

λ61x
2
1x6 + λ14x1x3x4 + λ46x

2
4x6

λ31x2
1x3 + λ14x1x4x6 + λ43x3x2

4

=
f23

f26
,

C2 =
X56(x3)

X26(x3)
=

λ12x
2
1x2 + λ41x1x4x5 + λ24x2x

2
4

λ15x2
1x5 + λ41x1x2x4 + λ54x2

4x5
=

f56

f26
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that give
∂C1

∂x3
= 0,

∂C2

∂x2
= 0.

These equations also lead to particular cases of the Manakovcase.
Let us suppose now thatf26 = f35 = f56 = 0. From the equationX56(R) = 0 we conclude

that (out of the subcaseλ1 = λ2 = λ3 = λ4 of the Manakov case) locally, for some holomorphic
functionΘ one has

R = Θ(H1, H2, H3, x5, x6).

When∂4Θ(H1, H2, H3, x5, x6) 6= 0, the equationX36(R) = 0 leads to
(

λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4

)

∂4Θ(H1, H2, H3, x5, x6) = 0,

i.e.
λ21 = λ14 = λ42 = 0. (3.14)

On the other hand the equationX26(R) = 0 gives
(

λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4

)

∂4Θ(H1, H2, H3, x5, x6) = 0,

i.e. λ31 = λ14 = λ43 = 0 that, together with (3.14), leads to the already excluded caseλ1 =
λ2 = λ3 = λ4.

What happens when∂4Θ(H1, H2, H3, x5, x6) = 0? In this case we have

∂5Θ(H1, H2, H3, x5, x6) 6= 0

because otherwise it will follow thatR is functionally dependent onH1, H2 andH3. But this is
not so. Indeed, as follows from (3.1),R is a proper Darboux polynomials becauseα1 6= 0. The
equationX25(R) = 0 gives

(

λ31x
2
1x3 + λ14x1x4x6 + λ43x3x

2
4

)

∂5Θ(H1, H2, H3, x5, x6) = 0,

i.e.
λ31 = λ14 = λ43 = 0. (3.15)

The equationX35(R) = 0 gives
(

λ21x
2
1x2 + λ14x1x4x5 + λ42x2x

2
4

)

∂5Θ(H1, H2, H3, x5, x6) = 0,

i.e. λ21 = λ14 = λ42 = 0 that, together with (3.15), leads to the already excluded case.
Thus the assumption thatH1, H2, H3 andV are functionally dependent whenR andU are

relatively prime can eventually be true only in some very special subcases of the Manakov case.

Remark. We have to note here that there really are some subcases of theManakov case when
our procedure does not lead to a fourth integral. For examplewhenλ1 = λ4 = λ5 = λ6 = 0
andλ2 = −λ3 (subcase of case 4) the polynomialP = x2 +x3 is a proper Darboux polynomial
of the Euler equations (1.2). However, applying our procedure onP, one obtains a polynomial
first integral that is functionally dependent onH3. But we know that in the Manakov case there
always exists a polynomial fourth integral (cf. Appendix).That is why we do not exclude the
Manakov case from the condition of the theorem.
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Part 3. R andU are not relatively prime polynomials.
We have forR andU

R = PP(14) and U = P(25)P(14)(25).

Since the polynomialP is irreducible, the polynomialsP(14), P(25) andP(14)(25) are also irre-
ducible.

Thus polynomialsR andU are not relatively prime only in the following 8 cases:

1. P = P(25);

2. P = −P(25);

3. P = P(14)(25);

4. P = −P(14)(25);

5. P(14) = P(25) that is equivalent to 3;

6. P(14) = −P(25) that is equivalent to 4;

7. P(14) = P(14)(25) that is equivalent to 1;

8. P(14) = −P(14)(25) that is equivalent to 2.

Let us examine case 1. The cofactor ofP is

α1x1 + α2x2 + α3x3 + α4x4 + α5x5 + α6x6.

According to (2.9) the cofactor ofP(25) is

−α1x1 + α2x2 − α3x3 − α4x4 + α5x5 − α6x6.

P andP(25) are equal in the case under consideration. Comparing the twocofactors we find

α1 = 0, α3 = 0, α4 = 0, α6 = 0.

However this contradicts our assumption thatα1 6= 0. In the same way, cases 2, 3 and 4 also
lead toα1 = 0.

As an example of application of the procedure for the construction of the fourth integral
described in the above proof, let us consider the product case whenλ1 6= λ2 andλ1 6= λ3. One
can easily see that in this case the polynomial

P =
λ21

c
x2 + x3 +

λ21

c
x5 + x6,

wherec =
√

λ13λ21, is a proper Darboux polynomial of system (1.2) with cofactor c(x1 + x4).
HereP = P(14) and thusR = PP(14) = P 2 andU = (P 2)(25) = P 2

(25). Finally the polynomial

V = RU =
(

PP(25)

)2
=

[

−λ21

λ13
(x2 + x5)

2 + (x3 + x6)
2

]2
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is a fourth integral of (1.2). In fact, in this example, already PP(25) is a fourth integral.
The explicit form of the polynomial fourth integral whenλ2 6= λ1 andλ2 6= λ3 or when

λ3 6= λ1 andλ3 6= λ2 follows now from Theorem 2.1b applied to the permutational symmetries
τ = τ2 ◦ τ3 andτ 2 respectively.

Remark. When comparing our system (1.2) with its ”twin brother” - theEuler-Poisson equa-
tions of heavy rigid body motion (see [2, 3, 14, 15, 18]) we conclude from [21] (see also [11])
that for these equations the exact counterpart of Theorem 1.1 holds. Nevertheless, the exact
counterpart of Theorem 3.1 for Euler-Poisson equations fails. Indeed, in the non-integrable
so-called Hess-Appelrot case, the proper Darboux polynomial exists.

Appendix
Here we explicitely write down the fourth integral for the Manakov case and product case in form obtained in [10].

The table below covers all the space of parameters(λi)1≤i≤6 satisfying the Manakov condition. In this table
all cases are explicitly written down, unless they can be deduced one from another by the permutational symmetry
argument. Last column in this table contains necessary and sufficient conditions for functional independence of the
integrals. The generic case in the table is defined explicitly by the conditions of functional independence of first
integralsH1, H2, H3 andF given in the last column. For last four rows the listed first integrals are functionally
independent except for the trivial case when all componentsof λ are equal. The results given in this table remain
valid also whenλ ∈ C6.

Functionally independent first integrals for the Manakov case
Case First integrals Conditions

Generic H1, H2, H3, |λ16| + |λ62| > 0 and
F = λ16λ24x

2

4
+ |λ16| + |λ51| > 0 and

λ51λ62x
2

5
− λ16λ62x

2

6
|λ24| + |λ62| > 0 and
|λ13| + |λ32| > 0

λ16 = λ62 = 0 H1, H2, H3, |λ43| + |λ53| > 0
(Case I) G = x2

3
+ x2

4
+ x2

5

λ43 = λ53 = 0 H1, x3, x4, x5 no conditions
λ16 = λ51 = 0 H1, H2, H3, |λ43| + |λ63| > 0 and
(Case II) G = λ24λ43x

2

4
+ |λ43| + |λ24| > 0 and

λ24λ63x
2

5
− λ43λ62x

2

6
|λ24| + |λ62| > 0 and
|λ13| + |λ32| > 0

λ43 = λ63 = 0 H1, H2, H3, x5 no conditions
λ43 = λ24 = 0 H1, H2, H3, x5 no conditions
λ24 = λ62 = 0 H1, H2, H3, x6 no conditions
λ13 = λ32 = 0 H1, H2, H3, x1 no conditions

In the product case, one can take as a fourth integral

H4 = λ1x1x4 + λ2x2x5 + λ3x3x6,

which when(λ1, λ2, λ3) 6= (c, c, c) for somec ∈ C, is always functionally independent ofH1, H2 andH3.
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