
HAL Id: hal-00084822
https://hal.science/hal-00084822

Submitted on 10 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods for Partitioning Data to Improve Parallel
Execution Time for Sorting on Heterogeneous Clusters

Christophe Cérin, Jean-Christophe Dubacq, Jean-Louis Roch

To cite this version:
Christophe Cérin, Jean-Christophe Dubacq, Jean-Louis Roch. Methods for Partitioning Data to
Improve Parallel Execution Time for Sorting on Heterogeneous Clusters. GPC 2006, 2006, France.
pp.175-186. �hal-00084822�

https://hal.science/hal-00084822
https://hal.archives-ouvertes.fr

cc
sd

-0
00

84
82

2,
 v

er
si

on
 1

 -
 1

0
Ju

l 2
00

6

Methods for Partitioning Data to Improve

Parallel Execution Time for Sorting on

Heterogeneous Clusters⋆

Christophe Cérin1, Jean-Christophe Dubacq1 and Jean-Louis Roch2

1 Université de Paris Nord, LIPN, CNRS UMR 7030,
99 avenue J.B Clément, 93430 Villetaneuse - France

{cerin,jcdubacq}@lipn.univ-paris13.fr
2 ID-IMAG, CNRS - INRIA - INPG - UJF, Projet MOAIS

51 Av. J. Kuntzmann, 38330 Montbonnot-Saint-Martin - France
Jean-Louis.Roch@imag.fr

Abstract. The aim of the paper is to introduce general techniques in
order to optimize the parallel execution time of sorting on a distributed
architectures with processors of various speeds. Such an application re-
quires a partitioning step. For uniformly related processors (processors
speeds are related by a constant factor), we develop a constant time
technique for mastering processor load and execution time in an het-
erogeneous environment and also a technique to deal with unknown cost
functions. For non uniformly related processors, we use a technique based
on dynamic programming. Most of the time, the solutions are in O(p)
(p is the number of processors), independent of the problem size n. Con-
sequently, there is a small overhead regarding the problem we deal with
but it is inherently limited by the knowing of time complexity of the
portion of code following the partitioning.
Keywords: parallel in-core sorting, heterogeneous computing, complex-
ity of parallel algorithms, data distribution.

The advent of parallel processing, in particular in the context of cluster com-

puting is of particular interest with the available technology. A special class of
non homogeneous clusters is under concern in the paper. We mean clusters whose
global performances are correlated by a multiplicative factor. We depict a cluster
by the mean of a vector set by the relative speeds of each processor.

In this paper we develop general techniques in order to control the execu-
tion time and the load balancing of each node for applications running in such
environment. What is important over the application we consider here, is the
meta-partitioning schema which is the key of success. All the approaches we de-
velop can be considered as static methods: we predetermine the size of data that
we have to exchange between processors in order to guarantee that all the pro-
cessors end at the same time before we start the execution. So, this work can be
considered in the domain of placement of tasks in an heterogeneous environment.
⋆ Work supported in part by France Agence Nationale de la Recherche under grants

ANR-05-SSIA-0005-01 and ANR-05-SSIA-0005-05, programme ARA sécurité

2

Many works have been done in data partitioning on heterogeneous platforms,
among them Lastovetsky’s and Reddy’s work [1] that introduces a scheme for
data partitioning when memory hierarchies from one CPU to another are differ-
ent. There, the heterogeneity notion is related to the heterogeneity of the memory
structure. Under the model, the speed of each processor is represented by a func-
tion of the size of the problem. The authors solve the problem of partitioning n
elements over p heterogeneous processors in O(p2 × log2 n) time complexity.

Drozdowski and Lawenda in [2] propose two algorithms that gear the load
chunk sizes to different communication and computation speeds of applications
under the principle of divisible loads (computations which can be divided into
parts of arbitrary sizes; for instance painting with black pixels a whole image).
The problem is formalized as a linear problem solved either by branch and bound
technique or a genetic algorithm. Despite the fact that the architecture is large
enough (authors consider heterogeneous CPU and heterogeneous links), we can
not apply it here because our problem cannot be expressed under the frame-
work of ’divisible loads’: in our case, we need to merge sorted chunks after the
partitioning step and the cost is not a linear one. . . thus our new technique.

The organization of our paper is the following. In section 1 we introduce the
problem of sorting in order to characterize the difficulties of partitioning data
in an heterogeneous environment. The section motivates the work. In section 2
we recall our previous techniques and results. Section 3 is devoted to a new
constant time solution and deals also with unknown cost functions. In section 4
we introduce a dynamic programming approach and we recall a technique that
do not assume a model of processors related by constant integers but in this
case the processor speed may be “unrelated”. Section 5 is about experiments
and section 6 concludes the paper.

1 Target applications and implementation on

heterogeneous clusters

Assume that you have a set of p processors with different speeds, interconnected
by a crossbar. Initially, the data is distributed across the p processors and ac-
cording to the speeds: the slowest processor has less data than the quickest.
This assumption describes the initial condition of the problem. In this section
we detail our sorting application for which performance are directly related to
this initial partitioning.

1.1 Parallel Sort.

Efficient parallel sorting on clusters (see [3,4,5,6,7,8] for the homogeneous case
and [9,10,11,12,13] for the heterogeneous case) can be implemented in the fol-
lowing ways:

1. Each processor sorts locally its portion and picks up representative values in
the sorted list. It sends the representative values to a dedicated node.

3

2. This node sorts what it receives from the processors and it keeps p−1 pivots;
it distributes the pivots to all the processors.

3. Each processor partitions its sorted input according to the pivots and it
sends p − 1 portions to the others.

4. Each processor merges what it received from the others.

Note that the sorting in step 1 can be bypassed but in this case the last step is
a sort not a merge. Moreover note that there is only one communication step:
the representative values can be selected by sampling few candidates at a cost
much lower than the exchange of values. In other words, when a value moves, it
goes to the final destination node in one step.

2 Previous results and parallel execution time

Consider the simple problem of local sorting, such as presented in [10] (and our
previous comments). The sizes ni of data chunks on each node is assumed to be
proportional to the speed of processors.

Let us now examine the impact on the parallel execution time of sorting of
the initial distribution or, more precisely, the impact of the redistribution of
data. We determine the impact in terms of the way of restructuring the code
of the meta partitioning scheme that we have introduced above. In the previous
section, when we had N data to sort on p processors depicted by their respective
speeds k1, · · · , kp, we had needed to distribute to processor pi an amount ni of
data such that:

n1/k1 = n2/k2 = = np/kp (1)

and
n1 + n2 + + np = N (2)

The solution is:
∀i, ni = N × ki/(k1 + k2 + ... + kp)

Now, since the sequential sorts are executed on ni data at a cost propor-
tional ni lnni time cost (approximatively since there is a constant in front of
this term), there is no reason that the nodes terminate at the same time since
n1/k1 lnn1 6= n2/k2 lnn2 6= · · · 6= np/kp lnnp in this case. The main idea that
we have developed in [14] is to send to each processor an amount of data to be
treated by the sequential sorts proportional to ni lnni. The goal is to minimize
the global computation time T = min(maxi=1,...,p ni lnni) under the constraints
∑

ni = N and ni ≥ 0.
It is straightforward to see that an optimal solution is obtained if the com-

putation time is the same for all processors (if a processor ends its computation
before another one, it could have been assigned more work thus shortening the
computation time of the busiest processor). The problem becomes to compute
the data sizes n′

1, · · · , n′

p such that:

n′

1 + n′

2 + · · · + n′

p = N (3)

4

and such that

(n′

1/k1) lnn′

1 = (n′

2/k2) lnn′

2 = · · · = (n′

p/kp) lnn′

p (4)

We have shown that this new distribution converges to the initial distribution
when N tends to infinity. We have also proved in [14] that a constant time
solution based on Taylor developments leads to the following solution:

ni =
ki

K
N + ǫi, (1 ≤ i ≤ p) where ǫi =

N

lnN

ki

K2

p
∑

j=1

kj ln

(

kj

ki

)

 (5)

and where K is simply the sum of the ki. These equations give the sizes that we
must have to install initially on each processors to guaranty that the processors
will terminate at the same time. The time cost of computing one ki is O(p) and
is independent of n which is an adequate property for the implementations since
p is much lower and not of the same order than n.

One limitation of above the technique is that we assume that the cost time
of the code following the partitioning step should admit a Taylor development.
We introduce now a more general approach to solve the problem of partitioning
data in an heterogeneous context. It is the central part of the work. We consider
an analytic description of the partitioning when the processors are uniformly
related: processor i has an intrinsic relative speed ki.

3 General exact analytic approach on uniformly related

processors

The problem we solved in past sections is to distribute batches of size N accord-
ing to (4). We will first replace the execution time of the sorting function by a
generic term f(n) (which would be f(n) = n lnn for a sorting function, but could
also be f(n) = n2 for other sorting algorithms, or any function corresponding
to different algorithms). We assume that f is a strictly increasing monotonous
integer function. We can with this consider a more general approach to task
distribution in parallel algorithms. Since our processors have an intrinsic rela-
tive speed ki, the computation time of a task of size ni will be f(ni)/ki. This
(discrete) function can be extended to a (real) function f̃ by interpolation. We
can try to solve this equation exactly through analytical computation. We define
the common execution time T through the following equation:

T =
f̃(n1)

k1
=

f̃(n2)

k2
= · · · =

f̃(np)

kp

(6)

and equation
n1 + n2 + + np = N (7)

Let us recall that monotonous increasing functions can have an inverse function.
Therefore, for all i, we have f̃(ni) = Tki, and thus:

ni = f̃−1(Tki) (8)

5

Therefore, we can rewrite (7) as:

p
∑

i=1

f̃−1(Tki) = N (9)

If we take our initial problem, we have only one unknown term in this equation
which is T . The sum

∑p

i=1 f̃−1(Tki) is a strictly increasing function of T . If we
suppose N large enough, there is a unique solution for T . The condition of N
being large enough is not a rough constraint. f̃−1(T) is the number of data that
can be treated in time T by a processor speed equals to 1. If we consider that
f̃−1(0) = 0 (which is reasonable enough), we obtain that

∑p

i=1 f̃−1(Tki) = 0 for
T = 0.

Having T , it is easy to compute all the values of ni = f̃−1(Tki). We shall show
later on how this can be used in several contexts. Note also that the computed
values have to be rounded to fit in the integer numbers. If the numbers are
rounded down, at most p elements will be left unassigned to a processor. The

processors will therefore receive a batch of size ni =
⌊

f̃−1(Tki)
⌋

+ δ̃i to process.

δi can be computed with the following (greedy) algorithm:

1. Compute initial affectations ñi =
⌊

f̃−1(Tki)
⌋

and set δi = 0;

2. For each unassigned item of the batch of size N (at most p elements) do:
(a) Choose i such that (ñi + δi + 1)/ki is the smallest;
(b) Set δi = δi + 1.

The running time of this algorithm is O(p log p) at most, so independant of
the size of the data N .

3.1 Multiplicative cost functions

Let us consider now yet another cost function. f is a multiplicative function if it
verifies f(xy) = f(x)f(y). If f is multiplicative and admits an inverse function
g, its inverse is also multiplicative:

g(ab) = g(f(g(a))f(g(b))) = g(f(g(a)g(b))) = g(a)g(b)

If f̃ is such a function (e.g. f(n) = nk), we can solve equation (9) as follows:

N =

p
∑

i=1

f̃−1(Tki) =

p
∑

i=1

f̃−1(T)f̃−1(ki) = f̃−1(T)

p
∑

i=1

f̃−1(ki) (10)

We can then extract the value of T :

f̃−1(T) =
N

∑p

i=1 f̃−1(ki)
(11)

Combining it with (8) we obtain:

ni = f̃−1(Tki) = f̃−1(T)f̃−1(ki) =
f̃−1(ki)

∑p

i=1 f̃−1(ki)
N (12)

Hence the following result:

6

Theorem 1. If f is a cost function with the multiplicative property f(ab) =
f(a)f(b), then the size of the assigned sets is proportional to the size of the

global batch with a coefficient that depends on the relative speed of the processor

ki:

ni =
f̃−1(ki)

∑p

i=1 f̃−1(ki)
N

This results is compatible with the usual method for linear functions (split
according to the relative speeds), and gives a nice generalization of the formula.

3.2 Sorting: the polylogarithmic function case

Many algorithms have cost functions that are not multiplicative. This is the case
for the cost Θ(n log n) of the previous sequential part of our sorting algorithm,
and more generally for polylogarithmic functions. However, in this case equation
9 can be solved numerically. Simple results show that polylogarithmic functions
do not yield a proportionality constant independent of N .

Mathematical resolution for the case n ln n In the case f(n) = n lnn,
the inverse function can be computed. It makes use of the Lambert W function
W (x), defined as being the inverse function of xex. The inverse of f : n 7→ n lnn
is therefore g : x 7→ x/W (x).

The function W (x) can be approached by well-known formulas, including
the ones given in [15]. A development to the second order of the formula yields
W (x) = lnx − ln ln(x) + o(1), and also:

x

W (x)
=

x

ln(x)

1

1 − (ln ln(x)/ ln(x)) + o(1)
=

x

ln(x)

(

1 +
ln ln(x)

ln(x)
+ O

(

(

ln ln(x)

ln(x)

)2
))

This approximation leads us to the following first-order approximation that can
be used to numerically compute in O(p) the value of T :

Theorem 2. Initial values of ni can be asymptotically computed by

p
∑

i=1

Tki + Tki ln ln(Tki)

(ln(Tki))2
= N and ni =

Tki + Tki ln ln(Tki)

(ln(Tki))2

3.3 Unknown cost functions

Our previous method also claims an approach to unknown cost functions. The
general outline of the method is laid out, but needs refinement according to
the specific needs of the software platform. When dealing with unknown cost
functions, we assume no former knowledge of the local sorting algorithm, just
linear speed adjustments (the collection of ki). We assume however that the
algorithm has a cost function, i.e. a monotonous increasing function of the size

7

of the data C.3 Several batch of data are submitted to our software. Our method
builds an incremental model of the cost function. At first, data is given in chunks
of size proportionnal to each node’s ki. The computation time on node i has a
duration of Tni

and thus a basic complexity of C(ni) = Tni
ki. We can thus build

a piecewise affine function (or more complex interpolated function, if heuristics
require that) that represents the current knowledge of the system about the time
cost n 7→ C(n). Other values will be computed by interpolation. The list of all
known points can be sorted, to compute f efficiently.

The following algorithm is executed for each task:

1. For each node i, precompute the mapping (T, i) 7→ ni as previously, using
interpolated values for f if necessary (see below). Deduce a mapping T 7→ n
by summing the mappings over all i.

2. Use a dichotomic search through T 7→ n mapping to find the ideal value of
T (and thus of all the ni) and assign chunks of data to node i;

3. When chunk i of size ni is being treated:

(a) Record the cost C = Tni
ki of the computation for size ni.

(b) If ni already had a non-interpolated value, choose a new value C′ accord-
ing to whatever strategy it fits for the precise platform and desired effect
(e.g. mean value weighted by the occurrences of the various C found for
ni, mean value weighted by the complexity of the itemset, max value).
Some strategies may require storing more informations than just the
mapping n 7→ C(n).

(c) If ni was not a known point, set C′ = C.

(d) Ensure that the mapping as defined by n 6= ni 7→ C(n) and the new
value ni 7→ C′ is still monotonous increasing. If not, raise or lower values
of neighboring known points (this is simple enough to do if the strategy
is to represent the cost with a piecewise function). Various heuristics can
be applied, such as using the weighted mean value of conflicting points
for both points.

4. At this point, the precomputation of the mappings will yield consistent re-
sults for the dichotomic search. A new batch can begin.

The initial extrapolation needs care. An idea of the infinite behavior of the
cost function toward infinity is a plus. In absence of any idea, the assumption
that the cost is linear can be a starting point (a “linear guess”). All “linear
guesses” will yield chunks of data of the same size (as in equation (4)). Once at
least one point has been computed, the “linear guess” should use a ratio based
on the complexity for the largest chunk size ever treated (e.g. if size 1, 000 yields
a cost of 10, 000, the linear ratio should be at least 10).

3 If some chunks are treated faster than smaller ones, their complexity will be falsely
exaggerated by our approach and lead to discrepancies in the expected running time.

8

4 A dynamic programming technique for non-uniformly

related processors

In the previous sections we have developed new constant time solution to esti-
mate the amount of data that each processor should have in its local memory in
order to ensure that the parallel sorts end at the same time. The complexity of
the method is the same than the complexity of the method introduced in [14].

The class of functions that can be used according to the new method intro-
duced in the paper is large enough to be useful in practical cases. In [14], the
class of functions captured by the method is the class of functions that admit a
Taylor development. It could be a limitation of the use of the two methods.

Moreover, the approach of [14] considers that the processor speeds are uni-
formly related, i.e. proportional to a given constant. This is a restriction in the
framework of heterogeneous computers since the time to perform a computation
on a given processor depends not only on the clock frequency but also on various
complex factors (memory hierarchy, coprocessors for some operations).

In this section we provide a general method that provides an optimal parti-
tioning ni in the more general case. This method is based on dynamic program-
ming strategy similar to the one used in FFTW to find the optimal split factor
to compute the FFT of a vector [16].

Let us give some details of the dynamic approach. Let fi(m) be the computa-
tional cost of a problem of size m on machine i. Note that two distinct machines
may implement different algorithms (e.g. quicksort or radix sort) or even the
same generic algorithm but with specific threshold (e.g. Musser sort algorithm
with processor specific algorithm to switch from quicksort to merge sort and
insertion sort). Also, in the sequel the fi are not assumed proportional.

Given N , an optimal partitioning (n1, . . . , np) with
∑p

i=1 ni = N is defined
as one that minimizes the parallel computation time T (N, p);

T (N, p) = max{fi(ni);
i=1,...,p

} = min
(x1,...,xp)∈Np:

∑p

i=1
xi=N

max{fi(xi);
i=1,...,p

}

A dynamic programming approach leads to the following inductive character-
ization of the solution:∀(m, i) with 0 ≤ m ≤ N and 1 ≤ i ≤ p : T (m, i) =
minni=0..m max(fi(ni), C(m − ni, i − 1))

Then, the computation of the optimal time T (N, p) and of a related partition
(ni)i=1,...,p is obtained iteratively in O(N2.p) time and O(N.p) memory space.

The main advantage of the method is that it makes no assumption on the
functions fi that are non uniformly related in the general case. Yet, the potential
drawback is the computational overhead for computing the ni which may be
larger than the cost of the parallel computation itself since T (N, p) = o(N2p).
However, it can be noticed, as in [16], that this overhead can be amortized if
various input data are used with a same size N . Moreover, some values T (m, p)
for m ≤ K may be precomputed and stored. Than in this case, the overhead

decreases to O
(

p.
(

N
K

)2
)

. Sampling few values for each ni enables to reduce the

overhead as desired, at the price of a loss of optimality.

9

5 Experiments

We have conducted experiments on the Grid-Explorer platform in order to com-
pare our approach for partitioning with partitioning based only on the relative
speeds. Grid-Explorer4 is a project devoted to build a large scale experimental
grid. The Grid-Explorer platform is connected also to the nation wide project
Grid50005 which is the largest Grid project in France. We consider here only the
Grid-Explorer platform which is built with bi-Opteron processors (2Ghz, model
246), 80GB of IDE disks (one per node). The interconnection network is made
of Cisco switches allowing a bandwidth of 1Gb/s full-duplex between any two
nodes. Currently, the Grid-Explorer platform has 216 computation nodes (432
CPU) and 32 network nodes (used for network emulation - not usefull in our
case). So, the platform is an homogeneous platform.

For emulating heterogeneous CPU, two techniques can be used. One can
use the CPUfreq driver available with Linux kernels (2.6 and above) and if the
processor supports it; the other one is CPU burning. In this case, a thread with
high priority is started on each node and consumes Mhz while another process
is started for the main program. In our case, since we have bi-opteron processors
we have chosen to run 2 processes per node and doing CPU burning, letting
Linux to run them one per CPU. Feedback and experience running the CPUfreq
driver on a bi-processor node, if it exists, is not frequent. This explain why we
use the CPU burning technique.

Figure 5 shows the methodology of running experiments on the Grid-Explorer
or Grid5000 platforms. Experimenters take care of deploying codes and reserve
nodes. After that, they configure an environment (select specific packages and a
Linux kernel, install them) and reboot the nodes according to the environment.
The experiments take place only after installing this “software stack” and at
a cost which is significant in term of time. We have implemented the sorting
algorithm depicted in subsection 1.1 and according to Theorem 2 for the com-
putation of the initial amount of data on each node for minimizing the total
execution time. Note that each node generates its local portion on the local disk
first, then we start to measure the time. It includes the time for reading from
disk, the time to select and to exchange the pivots, the time for partitioning data
according to the pivots, the time for redistributing (in memory) the partitions,
the time for sorting and finally the time to write the result on the local disks.

We sort records and each record is 100 bytes long. The first 10 bytes is a
random key of 10 printable characters. We are compliant with the requirements
of Minute Sort6 as much as possible in order to beat the record in a couple of
weeks.

We proceed with 50 runs per experiment. We only consider here experiments
with a ratio of 1.5 between processor speeds. This is a strong constraint: the
more the ratio is high the more the difference in execution time is important

4 See: http://www.lri.fr/~fci/GdX
5 See: http://www.grid5000.fr
6 See: http://research.microsoft.com/barc/SortBenchmark/

10

Fig. 1. Methodology of experiments on the Grid-Explorer platform

and in favor of our algorithm. So we have two classes of processor but the choice
between the performance (1 or 1/1.5) is made at random. We set half of the
processors with a performance of 1 and the remainder with a performance of
1/1.5. We recall that the emulation technique is ’CPU burning’.

Since we have observed that the communication time has a significant impact
on the total execution time, we have developed two strategies and among them,
one for using the second processor of the nodes. In the first implementation
communication take place in a single thread that is to say in the thread also
doing computation. In the second implementation we have created a thread for
sending and a thread for receiving the partitions. We guess that the operating
system allocates them on the ’second’ processor of our bi-opteron cards equiped
with a single Gigabit card for communication.

The input size is 541623000 records (54GB) because it provides about an
execution time of one minute in the case of an homogeneous run using the entire
2Ghz. Note that it corresponds approximatively to 47% of the size of the 2005
Minute Sort record.

We run 3 experiments. Only experiments A.2 et A.3 use our technique to
partition the data whereas experiment A.1 corresponds to a partitioning accord-
ing to the relative speed only. In other words, experiment A.1 corresponds to
the case where the CPU burns X.Mhz (where X is either 1Ghz or 1/1.5 GHz)
but the performance vector is set according to an homogeneous cluster, we mean
without using our method for re-balancing the work. Experiment A.2 also corre-
sponds to the case where communication are not done in separate threads (and
thus they are done on the same processor). Experiment A.3 corresponds to the
case where the CPU burns X Mhz (also with X is either 1Ghz or 1/1.5 GHz) and
communication are done in separate threads (and thus they are done on separate

11

processors among the two available on a node). We use the pthread library and
LAM-MPI 7.1.1 which is a safe-thread implementation of MPI. sorting 54GB on

A1 experiment A2 experiment A3 experiment

125.4s 112.7s 69.4s

Fig. 2. Summary of experiments

96 nodes is depicted in Figure 2. We observe that the multithreaded code (A.3)
for implementating the communication step is more efficient than the code using
a single thread (A.2). This observation confirms that the utilization of the sec-
ond processor is benefit for the execution time. Concerning the data partitioning
strategy introduced in the paper, we observe a benefit of about 10% in using it
(A.2) comparing to A.1. Moreover, A.3 and A.2 use the same partitioning step
but they differ in the communication step. The typical cost of the communication
step is about 33% of the execution time for A.3 and about 60% for A.2.

6 Conclusion

In this paper we address the problem of data partitioning in heterogeneous en-
vironments when relative speeds of processors are related by constant integers.
We have introduced the sorting problem in order to exhibit inherent difficulties
of the general problem.

We have proposed new O(p) solutions for a large class of time complexity
functions. We have also mentioned how dynamic programming can find solutions
in the case where cost functions are “unrelated” (we cannot depict the cpu per-
formance by the mean of integers) and we have reminded a recent and promising
result of Lastovetsky and Reddy related to a geometrical interpretation of the
solution. We have also described methods to deal with unknown cost functions.
Experiments based on heteroneous processors correlated by a factor of 1.5 and
on a cluster of 96 nodes (192 AMD Opteron 246) show better performance with
our technique compared to the case where processors are supposed to be homo-
geneous. The performance of our algorithm is even better if we consider higher
factor for the heterogeneity notion, demonstrating the validity of our approach.

In any case, communication costs are not yet taken into account. It is an
important challenge but the effort in modeling seems important. In fact you
cannot mix, for instance, information before the partitioning with information
after the partitioning in the same equation. Moreover, communications are diffi-
cult to precisely modelize in a complex grid archtitecture, where various network
layers are involved (Internet/ADSL, high speed networks,. . .). In this context,
a perspective is to adapt the static partitioning, such as proposed in this paper,
by a dynamic on-line redistribution of some parts of the pre-allocated chunks
in reaction to network overloads and resources idleness (e.g. distributed work
stealing).

12

References

1. Lastovetsky, A., Reddy, R.: Data partitioning with a realistic performance model
of networks of heterogenenous computers. In: Proc. 18th International Paral-
lel and Distributed Processing Symposium (IPDPS’04), Santa-Fe, New-Mexico.
(2004) CD–ROM publication

2. Drozdowski, M., Lawenda, M.: On optimun multi-installment divisible load pro-
cessing in heterogeneous distributed systems. In 3648, L., ed.: Proc. 11th Interna-
tional Euro-Par Conference, Lisbon, Portugal. (2005) 231–240

3. Li, H., Sevcik, K.C.: Parallel sorting by overpartitioning. In: Proceedings of the
6th Annual Symposium on Parallel Algorithms and Architectures, New York, NY,
USA, ACM Press (1994) 46–56

4. Reif, J.H., Valiant, L.G.: A Logarithmic time Sort for Linear Size Networks. Jour-
nal of the ACM 34(1) (1987) 60–76

5. Reif, J.H., Valiant, L.G.: A logarithmic time sort for linear size networks. In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
Boston, Massachusetts (1983) 10–16

6. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. Journal of Parallel and
Distributed Computing 14(4) (1992) 361–372

7. Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P.S., Shi, H.: On the versatility
of parallel sorting by regular sampling. Parallel Computing 19 (1993) 1079–1103

8. Helman, D.R., JáJá, J., Bader, D.A.: A new deterministic parallel sorting algorithm
with an experimental evaluation. Tech. Rep. CS-TR-3670 and UMIACS-TR-96-54,
Institute for Advanced Computer Studies, Univ. of Maryland (1996)

9. Cérin, C., Gaudiot, J.L.: Evaluation of two BSP libraries through parallel sorting
on clusters. In: Proceedings of WCBC’00 (Workshop on Cluster-Based Computing)
in conjunction with ICS’00 (International Conference on Supercomputing), Santa
Fe, New Mexico (2000) pp 21–26

10. Cérin, C., Gaudiot, J.L.: An over-partitioning scheme for parallel sorting on clus-
ters running at different speeds. In: Cluster 2000. IEEE International Conference
on Cluster Computing. T.U. Chemnitz, Saxony, Germany. (Poster). (2000)

11. Cérin, C., Gaudiot, J.L.: Parallel sorting algorithms with sampling techniques on
clusters with processors running at different speeds. In: HiPC’2000. 7th Inter-
national Conference on High Performance Computing. Bangalore, India. Lecture
Notes in Computer Science, Springer-Verlag (2000)

12. Cérin, C., Gaudiot, J.L.: On a scheme for parallel sorting on heterogeneous clusters.
FGCS (Future Generation Computer Systems 18(issue 4) (2002) The special issue
is preliminary scheduled for publication in future vol.

13. Cérin, C.: An out-of-core sorting algorithm for clusters with processors at differ-
ent speed. In: 16th International Parallel and Distributed Processing Symposium
(IPDPS), Ft Lauderdale, Florida, USA. (2002) Available on CDROM from IEEE
Computer Society

14. Cérin, C., Koskas, M., Jemni, M., Fkaier, H.: Improving parallel execution time of
sorting on heterogeneous clusters. In: Proc. 16th Int. Symp. on Comp. Architecture
and High Performance Computing (SBAC’04), Foz-do-Iguazu, Brazil. (2004)

15. Corless, R., Jeffrey, D., Knuth, D.: A sequence of series for the lambert w function.
In: Proc. of ISSAC’97, Maui, Hawaii. W.W. Kuechlin (ed.). New York, ACM.
(1997) 197–204

16. Frigo, M., Johnson, S.G.: The design and implementation of fftw3. In: Proceedings
of the IEEE, Special issue on Program Generation, Optimization, and Platform
Adaptation. (2005) 216–231

