## Methods for Partitioning Data to Improve Parallel Execution Time for Sorting on Heterogeneous Clusters

C．Cérin ${ }^{1}$ J．－C．Dubacq ${ }^{1}$ J．－L．Roch ${ }^{2}$<br>${ }^{1}$ LIPN<br>Université de Paris Nord<br>${ }^{2}$ ID－IMAG<br>Université Joseph Fourier，Grenoble

Global and Pervasive Computing 2006 （台中市）

## Outline

(1) Motivation

- The partitioning problem
- Splitting data
(2) Contribution
- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments


## Outline

(1) Motivation

- The partitioning problem
- Splitting data
(2) Contribution
- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments


## Partitioning large data sets for sorting

- Large data sets require lot of computation time for sorting;


## Partitioning large data sets for sorting

- Large data sets require lot of computation time for sorting;
- Data chunks of equal size used to do the job on parallel machines.


## Partitioning large data sets for sorting

- Large data sets require lot of computation time for sorting;
- Data chunks of equal size used to do the job on parallel machines.


## Modelisation

- Infinite point-to-point bandwidth;


## Partitioning large data sets for sorting

- Large data sets require lot of computation time for sorting;
- Data chunks of equal size used to do the job on parallel machines.


## Modelisation

- Infinite point-to-point bandwidth;
- Heterogeneous speed: relative linear speed;


## Partitioning large data sets for sorting

- Large data sets require lot of computation time for sorting;
- Data chunks of equal size used to do the job on parallel machines.


## Modelisation

- Infinite point-to-point bandwidth;
- Heterogeneous speed: relative linear speed;
- No study of memory effect.


## Methodology

(1) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;

## Methodology

(1) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
(2) Each processor sorts locally its data chunk;

## Methodology

(1) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
(2) Each processor sorts locally its data chunk;
(3) Node 0 receives $p-1$ pivots, sorts them and broadcasts them;

## Methodology

(1) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
(2) Each processor sorts locally its data chunk;
(3) Node 0 receives $p-1$ pivots, sorts them and broadcasts them;
(9) Each processor uses the pivots to split its data;

## Methodology

(1) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
(2) Each processor sorts locally its data chunk;
(3) Node 0 receives $p-1$ pivots, sorts them and broadcasts them;
(9) Each processor uses the pivots to split its data;
(5) Each processor transmits all its (split) data to the others;

## Methodology

(1) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
(2) Each processor sorts locally its data chunk;
(3) Node 0 receives $p-1$ pivots, sorts them and broadcasts them;
(9) Each processor uses the pivots to split its data;
(6) Each processor transmits all its (split) data to the others;
(0) Each processor merges all data it received with its own.

## Methodology

(1) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
(2) Each processor sorts locally its data chunk;
(3) Node 0 receives $p-1$ pivots, sorts them and broadcasts them;
(9) Each processor uses the pivots to split its data;
(6) Each processor transmits all its (split) data to the others;
(0) Each processor merges all data it received with its own.

## Observation

With fixed $p$, the computation-intensive part is step 2.

## Context: Grid'5000, heterogeneous clusters



- GRID'5000: French national research project on grids;


## Context: Grid' 5000 , heterogeneous clusters



- GRID'5000: French national research project on grids;
- Goal: 5000 nodes dedicated to experimental development;


## Context: Grid'5000, heterogeneous clusters



- GRID'5000: French national research project on grids;
- Goal: 5000 nodes dedicated to experimental development;
- Current state: 2300 nodes, 13+ separated clusters, 9 sites, dedicated 10 $\mathrm{Gb} / \mathrm{s}$ black fibre connexion;


## Context: Grid'5000, heterogeneous clusters



- GRID'5000: French national research project on grids;
- Goal: 5000 nodes dedicated to experimental development;
- Current state: 2300 nodes, 13+ separated clusters, 9 sites, dedicated 10 $\mathrm{Gb} / \mathrm{s}$ black fibre connexion;


## Heterogeneity

Clusters have different processors, same family-processors have different clock speeds.

## Outline

(1) Motivation

- The partitioning problem
- Splitting data
(2) Contribution
- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments


## From homogeneous to heterogeneous processors

## Goal

We have $N$ objects to transmit and transform using $p$ nodes. We want all computation to end at exactly the same time. Final merging is not relevant.

## From homogeneous to heterogeneous processors

## Goal

We have $N$ objects to transmit and transform using $p$ nodes. We want all computation to end at exactly the same time. Final merging is not relevant.

## Theorem (Homogeneous case)

If all nodes work at same speed, the splitting of the data is optimal if one uses chunks of size $N / p$.

## From homogeneous to heterogeneous processors

## Goal

We have $N$ objects to transmit and transform using $p$ nodes. We want all computation to end at exactly the same time. Final merging is not relevant.

## Theorem (Homogeneous case)

If all nodes work at same speed, the splitting of the data is optimal if one uses chunks of size $N / p$.

We define the relative speed $k_{i}$ of a node $i$ as the quantity of operations it can do by unit of time compared to a reference node, and $K=\sum_{j} k_{j}$.

## Previous works

Naïve algorithm uses chunks of size $\frac{k_{i}}{K} N$ and yields inadequate computation time.

## Previous works

Naïve algorithm uses chunks of size $\frac{k_{i}}{K} N$ and yields inadequate computation time.

## Example (naïve algorithm)

Node $1 \quad k_{1}=1 \quad n_{1}=\frac{N}{3} \quad T_{1}=n_{1} \log n_{1}$
Node $2 k_{2}=2 \quad n_{2}=\frac{2 N}{3} \quad T_{2}=\frac{n_{2} \log n_{2}}{k_{2}}$

$$
T_{2}=n_{1} \log \left(2 n_{1}\right)=T_{1}+n_{1} \log 2 \neq T_{1}
$$

## Previous works

Naïve algorithm uses chunks of size $\frac{k_{i}}{K} N$ and yields inadequate computation time.

## Example (naïve algorithm)

Node $1 \quad k_{1}=1 \quad n_{1}=\frac{N}{3} \quad T_{1}=n_{1} \log n_{1}$
Node $2 k_{2}=2 \quad n_{2}=\frac{2 N}{3} \quad T_{2}=\frac{n_{2} \log n_{2}}{k_{2}}$

$$
T_{2}=n_{1} \log \left(2 n_{1}\right)=T_{1}+n_{1} \log 2 \neq T_{1}
$$

## Theorem (Cérin, Koskas, Jemni,Fkaier)

For large $N$, optimal chunk size is

$$
n_{i}=\frac{k_{i}}{K} N+\epsilon_{i}, \quad(1 \leq i \leq p) \text { where } \epsilon_{i}=\frac{N}{\ln N}\left[\frac{k_{i}}{K^{2}} \sum_{j=1}^{p} k_{j} \ln \left(\frac{k_{j}}{k_{i}}\right)\right]
$$

## Outline

(1) Motivation

- The partitioning problem
- Splitting data
(2) Contribution
- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments


## Basic approach

We use $\tilde{f}$ as the complexity function $\left(T_{i}=\tilde{f}\left(n_{1}\right) / k_{i}\right)$.

$$
T=\frac{\tilde{f}\left(n_{1}\right)}{k_{1}}=\frac{\tilde{f}\left(n_{2}\right)}{k_{2}}=\cdots=\frac{\tilde{f}\left(n_{p}\right)}{k_{p}}
$$

## Basic approach

We use $\tilde{f}$ as the complexity function $\left(T_{i}=\tilde{f}\left(n_{1}\right) / k_{i}\right)$.

$$
\begin{gathered}
T=\frac{\tilde{f}\left(n_{1}\right)}{k_{1}}=\frac{\tilde{f}\left(n_{2}\right)}{k_{2}}=\cdots=\frac{\tilde{f}\left(n_{p}\right)}{k_{p}} \\
n_{1}+n_{2}+\ldots .+n_{p}=N
\end{gathered}
$$

## Basic approach

We use $\tilde{f}$ as the complexity function $\left(T_{i}=\tilde{f}\left(n_{1}\right) / k_{i}\right)$.

$$
\begin{gathered}
T=\frac{\tilde{f}\left(n_{1}\right)}{k_{1}}=\frac{\tilde{f}\left(n_{2}\right)}{k_{2}}=\cdots=\frac{\tilde{f}\left(n_{p}\right)}{k_{p}} \\
n_{1}+n_{2}+\ldots+n_{p}=N
\end{gathered}
$$

Thus we can derive these compact equations for equality:

## Basic approach

We use $\tilde{f}$ as the complexity function $\left(T_{i}=\tilde{f}\left(n_{1}\right) / k_{i}\right)$.

$$
\begin{gathered}
T=\frac{\tilde{f}\left(n_{1}\right)}{k_{1}}=\frac{\tilde{f}\left(n_{2}\right)}{k_{2}}=\cdots=\frac{\tilde{f}\left(n_{p}\right)}{k_{p}} \\
n_{1}+n_{2}+\ldots+n_{p}=N
\end{gathered}
$$

Thus we can derive these compact equations for equality:

$$
n_{i}=\tilde{f}^{-1}\left(T . k_{i}\right)
$$

## Basic approach

We use $\tilde{f}$ as the complexity function $\left(T_{i}=\tilde{f}\left(n_{1}\right) / k_{i}\right)$.

$$
\begin{gathered}
T=\frac{\tilde{f}\left(n_{1}\right)}{k_{1}}=\frac{\tilde{f}\left(n_{2}\right)}{k_{2}}=\cdots=\frac{\tilde{f}\left(n_{p}\right)}{k_{p}} \\
n_{1}+n_{2}+\ldots+n_{p}=N
\end{gathered}
$$

Thus we can derive these compact equations for equality:

$$
n_{i}=\tilde{f}^{-1}\left(T . k_{i}\right) \quad \text { and } \quad \sum_{i=1}^{p} \tilde{f}^{-1}\left(T . k_{i}\right)=N
$$

## Basic approach

We use $\tilde{f}$ as the complexity function $\left(T_{i}=\tilde{f}\left(n_{1}\right) / k_{i}\right)$.

$$
\begin{gathered}
T=\frac{\tilde{f}\left(n_{1}\right)}{k_{1}}=\frac{\tilde{f}\left(n_{2}\right)}{k_{2}}=\cdots=\frac{\tilde{f}\left(n_{p}\right)}{k_{p}} \\
n_{1}+n_{2}+\ldots+n_{p}=N
\end{gathered}
$$

Thus we can derive these compact equations for equality:

$$
n_{i}=\tilde{f}^{-1}\left(T . k_{i}\right) \quad \text { and } \quad \sum_{i=1}^{p} \tilde{f}^{-1}\left(T . k_{i}\right)=N
$$

Only one unknown variable left!

## The polynomial case

Theorem (Polynomial case)
If $\tilde{f}: x \mapsto \alpha x^{\beta}$, then the optimal division is obtained by chunks sizes:

## The polynomial case

Theorem (Polynomial case)
If $\tilde{f}: x \mapsto \alpha x^{\beta}$, then the optimal division is obtained by chunks sizes:

$$
n_{i}=\frac{k_{i}^{1 / \beta}}{\sum_{i=1}^{p} k_{i}^{1 / \beta}} N .
$$

## The polynomial case

## Theorem (Polynomial case)

If $\tilde{f}: x \mapsto \alpha x^{\beta}$, then the optimal division is obtained by chunks sizes:

$$
n_{i}=\frac{k_{i}^{1 / \beta}}{\sum_{i=1}^{p} k_{i}^{1 / \beta}} N
$$

Proof: $\tilde{f}$ is multiplicative.

$$
\begin{aligned}
\sum_{i=1}^{p} \tilde{f}^{-1}\left(T . k_{i}\right)=N & \Longrightarrow \quad N=\tilde{f}^{-1}(T) \sum_{i=1}^{p} \tilde{f}^{-1}\left(k_{i}\right) \\
& \Longrightarrow \quad T=\tilde{f}\left(\frac{N}{\sum_{i=1}^{p} \tilde{f}^{-1}\left(k_{i}\right)}\right)
\end{aligned}
$$

## The polylog case

## Theorem

Initial values of $n_{i}$ can be asymptotically computed by

$$
\sum_{i=1}^{p} \frac{T k_{i}+T k_{i} \ln \ln \left(T k_{i}\right)}{\left(\ln \left(T k_{i}\right)\right)^{2}}=N \text { and } n_{i}=\frac{T k_{i}+T k_{i} \ln \ln \left(T k_{i}\right)}{\left(\ln \left(T k_{i}\right)\right)^{2}}
$$

## The polylog case

## Theorem

Initial values of $n_{i}$ can be asymptotically computed by

$$
\sum_{i=1}^{p} \frac{T k_{i}+T k_{i} \ln \ln \left(T k_{i}\right)}{\left(\ln \left(T k_{i}\right)\right)^{2}}=N \text { and } n_{i}=\frac{T k_{i}+T k_{i} \ln \ln \left(T k_{i}\right)}{\left(\ln \left(T k_{i}\right)\right)^{2}}
$$

## Proof.

We use the Lambert $W$ function which is the inverse function of $x \mapsto x \log x$.

## The polylog case

## Theorem

Initial values of $n_{i}$ can be asymptotically computed by

$$
\sum_{i=1}^{p} \frac{T k_{i}+T k_{i} \ln \ln \left(T k_{i}\right)}{\left(\ln \left(T k_{i}\right)\right)^{2}}=N \text { and } n_{i}=\frac{T k_{i}+T k_{i} \ln \ln \left(T k_{i}\right)}{\left(\ln \left(T k_{i}\right)\right)^{2}}
$$

## Proof.

We use the Lambert $W$ function which is the inverse function of $x \mapsto x \log x$.
A well known approximation is $W(x)=\ln x-\ln \ln (x)+o(1)$.

## Outline

(1) Motivation

- The partitioning problem
- Splitting data
(2) Contribution
- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments


## Framework for unknown complexity function

## Goal

We want to cope with unknown complexity functions. We have several batches of data.

## Framework for unknown complexity function

## Goal

We want to cope with unknown complexity functions. We have several batches of data.

- If the speed vector is unknown, first submit a batch assuming vector is $[1, \ldots, 1]$. Time-differences will tell what the relative speed is. So we may assume the speed vector is known;


## Framework for unknown complexity function

## Goal

We want to cope with unknown complexity functions. We have several batches of data.

- If the speed vector is unknown, first submit a batch assuming vector is $[1, \ldots, 1]$. Time-differences will tell what the relative speed is. So we may assume the speed vector is known;
- Deduce $n_{i}$ chunk sizes to send to node $i$ (in parallel for each node). Node $n_{i}$ measures the treatment time for the chunk, and reports it at the end.


## Framework for unknown complexity function

## Goal

We want to cope with unknown complexity functions. We have several batches of data.

- If the speed vector is unknown, first submit a batch assuming vector is $[1, \ldots, 1]$. Time-differences will tell what the relative speed is. So we may assume the speed vector is known;
- Deduce $n_{i}$ chunk sizes to send to node $i$ (in parallel for each node). Node $n_{i}$ measures the treatment time for the chunk, and reports it at the end.
- A piecewise representation of the complexity function is built, and missing values are interpolated.


## Detailed algorithm

(1) For each node $i$, precompute the mapping $(T, i) \mapsto n_{i}$ as previously, using interpolated values for $f$ if necessary. Deduce a mapping $T \mapsto n$ by summing the mappings over all $i$.

## Detailed algorithm

(1) For each node $i$, precompute the mapping $(T, i) \mapsto n_{i}$ as previously, using interpolated values for $f$ if necessary. Deduce a mapping $T \mapsto n$ by summing the mappings over all $i$.
(2) Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of $T$ (and thus of all the $n_{i}$ ) and assign chunks of data to node $i$;

## Detailed algorithm

(1) For each node $i$, precompute the mapping $(T, i) \mapsto n_{i}$ as previously, using interpolated values for $f$ if necessary. Deduce a mapping $T \mapsto n$ by summing the mappings over all $i$.
(2) Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of $T$ (and thus of all the $n_{i}$ ) and assign chunks of data to node $i$;
(3) When chunk $i$ of size $n_{i}$ is being treated:

## Detailed algorithm

(1) For each node $i$, precompute the mapping $(T, i) \mapsto n_{i}$ as previously, using interpolated values for $f$ if necessary. Deduce a mapping $T \mapsto n$ by summing the mappings over all $i$.
(2) Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of $T$ (and thus of all the $n_{i}$ ) and assign chunks of data to node $i$;
(3) When chunk $i$ of size $n_{i}$ is being treated:
(1) Record the cost $C=T_{n_{i}} k_{i}$ of the computation for size $n_{i}$.

## Detailed algorithm

(1) For each node $i$, precompute the mapping $(T, i) \mapsto n_{i}$ as previously, using interpolated values for $f$ if necessary. Deduce a mapping $T \mapsto n$ by summing the mappings over all $i$.
(2) Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of $T$ (and thus of all the $n_{i}$ ) and assign chunks of data to node $i$;
(3) When chunk $i$ of size $n_{i}$ is being treated:
(1) Record the cost $C=T_{n_{i}} k_{i}$ of the computation for size $n_{i}$.
(2) If $n_{i}$ already had a non-interpolated value, choose a new value $C^{\prime}$ according to some strategy.

## Detailed algorithm

(1) For each node $i$, precompute the mapping $(T, i) \mapsto n_{i}$ as previously, using interpolated values for $f$ if necessary. Deduce a mapping $T \mapsto n$ by summing the mappings over all $i$.
(2) Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of $T$ (and thus of all the $n_{i}$ ) and assign chunks of data to node $i$;
(3) When chunk $i$ of size $n_{i}$ is being treated:
(1) Record the cost $C=T_{n_{i}} k_{i}$ of the computation for size $n_{i}$.
(2) If $n_{i}$ already had a non-interpolated value, choose a new value $C^{\prime}$ according to some strategy.
(3) If $n_{i}$ was not a known point, set $C^{\prime}=C$.

## Detailed algorithm

(1) For each node $i$, precompute the mapping $(T, i) \mapsto n_{i}$ as previously, using interpolated values for $f$ if necessary. Deduce a mapping $T \mapsto n$ by summing the mappings over all $i$.
(2) Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of $T$ (and thus of all the $n_{i}$ ) and assign chunks of data to node $i$;
(3) When chunk $i$ of size $n_{i}$ is being treated:
(1) Record the cost $C=T_{n_{i}} k_{i}$ of the computation for size $n_{i}$.
(2) If $n_{i}$ already had a non-interpolated value, choose a new value $C^{\prime}$ according to some strategy.
(3) If $n_{i}$ was not a known point, set $C^{\prime}=C$.
(1) Ensure that the mapping as defined by $n \neq n_{i} \mapsto C(n)$ and the new value $n_{i} \mapsto C^{\prime}$ is still monotonous increasing.

## Detailed algorithm

(1) For each node $i$, precompute the mapping $(T, i) \mapsto n_{i}$ as previously, using interpolated values for $f$ if necessary. Deduce a mapping $T \mapsto n$ by summing the mappings over all $i$.
(2) Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of $T$ (and thus of all the $n_{i}$ ) and assign chunks of data to node $i$;
(3) When chunk $i$ of size $n_{i}$ is being treated:
(1) Record the cost $C=T_{n_{i}} k_{i}$ of the computation for size $n_{i}$.
(2) If $n_{i}$ already had a non-interpolated value, choose a new value $C^{\prime}$ according to some strategy.
(3) If $n_{i}$ was not a known point, set $C^{\prime}=C$.
(1) Ensure that the mapping as defined by $n \neq n_{i} \mapsto C(n)$ and the new value $n_{i} \mapsto C^{\prime}$ is still monotonous increasing.
(1) A new batch can begin.

## Outline

(1) Motivation

- The partitioning problem
- Splitting data
(2) Contribution
- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments


## Non-uniformly related processors

## Goal

We want to cope with complexity functions that depend on the node characteristics.

## Non-uniformly related processors

## Goal

We want to cope with complexity functions that depend on the node characteristics.

We can minimise the following formula by dynamic programming:

$$
T(N, p)=\max _{i=1, \ldots, p}\left\{f_{i}\left(n_{i}\right)\right\}=\underset{\substack{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \\ \sum_{i=1}^{p} x_{i}=N}}{\left.\min _{i=1, \ldots, p}\left\{f_{i}\left(x_{i}\right)\right\}\right\}}
$$

## Non-uniformly related processors

## Goal

We want to cope with complexity functions that depend on the node characteristics.

We can minimise the following formula by dynamic programming:

$$
T(N, p)=\max _{i=1, \ldots, p}\left\{f_{i}\left(n_{i}\right)\right\}=\underset{\substack{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p} \\ \sum_{i=1}^{p} x_{i}=N}}{\left.\min _{i=1, \ldots, p}\left\{f_{i}\left(x_{i}\right)\right\}\right\}}
$$

$$
T(m, i)=\min _{n_{i}=0 . . m} \max \left(f_{i}\left(n_{i}\right), C\left(m-n_{i}, i-1\right)\right)
$$

## Non-uniformly related processors

## Goal

We want to cope with complexity functions that depend on the node characteristics.

We can minimise the following formula by dynamic programming:

$$
\begin{aligned}
& T(N, p)= \max _{i=1, \ldots, p}\left\{f_{i}\left(n_{i}\right)\right\}= \\
& \min _{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p}}\left\{\max _{i=1, \ldots, p}\left\{f_{i}\left(x_{i}\right)\right\}\right\} \\
& \sum_{i=1}^{p} x_{i}=N
\end{aligned}
$$

$$
T(m, i)=\min _{n_{i}=0 . . m} \max \left(f_{i}\left(n_{i}\right), C\left(m-n_{i}, i-1\right)\right)
$$

## Theorem

Computation of optimal partition is done in $\mathcal{O}\left(N^{2} p\right)$ time.

## Outline

(1) Motivation

- The partitioning problem
- Splitting data
(2) Contribution
- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments


## Experiments

## Experiment workflow



## Experiments

- Records of 100 bytes long, two classes of computers ( $k=1$ and $k=1.5$ );


## Experiments

- Records of 100 bytes long, two classes of computers ( $k=1$ and $k=1.5$ );
- 54 GB of data, 50 runs for each experiment, bi-opteron processor, cpu-burning;


## Experiments

- Records of 100 bytes long, two classes of computers ( $k=1$ and $k=1.5)$;
- 54 GB of data, 50 runs for each experiment, bi-opteron processor, cpu-burning;
- 96 nodes used;


## Experiments

- Records of 100 bytes long, two classes of computers ( $k=1$ and $k=1.5$ );
- 54 GB of data, 50 runs for each experiment, bi-opteron processor, cpu-burning;
- 96 nodes used;
- Minute Sort benchmark compliant;


## Experiments

- Records of 100 bytes long, two classes of computers ( $k=1$ and $k=1.5$ );
- 54 GB of data, 50 runs for each experiment, bi-opteron processor, cpu-burning;
- 96 nodes used;
- Minute Sort benchmark compliant;

| naive algo | partitioning | partitioning (2 threads) |
| :---: | :---: | :---: |
| 125.4 s | 112.7 s | 69.4 s |

## Summary

- Polynomial complexity functions yield a simple formula

$$
n_{i}=\frac{\tilde{f}^{-1}\left(k_{i}\right)}{\sum_{i=1}^{p} \tilde{f}^{-1}\left(k_{i}\right)} N
$$

## Summary

- Polynomial complexity functions yield a simple formula

$$
n_{i}=\frac{\tilde{f}^{-1}\left(k_{i}\right)}{\sum_{i=1}^{p} \tilde{f}^{-1}\left(k_{i}\right)} N
$$

- Unknown complexity functions can still be managed, but require incremental construction;


## Summary

- Polynomial complexity functions yield a simple formula

$$
n_{i}=\frac{\tilde{f}^{-1}\left(k_{i}\right)}{\sum_{i=1}^{p} \tilde{f}^{-1}\left(k_{i}\right)} N
$$

- Unknown complexity functions can still be managed, but require incremental construction;
- Dynamic programming can also be used in more general cases.


## Summary

- Polynomial complexity functions yield a simple formula

$$
n_{i}=\frac{\tilde{f}^{-1}\left(k_{i}\right)}{\sum_{i=1}^{p} \tilde{f}^{-1}\left(k_{i}\right)} N
$$

- Unknown complexity functions can still be managed, but require incremental construction;
- Dynamic programming can also be used in more general cases.
- Future work
- Limited bandwidth models and heterogeneous network links.
- Non-linear computation time models.
- Global optimisation.

