Methods for Partitioning Data to Improve Parallel Execution Time for Sorting on Heterogeneous Clusters

C. Cérin¹ J.-C. Dubacq¹ J.-L. Roch²

¹LIPN Université de Paris Nord

²ID-IMAG Université Joseph Fourier, Grenoble

Global and Pervasive Computing 2006 (台中市)

Outline

Motivation

- The partitioning problem
- Splitting data

2 Contribution

- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments

Outline

1 Motivation

- The partitioning problem
- Splitting data

2 Contribution

- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments

• Large data sets require lot of computation time for sorting;

- Large data sets require lot of computation time for sorting;
- Data chunks of equal size used to do the job on parallel machines.

- Large data sets require lot of computation time for sorting;
- Data chunks of equal size used to do the job on parallel machines.

Modelisation

• Infinite point-to-point bandwidth;

- Large data sets require lot of computation time for sorting;
- Data chunks of equal size used to do the job on parallel machines.

Modelisation

- Infinite point-to-point bandwidth;
- Heterogeneous speed: relative linear speed;

- Large data sets require lot of computation time for sorting;
- Data chunks of equal size used to do the job on parallel machines.

Modelisation

- Infinite point-to-point bandwidth;
- Heterogeneous speed: relative linear speed;
- No study of memory effect.

() Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;

- **①** Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
- Each processor sorts locally its data chunk;

- **(**) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
- Each processor sorts locally its data chunk;
- Solution Node 0 receives p-1 pivots, sorts them and broadcasts them;

- **(**) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
- Each processor sorts locally its data chunk;
- Solution Node 0 receives p-1 pivots, sorts them and broadcasts them;
- Each processor uses the pivots to split its data;

- **(**) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
- Each processor sorts locally its data chunk;
- Solution Node 0 receives p-1 pivots, sorts them and broadcasts them;
- Seach processor uses the pivots to split its data;
- Seach processor transmits all its (split) data to the others;

- **(**) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
- Each processor sorts locally its data chunk;
- Solution Node 0 receives p-1 pivots, sorts them and broadcasts them;
- Seach processor uses the pivots to split its data;
- Seach processor transmits all its (split) data to the others;
- **6** Each processor merges all data it received with its own.

- **(**) Data chunks are sent from node 0 to nodes $1, \ldots, p-1$;
- Each processor sorts locally its data chunk;
- Solution Node 0 receives p-1 pivots, sorts them and broadcasts them;
- Each processor uses the pivots to split its data;
- Seach processor transmits all its (split) data to the others;
- **6** Each processor merges all data it received with its own.

Observation

With fixed p, the computation-intensive part is step 2.

Motivation 000●000

Context: Grid'5000, heterogeneous clusters

• GRID'5000: French national research project on grids;

Motivation 0000000

Context: Grid'5000, heterogeneous clusters

- GRID'5000: French national research project on grids;
- Goal: 5000 nodes dedicated to experimental development;

Motivation 0000000

Context: Grid'5000, heterogeneous clusters

- GRID'5000: French national research project on grids;
- Goal: 5000 nodes dedicated to experimental development;
- Current state: 2300 nodes, 13+ separated clusters, 9 sites, dedicated 10 Gb/s black fibre connexion;

Motivation 0000000

Context: Grid'5000, heterogeneous clusters

- GRID'5000: French national research project on grids;
- Goal: 5000 nodes dedicated to experimental development;
- Current state: 2300 nodes, 13+ separated clusters, 9 sites, dedicated 10 Gb/s black fibre connexion;

(a)

Heterogeneity

Clusters have different processors, same family-processors have different clock speeds.

Outline

2 Contribution

- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments

From homogeneous to heterogeneous processors

Goal

We have N objects to transmit and transform using p nodes. We want all computation to end at exactly the same time. Final merging is not relevant.

From homogeneous to heterogeneous processors

Goal

We have N objects to transmit and transform using p nodes. We want all computation to end at exactly the same time. Final merging is not relevant.

Theorem (Homogeneous case)

If all nodes work at same speed, the splitting of the data is optimal if one uses chunks of size N/p.

From homogeneous to heterogeneous processors

Goal

We have N objects to transmit and transform using p nodes. We want all computation to end at exactly the same time. Final merging is not relevant.

Theorem (Homogeneous case)

If all nodes work at same speed, the splitting of the data is optimal if one uses chunks of size N/p.

We define the relative speed k_i of a node i as the quantity of operations it can do by unit of time compared to a reference node, and $K = \sum_j k_j$.

A D > A B > A B > A B >

Previous works

Naïve algorithm uses chunks of size $\frac{k_i}{K}N$ and yields inadequate computation time.

Previous works

Naïve algorithm uses chunks of size $\frac{k_i}{K}N$ and yields inadequate computation time.

Example (naïve algorithm)

Node 1
$$k_1 = 1$$
 $n_1 = \frac{N}{3}$ $T_1 = n_1 \log n_1$
Node 2 $k_2 = 2$ $n_2 = \frac{2N}{3}$ $T_2 = \frac{n_2 \log n_2}{k_2}$

$$T_2 = n_1 \log (2n_1) = T_1 + n_1 \log 2 \neq T_1$$

Previous works

Naïve algorithm uses chunks of size $\frac{k_i}{K}N$ and yields inadequate computation time.

Example (naïve algorithm)

Node 1
$$k_1 = 1$$
 $n_1 = \frac{N}{3}$ $T_1 = n_1 \log n_1$
Node 2 $k_2 = 2$ $n_2 = \frac{2N}{3}$ $T_2 = \frac{n_2 \log n_2}{k_2}$
 $T_2 = n_1 \log (2n_1) = T_1 + n_1 \log 2 \neq T_1$

Theorem (Cérin,Koskas,Jemni,Fkaier)

For large N, optimal chunk size is

$$n_{i} = \frac{k_{i}}{K}N + \epsilon_{i}, \quad (1 \le i \le p) \text{ where } \epsilon_{i} = \frac{N}{\ln N} \left[\frac{k_{i}}{K^{2}} \sum_{j=1}^{p} k_{j} \ln \left(\frac{k_{j}}{k_{i}} \right) \right]$$

Outline

- The partitioning problem
- Splitting data

2 Contribution

- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments

We use \tilde{f} as the complexity function $(T_i = \tilde{f}(n_1)/k_i)$.

$$T = \frac{\tilde{f}(n_1)}{k_1} = \frac{\tilde{f}(n_2)}{k_2} = \cdots = \frac{\tilde{f}(n_p)}{k_p}$$

We use \tilde{f} as the complexity function $(T_i = \tilde{f}(n_1)/k_i)$.

$$T = \frac{\tilde{f}(n_1)}{k_1} = \frac{\tilde{f}(n_2)}{k_2} = \cdots = \frac{\tilde{f}(n_p)}{k_p}$$

$$n_1 + n_2 + \ldots + n_p = N$$

We use \tilde{f} as the complexity function $(T_i = \tilde{f}(n_1)/k_i)$.

$$T = \frac{\tilde{f}(n_1)}{k_1} = \frac{\tilde{f}(n_2)}{k_2} = \cdots = \frac{\tilde{f}(n_p)}{k_p}$$

$$n_1 + n_2 + \ldots + n_p = N$$

Thus we can derive these compact equations for equality:

We use \tilde{f} as the complexity function $(T_i = \tilde{f}(n_1)/k_i)$.

$$T = \frac{\tilde{f}(n_1)}{k_1} = \frac{\tilde{f}(n_2)}{k_2} = \cdots = \frac{\tilde{f}(n_p)}{k_p}$$

$$n_1 + n_2 + \dots + n_p = N$$

Thus we can derive these compact equations for equality:

$$n_i = \tilde{f}^{-1}(T.k_i)$$

We use \tilde{f} as the complexity function $(T_i = \tilde{f}(n_1)/k_i)$.

$$T = \frac{\tilde{f}(n_1)}{k_1} = \frac{\tilde{f}(n_2)}{k_2} = \cdots = \frac{\tilde{f}(n_p)}{k_p}$$

$$n_1 + n_2 + \dots + n_p = N$$

Thus we can derive these compact equations for equality:

$$n_i = \tilde{f}^{-1}(T.k_i)$$
 and $\sum_{i=1}^{p} \tilde{f}^{-1}(T.k_i) = N$

We use \tilde{f} as the complexity function $(T_i = \tilde{f}(n_1)/k_i)$.

$$T = \frac{\tilde{f}(n_1)}{k_1} = \frac{\tilde{f}(n_2)}{k_2} = \cdots = \frac{\tilde{f}(n_p)}{k_p}$$

$$n_1 + n_2 + \dots + n_p = N$$

Thus we can derive these compact equations for equality:

$$n_i = \tilde{f}^{-1}(T.k_i)$$
 and $\sum_{i=1}^{p} \tilde{f}^{-1}(T.k_i) = N$

Only one unknown variable left!

The polynomial case

Theorem (Polynomial case)

If $\tilde{f} : x \mapsto \alpha x^{\beta}$, then the optimal division is obtained by chunks sizes:

The polynomial case

Theorem (Polynomial case)

If $\tilde{f} : x \mapsto \alpha x^{\beta}$, then the optimal division is obtained by chunks sizes:

$$n_i = rac{k_i^{1/\beta}}{\sum_{i=1}^p k_i^{1/\beta}} N.$$

The polynomial case

Theorem (Polynomial case)

If $\tilde{f} : x \mapsto \alpha x^{\beta}$, then the optimal division is obtained by chunks sizes:

$$m_i = rac{k_i^{1/\beta}}{\sum_{i=1}^p k_i^{1/\beta}} N.$$

Proof: \tilde{f} is multiplicative.

$$\sum_{i=1}^{p} \tilde{f}^{-1}(T.k_i) = N \Longrightarrow \qquad N = \tilde{f}^{-1}(T) \sum_{i=1}^{p} \tilde{f}^{-1}(k_i)$$
$$\Longrightarrow \qquad T = \tilde{f}\left(\frac{N}{\sum_{i=1}^{p} \tilde{f}^{-1}(k_i)}\right)$$

The polylog case

Theorem

Initial values of n_i can be asymptotically computed by

$$\sum_{i=1}^{p} \frac{Tk_i + Tk_i \ln \ln(Tk_i)}{(\ln(Tk_i))^2} = N \text{ and } n_i = \frac{Tk_i + Tk_i \ln \ln(Tk_i)}{(\ln(Tk_i))^2}$$

The polylog case

Theorem

Initial values of n_i can be asymptotically computed by

$$\sum_{i=1}^{p} \frac{Tk_i + Tk_i \ln \ln(Tk_i)}{(\ln(Tk_i))^2} = N \text{ and } n_i = \frac{Tk_i + Tk_i \ln \ln(Tk_i)}{(\ln(Tk_i))^2}$$

Proof.

We use the Lambert W function which is the inverse function of $x \mapsto x \log x$.

The polylog case

Theorem

Initial values of n_i can be asymptotically computed by

$$\sum_{i=1}^{p} \frac{Tk_i + Tk_i \ln \ln(Tk_i)}{(\ln(Tk_i))^2} = N \text{ and } n_i = \frac{Tk_i + Tk_i \ln \ln(Tk_i)}{(\ln(Tk_i))^2}$$

Proof.

We use the Lambert W function which is the inverse function of $x \mapsto x \log x$.

A well known approximation is $W(x) = \ln x - \ln \ln(x) + o(1)$.

(a)

Outline

- The partitioning problem
- Splitting data

2 Contribution

- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments

Goal

We want to cope with unknown complexity functions. We have several batches of data.

Goal

We want to cope with unknown complexity functions. We have several batches of data.

 If the speed vector is unknown, first submit a batch assuming vector is [1,...,1]. Time-differences will tell what the relative speed is. So we may assume the speed vector is known;

Goal

We want to cope with unknown complexity functions. We have several batches of data.

- If the speed vector is unknown, first submit a batch assuming vector is [1,...,1]. Time-differences will tell what the relative speed is. So we may assume the speed vector is known;
- Deduce n_i chunk sizes to send to node i (in parallel for each node). Node n_i measures the treatment time for the chunk, and reports it at the end.

Goal

We want to cope with unknown complexity functions. We have several batches of data.

- If the speed vector is unknown, first submit a batch assuming vector is [1,...,1]. Time-differences will tell what the relative speed is. So we may assume the speed vector is known;
- Deduce n_i chunk sizes to send to node i (in parallel for each node). Node n_i measures the treatment time for the chunk, and reports it at the end.
- A piecewise representation of the complexity function is built, and missing values are interpolated.

For each node *i*, precompute the mapping (*T*, *i*) → *n_i* as previously, using interpolated values for *f* if necessary. Deduce a mapping *T* → *n* by summing the mappings over all *i*.

- For each node *i*, precompute the mapping (*T*, *i*) → *n_i* as previously, using interpolated values for *f* if necessary. Deduce a mapping *T* → *n* by summing the mappings over all *i*.
- **②** Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of T (and thus of all the n_i) and assign chunks of data to node i;

- For each node *i*, precompute the mapping (*T*, *i*) → *n_i* as previously, using interpolated values for *f* if necessary. Deduce a mapping *T* → *n* by summing the mappings over all *i*.
- **②** Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of T (and thus of all the n_i) and assign chunks of data to node i;
- **(a)** When chunk *i* of size n_i is being treated:

- For each node *i*, precompute the mapping (*T*, *i*) → *n_i* as previously, using interpolated values for *f* if necessary. Deduce a mapping *T* → *n* by summing the mappings over all *i*.
- **②** Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of T (and thus of all the n_i) and assign chunks of data to node i;
- **③** When chunk *i* of size n_i is being treated:
 - **9** Record the cost $C = T_{n_i}k_i$ of the computation for size n_i .

- For each node *i*, precompute the mapping (*T*, *i*) → *n_i* as previously, using interpolated values for *f* if necessary. Deduce a mapping *T* → *n* by summing the mappings over all *i*.
- **②** Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of T (and thus of all the n_i) and assign chunks of data to node i;
- **(a)** When chunk *i* of size n_i is being treated:
 - **9** Record the cost $C = T_{n_i}k_i$ of the computation for size n_i .
 - If n_i already had a non-interpolated value, choose a new value C' according to some strategy.

- For each node *i*, precompute the mapping (*T*, *i*) → *n_i* as previously, using interpolated values for *f* if necessary. Deduce a mapping *T* → *n* by summing the mappings over all *i*.
- **②** Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of T (and thus of all the n_i) and assign chunks of data to node i;
- **(a)** When chunk *i* of size n_i is being treated:
 - Record the cost $C = T_{n_i}k_i$ of the computation for size n_i .
 - If n_i already had a non-interpolated value, choose a new value C' according to some strategy.
 - **3** If n_i was not a known point, set C' = C.

- For each node *i*, precompute the mapping (*T*, *i*) → *n_i* as previously, using interpolated values for *f* if necessary. Deduce a mapping *T* → *n* by summing the mappings over all *i*.
- **②** Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of T (and thus of all the n_i) and assign chunks of data to node i;
- **(a)** When chunk *i* of size n_i is being treated:
 - Record the cost $C = T_{n_i}k_i$ of the computation for size n_i .
 - If n_i already had a non-interpolated value, choose a new value C' according to some strategy.
 - **③** If n_i was not a known point, set C' = C.
 - Ensure that the mapping as defined by $n \neq n_i \mapsto C(n)$ and the new value $n_i \mapsto C'$ is still monotonous increasing.

- For each node *i*, precompute the mapping (*T*, *i*) → *n_i* as previously, using interpolated values for *f* if necessary. Deduce a mapping *T* → *n* by summing the mappings over all *i*.
- **②** Use a dichotomic search through $T \mapsto n$ mapping to find the ideal value of T (and thus of all the n_i) and assign chunks of data to node i;
- **(a)** When chunk *i* of size n_i is being treated:
 - Record the cost $C = T_{n_i}k_i$ of the computation for size n_i .
 - If n_i already had a non-interpolated value, choose a new value C' according to some strategy.
 - **③** If n_i was not a known point, set C' = C.
 - Ensure that the mapping as defined by $n \neq n_i \mapsto C(n)$ and the new value $n_i \mapsto C'$ is still monotonous increasing.
- A new batch can begin.

Outline

- The partitioning problem
- Splitting data

2 Contribution

- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments

Goal

We want to cope with complexity functions that depend on the node characteristics.

Goal

We want to cope with complexity functions that depend on the node characteristics.

We can minimise the following formula by dynamic programming:

$$T(N,p) = \max_{i=1,...,p} \{f_i(n_i)\} = \min_{\substack{(x_1,...,x_p) \in \mathbb{N}^p \\ \sum_{i=1}^p x_i = N}} \left\{ \max_{i=1,...,p} \{f_i(x_i)\} \right\}$$

Goal

We want to cope with complexity functions that depend on the node characteristics.

We can minimise the following formula by dynamic programming:

$$T(N,p) = \max_{i=1,...,p} \{f_i(n_i)\} = \min_{\substack{(x_1,...,x_p) \in \mathbb{N}^p \\ \sum_{i=1}^p x_i = N}} \left\{ \max_{i=1,...,p} \{f_i(x_i)\} \right\}$$

$$T(m, i) = \min_{n_i=0..m} \max(f_i(n_i), C(m - n_i, i - 1))$$

Goal

We want to cope with complexity functions that depend on the node characteristics.

We can minimise the following formula by dynamic programming:

$$T(N,p) = \max_{i=1,...,p} \{f_i(n_i)\} = \min_{\substack{(x_1,...,x_p) \in \mathbb{N}^p \\ \sum_{i=1}^p x_i = N}} \left\{ \max_{i=1,...,p} \{f_i(x_i)\} \right\}$$

$$T(m, i) = \min_{n_i=0..m} \max(f_i(n_i), C(m - n_i, i - 1))$$

イロト 人間 ト イヨト イヨト

Theorem

Computation of optimal partition is done in $\mathcal{O}(N^2p)$ time.

Outline

- The partitioning problem
- Splitting data

2 Contribution

- General exact analytic approach
- Dynamic evaluation of complexity function
- Non uniformly related processors
- Experiments

Experiment workflow

・ロト ・ 同ト ・ ヨト ・ ヨト

Records of 100 bytes long, two classes of computers (k = 1 and k = 1.5);

- Records of 100 bytes long, two classes of computers (k = 1 and k = 1.5);
- 54 GB of data, 50 runs for each experiment, bi-opteron processor, cpu-burning;

- Records of 100 bytes long, two classes of computers (k = 1 and k = 1.5);
- 54 GB of data, 50 runs for each experiment, bi-opteron processor, cpu-burning;
- 96 nodes used;

- Records of 100 bytes long, two classes of computers (k = 1 and k = 1.5);
- 54 GB of data, 50 runs for each experiment, bi-opteron processor, cpu-burning;
- 96 nodes used;
- Minute Sort benchmark compliant;

- Records of 100 bytes long, two classes of computers (k = 1 and k = 1.5);
- 54 GB of data, 50 runs for each experiment, bi-opteron processor, cpu-burning;
- 96 nodes used;
- Minute Sort benchmark compliant;

naive algo	partitioning	partitioning (2 threads)
125.4s	112.7s	69.4s

• Polynomial complexity functions yield a simple formula

$$n_i = \frac{\tilde{f}^{-1}(k_i)}{\sum_{i=1}^p \tilde{f}^{-1}(k_i)} N.$$

• Polynomial complexity functions yield a simple formula

$$n_i = \frac{\tilde{f}^{-1}(k_i)}{\sum_{i=1}^p \tilde{f}^{-1}(k_i)} N.$$

• Unknown complexity functions can still be managed, but require incremental construction;

• Polynomial complexity functions yield a simple formula

$$n_i = \frac{\tilde{f}^{-1}(k_i)}{\sum_{i=1}^p \tilde{f}^{-1}(k_i)} N.$$

- Unknown complexity functions can still be managed, but require incremental construction;
- Dynamic programming can also be used in more general cases.

• Polynomial complexity functions yield a simple formula

$$n_i = \frac{\tilde{f}^{-1}(k_i)}{\sum_{i=1}^p \tilde{f}^{-1}(k_i)} N.$$

- Unknown complexity functions can still be managed, but require incremental construction;
- Dynamic programming can also be used in more general cases.
- Future work
 - Limited bandwidth models and heterogeneous network links.
 - Non-linear computation time models.
 - Global optimisation.

