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Abstract. A Delannoy path is a minimal path with diagonal steps in Z
2 between two arbitrary

points. We extend this notion to the n dimensions space Z
n and identify such paths with words on

a special kind of alphabet: an S-alphabet. We show that the set of all the words corresponding to
Delannoy paths going from one point to another is exactly one class in the congruence generated by a
Thue system that we exhibit. This Thue system induces a partial order on this set that is isomorphic
to the set of ordered partitions of a fixed multiset where the blocks are sets with a natural order
relation. Our main result is that this poset is a lattice.
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1. Introduction. A Delannoy path [11] is given as a path that can be drawn on
a rectangular grid, starting from the southwest corner, going to the northeast corner,
using only three kinds of elementary steps: north, east, and northeast. Hence they
are minimal paths with diagonal steps. We generalize the notion of a Delannoy path
to the hyperspace Z

n, considering a hyperparallelipedic grid as a set of elementary
steps: a step in each direction and the combinations of several of them, the diagonal
steps.
We prove that, in a very natural way, an S-alphabet can be associated with

the possible elementary steps in a Delannoy path in Z
n, and consequently S-words

with Delannoy paths themselves. These notions were introduced by Schwer [8], in a
completely different context, for treating simultaneity problems.
We then define a Thue system on the set of S-words that turns out to be noethe-

rian and confluent. This Thue system induces both an ordering on S-words and a
congruence. Our main goal is to prove that each equivalence class for this congruence
is with this order relation a lattice (Theorem 5.5). (This lattice is a nondistributive
lattice as soon as n > 2.)
An equivalence class can be viewed as the set of all ordered partitions of a fixed

multiset where the blocks are sets (not multisets). There is a transparent bijection
between an equivalence class and an element of this set, and the order relation over
partitions derived is a very natural one. In [9] are given some links between S-words
and others mathematical objects.
Moreover, we exhibit a characterization of the S-words of a class (and so of gen-

eralized Delannoy paths going from a point to another) with a family of matrices
having its coefficients in {−1, 0, 1} (Theorem 4.2), and we prove that the order on
S-words can be exactly transposed as the componentwise order on matrices induced
by −1 < 0 < 1 (Theorem 4.6).

∗Received by the editors April 6, 2001; accepted for publication (in revised form) October 16,
2002; published electronically February 20, 2003.

http://www.siam.org/journals/sidma/16-2/38740.html
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2. Recalls. Concerning lattices, the notations follow [10, 4]. Recall that a lattice
is an ordered set such that each pair of elements has a least upper bound and a greatest
lower bound. A subset of a lattice is a sublattice if for the same order relation it is a
lattice. It is a distributive lattice if the two operations associating, respectively, with
two elements, their least upper bound and a greatest lower bound, are distributive
with respect to each other. A lattice ordered by ≤ is modular if for all triples of
elements (a, b, c) with a ≤ c the least upper bound of a and of the greatest lower
bound of b and c is equal to the greatest lower bound of c and of the least upper
bound of a and b. It is known [10] that every distributive lattice is modular and that
the different chains going from one element to another all have the same length in a
modular lattice.
Concerning formal languages, we follow [1, 5].
Let X be an alphabet, let X∗ be the set of words over X, and let ε be the empty

word. If f is a word in X∗, then |f | is the length of f . A word g is a prefix of f if
some word u exists such that f = gu.
Let R be a finite relation overX∗. The Thue system generated by R is the relation

over X∗, denoted −→, that is the smallest relation containing R and compatible with
the concatenation product: (u, v) ∈ R =⇒ ∀f, g ∈ X∗, fug −→ fvg.
We use freely the usual notions and notations, as can be found, for example, in [1]

or [6]. In particular, ←− denotes the symmetric relation of −→, ←→ the symmetric
closure of −→, and −→∗ its reflexive and transitive closure. Let set [f ] = {g ∈
X∗ | f ←→∗ g} and 〈f〉 = {g ∈ X∗ | f −→∗ g}. These notations are extended to
languages [L] =

⋃
f∈L[f ] and 〈L〉 = ⋃

f∈L〈f〉.
We just recall here the properties [1] of Thue systems that we shall make use

of: A noetherian system is a system for which no infinite chain exists. A system is
confluent if f −→∗ u and f −→∗ v implies the existence of g such that u −→∗ g and
v −→∗ g. An element f is an irreducible element for −→ if no other element g exists
such that f −→ g.
In this paper, we make use of the notions of S-alphabet and S-word introduced

by Schwer [8, 9].
Let X be an alphabet. An S-alphabet issued from X is a nonempty subset of

X̂ = {P ∈ 2X | P = ∅}. X̂ is itself an S-alphabet. The elements of an S-alphabet

are called S-letters. Let Y be an S-alphabet subset of X̂; the alphabet {x ∈ X | ∃y ∈
Y : x ∈ y} is the underlying alphabet of Y . An S-word is a word written over an
alphabet of S-letters. So we may make use of all the usual notations and definitions
of the languages theory for S-words. It is, however, useful to introduce notations that
put in relation S-words with the underlying alphabet.
Let X = {a1, a2, . . . , an}, we define the homomorphism ψ : X̂∗ −→ N

n by ψ(P ) =
(χP (a1), . . . , χP (an)), where χP is the characteristic function of P . This extends the
usual notion of Parikh mapping [5]. The ith component of ψ(f) is denoted ψi(f).

We also define the homomorphism ν : X̂∗ −→ N by ν(P ) = Card(P ), i.e.,
ν(f) = Σ1≤i≤nψi(f). So ν is the number of occurrences of letters appearing in all the
S-letters of the S-word.
Let ψ(f) = (p1, p2, . . . , pn); for m ≤ n, and for l ≤ pm, we name position of the

lth occurrence of the letter am the integer 1 + ν(g), where g is the S-word that is the
longest prefix of f such that ψm(g) < l.
To simplify the exposition of the examples, we write the different letters in a

S-letter one after the other, without commas to separate them, and we write them in
increasing order on the indices.

Example 2.1. On the alphabet X̂ issued from X = {a1, a2, a3}, consider the



210 JEAN-MICHEL AUTEBERT AND SYLVIANE R. SCHWER

word f = {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2}{a2}. It is such that ψ(f) = (4, 4, 3).
For the letter a1, the longest prefixes gl of f such that ψ1(gl) < l when l equals

1, 2, 3, and 4 are, respectively, g1 = ε, g2 = {a1a2}{a3}, g3 = {a1a2}{a3}{a1},
and g4 = {a1a2}{a3}{a1}{a1a3}, and we have ν(g1) = 0, ν(g2) = 3, ν(g3) = 4, and
ν(g4) = 6. The respective positions of the four occurrences of a1 are then 1, 4, 5,
and 7.

For the letter a2, the longest prefixes gl of f such that ψ2(gl) < l when l equals
1, 2, 3, and 4 are, respectively, g1 = ε, g2 = {a1a2}{a3}{a1}{a1a3}, g3 =
{a1a2}{a3}{a1}{a1a3}{a1a2a3}, and g4 = {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2}, and
we have ν(g1) = 0, ν(g2) = 6, ν(g3) = 9, and ν(g4) = 10. The respective positions of
the four occurrences of a2 are then 1, 7, 10, and 11.

For the letter a3, the longest prefixes gl of f such that ψ3(gl) < l when l equals
1, 2, and 3 are, respectively, g1 = {a1a2}, g2 = {a1a2}{a3}{a1}, and g3 =
{a1a2}{a3}{a1}{a1a3}, and we have ν(g1) = 2, ν(g2) = 4, and ν(g4) = 6. The
respective positions of the three occurrences of a3 are then 3, 5, and 7.

3. The Thue system. We extend Delannoy paths to the hyperplane Z
n; i.e.,

we consider minimal paths with diagonal steps between two arbitrary points.
We associate with each dimension a letter of an alphabet X = {a1, a2, . . . , an}

and construct the S-alphabet X̂ = {P ∈ 2X | P = ∅}.
The interpretation is the following: the letter {ai} is a step in the dimension i,

and more generally the letter P ∈ X̂ is a simultaneous step in each of the dimensions
indicated by the letters of X that belong to P , called diagonal step if Card(P ) ≥ 2.
Let us give an arbitrary order over the letters of X by a1 < a2 < · · · < an. This

induces over the S-letters a partial order P < Q ⇐⇒ [∀x ∈ P,∀y ∈ Q : x < y].

We then define the Thue system, relation denoted −→ on X̂∗, by the following:
∀P,Q,R ∈ X̂ such that P < Q and R = P ∪Q, set PQ −→ R and R −→ QP .
Note that P and Q are disjoint.
In the case where n = 2, with X = {a, b}, we get X̂ = {{a}, {b}, {a, b}}, and

renaming, respectively, a, b, and c these three letters, the obtained system is precisely
the system studied in [2].
Note that doing the bijection of X in itself, which maps ai on an+1−i, or reversing

the order over the letters of X, which leads exactly to the same relation, one gets←−,
the symmetric relation of −→. Each property of −→ is also a property of ←− (and
the converse).

Lemma 3.1. If f and g are two words in the same class, their image under ψ is
the same.

Proof. By induction, it is sufficient to ensure that each application of a rule
preserves the image under ψ.

Lemma 3.2. The set of all irreducible words for this Thue system is Irr =
{an}∗ . . . {a2}∗{a1}∗. Symmetrically, the set of all irreducible words for the inverse
Thue system is {a1}∗{a2}∗ . . . {an}∗.

Proof. Clearly, a word in Irr has no subword being a left factor of a couple in the
relation defining the Thue system, and so Irr is a set of irreducible words. Conversely,
let f be an S-word not in Irr; then there is either in f an S-letter R containing at least
two letters or there are two S-letters {ai} and {aj} with i < j and {ai} is situated
before {aj}. In the latter case, there exist two such S-letters being consecutive, and
the rule {ai}{aj} −→ {aiaj} may be applied to f , which is not an irreducible word.
In the former case, R can be partitioned between two subsets P and Q so that all the
indices of the elements of P are smaller than the indices of the elements of Q, and
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the rule R −→ QP may be applied to f , which is not an irreducible word.
Corollary 3.3. For each word, there is at most one irreducible word.
Proof. It is sufficient to check that, among all words having the same image

under ψ, there is only one belonging to Irr.
Lemma 3.4. The Thue system is noetherian. As a consequence, the relation

−→∗ is an order relation.
Proof. Let f be an S-word, and let P be an occurrence of one of its S-letters. Let

Post(P, f) denote the set of S-letters situated after P in f . To each letter am in P is
attached the integer Card({i > m | ai ∈ P}) + 2.∑Q∈Post(P,f) Card({i > m | ai ∈
Q}), and let σ(f) be the sum of these integers for all the occurrences of letters in f .
It is easy to check that f −→ g =⇒ σ(f) > σ(g). As a consequence, the Thue system
is noetherian. The relation −→∗ , which is by definition reflexive and transitive, is
antisymmetric as well. It is so an order relation.

Corollary 3.5. The Thue system is confluent.
Proof. Let f and g be two congruent words. As the system is noetherian, they

each have an irreducible, and as they are congruent these irreducibles are but one.
The two words can be derived on the same word.

Corollary 3.6. The following equality holds: [f ] = {g ∈ X̂∗ | ψ(g) = ψ(f)}.
Proof. The inclusion [f ] ⊂ {g ∈ X̂∗ | ψ(g) = ψ(f)} has already been established.

Conversely, if two words have the same image under ψ, they have the same irreducible,
and so are congruent.
The n-uple (p1, p2, . . . , pn) is characteristic of the class of words f satisfying

ψ(f) = (p1, p2, . . . , pn). This class is denoted L(p1, p2, . . . , pn). The quotient X̂
∗/←→∗

is isomorphic to N
n with componentwise addition.

Altogether, the following holds:

L(p1, p2, . . . , pn) = {g ∈ X̂∗ | {a1}p1{a2}p2 . . . {an}pn−→∗ g−→∗ {an}pn . . . {a1}p1}.

In other words, 〈X̂∗,−→∗ 〉 is a set with a partial order whose set of minimal elements
is {a1}p1{a2}p2 . . . {an}pn and set of maximal elements is {an}pn . . . {a2}p2{a1}p1 .
As noticed before, the set L(p1, p2, . . . , pn) is isomorphic to the set of ordered

partitions (B1, . . . , Bk) of the multiset {1p1 . . . , npn} where the Bi are sets. The
covering relation is given by

(B1, . . . , Bk) −→ (B1, . . . , Bi−2, Bi−1 ∪Bi, Bi+1, . . . , Bk)

if maxBi−1 < minBi and

(B1, . . . , Bi−2, Bi−1 ∪Bi, Bi+1, . . . , Bk) −→ (B1, . . . , Bk)

if maxBi < minBi−1.
We proved formerly in [2] that L(p1, p2) with the order relation −→∗ is a dis-

tributive lattice.
The main difference between the case when n = 2 and the general case treated

here when n > 2 is the following: though the order a < b over X = {a, b} can easily
be extended to a total order over the S-alphabet by setting {a} < {a, b} < {b}, the
natural generalization of this last: P < R < Q if ∀x ∈ P,∀y ∈ Q : x < y and if
R = P ∪Q, is not a linear order. This deeply changes the nature of the structure of
L(p1, p2, . . . , pn) with the order relation −→∗ .
For instance, the following example shows that L(p1, p2, . . . , pn) is not, in general,

a distributive lattice.
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{a}{b}{c}
�

�✠
❅

❅❘
{b,a}{c}

�
�✠

❆
❆
❆
❆
❆
❆

{a}{c,b}
✁

✁
✁

✁
✁

✁☛

❅
❅❘

{b}{a}{c}

❄
{b}{c,a}

❄
{b}{c}{a}

❅
❅❘
{c,b}{a}

❅
❅❘

{a}{c}{b}

❄
{c,a}{b}

❄
{c}{a}{b}

�
�✠

{c}{b,a}
�

�✠

{c,b,a}
✁

✁
✁

✁
✁

✁☛

❆
❆
❆
❆
❆
❆

{c}{b}{a}
Fig. 3.1. L(1, 1, 1).

Example 3.1. The lattice of L(1, 1, 1), represented in Figure 3.1, is not modular;
hence it is not distributive.
Nevertheless, it has been announced in [7] that, in the case where all pi are equal

to 1, L(1, 1, . . . , 1) is a lattice. We prove here that it is also true in the general case.

4. The matrix associated to an S-word of L(p1, p2, . . . , pn). In what
follows, all the S-words are words of L(p1, p2, . . . , pn), and we set s = Σpi.
It has already been indicated that the smallest word of L(p1, p2, . . . , pn) is the

word fmin = {a1}p1{a2}p2 . . . {an}pn . For an integer i such that 1 ≤ i ≤ ν(f), we
consider the occurrence of the letter in ith position in fmin: it is, for some integers l
and m, the lth occurrence of a letter am. Thus an integer i determines two integers l
and m, defined by the relation i = l+Σ1≤s<m ps with l ≤ pm. We call letter of rank
i in a word f ∈ L(p1, p2, . . . , pn) the occurrence of the lth letter am where l and m
have been so determined. We set m = r(i).

Example 4.1. Let X = {a1, a2, a3}. Considering as in the preceding example
the word f = {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2}{a2}, this word is such that ψ(f) =
(4, 4, 3) and ν(f) = 11.

The letters of ranks 1, 2, 3, and 4 are occurrences of the letter a1, the letters of
ranks 5, 6, 7, and 8 are occurrences of the letter a2, and the letters of ranks 9, 10, and
11 are occurrences of the letter a3.

The letter of rank 6 is thus the second occurrence of the letter a2 belonging to the
S-letter {a1a2a3} that immediately follows the prefix {a1a2}{a3}{a1}{a1a3} of f ; its
position is 7.

Table 4.1 gives explicitly the letters of all ranks and their positions.
Definition 4.1. Let f be a word of L(p1, p2, . . . , pn). The matrix associated
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Table 4.1

Rank Letter S-letter Former prefix Position

1 a1 {a1a2} ε 1
2 a1 {a1} {a1a2}{a3} 4
3 a1 {a1a3} {a1a2}{a3}{a1} 5
4 a1 {a1a2a3} {a1a2}{a3}{a1}{a1a3} 7
5 a2 {a1a2} ε 1
6 a2 {a1a2a3} {a1a2}{a3}{a1}{a1a3} 7
7 a2 {a2} {a1a2}{a3}{a1}{a1a3}{a1a2a3} 10
8 a2 {a2} {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2} 11
9 a3 {a3} {a1a2} 3
10 a3 {a1a3} {a1a2}{a3}{a1} 5
11 a3 {a1a2a3} {a1a2}{a3}{a1}{a1a3} 7

with f , denoted M(f), is the matrix ν(f)× ν(f) whose element M(f)[i, j] of the ith
row and of the jth column is

• −1 if the position in f of the letter of rank i is smaller than the position in f
of the letter of rank j;

• 0 if the position in f of the letter of rank i is equal to the position in f of the
letter of rank j;

• 1 if the position in f of the letter of rank i is greater than the position in f of
the letter of rank j.

Example 4.2. Going further with the preceding example, the matrix associated
to the word f = {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2}{a2} is

1 2 3 4 5 6 7 8 9 10 11

1 0 −1 −1 −1 0 −1 −1 −1 −1 −1 −1
2 1 0 −1 −1 1 −1 −1 −1 1 −1 −1
3 1 1 0 −1 1 −1 −1 −1 1 0 −1
4 1 1 1 0 1 0 −1 −1 1 1 0
5 0 −1 −1 −1 0 −1 −1 −1 −1 −1 −1
6 1 1 1 0 1 0 −1 −1 1 1 0
7 1 1 1 1 1 1 0 −1 1 1 1
8 1 1 1 1 1 1 1 0 1 1 1
9 1 −1 −1 −1 1 −1 −1 −1 0 −1 −1
10 1 1 0 −1 1 −1 −1 −1 1 0 −1
11 1 1 1 0 1 0 −1 −1 1 1 0

.

A word f is thus associated with a ν(f)×ν(f) matrix with coefficients in {−1, 0, 1}.
Conversely, the matrix associated with a word f characterizes this word: it describes
which occurrences of letters are situated in the same S-letter and the order of the
occurrences of the letters with respect to each other.
The matrix associated with a word owns numerous properties. We list several of

them:
• Constructively, a matrix M(f) associated with a word f has only 0’s in its

diagonal and verifies tM(f) = −M(f).
Denote by M the set of s × s matrices M with entries in {−1, 0, 1} verifying

tM = −M (and hence M [i, i] = 0 ∀i).
Moreover, the coefficients of the strict upper triangular part share two other

properties:
• The first property, called the commutativity property, comes out from the com-

mutativity of the occurrences of the same letter between themselves. This property
leads us to divide the matrix in submatrices pi × pj , just as we did on the example,
indicating the orders in the positions of the occurrences of a same letter ai with those
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-1 -1
-1

�
�✠

❅
❅❘

0 -1
-1

�
�✠

❆
❆
❆
❆
❆
❆

-1 -1
0

✁
✁

✁
✁

✁
✁☛

❅
❅❘

1 -1
-1

❄
1 0
-1

❄
1 1
-1
❅

❅❘
1 1
0

❅
❅❘

-1 -1
1

❄
-1 0
1

❄
-1 1
1

�
�✠

0 1
1

�
�✠

0 0
0

✁
✁

✁
✁

✁
✁☛

❆
❆
❆
❆
❆
❆

1 1
1

Fig. 4.1. The lattice of transitivity.

of another letter aj . Denote Mi,j the submatrix concerning the relationships between
letters ai and aj .
This commutativity implies that, inside a submatrix Mi,j , supposing i < j,
(i) if i1 and i2 are the ranks of two letters ai, and j1 the rank of a letter aj , then

i1 < i2 and (M [i1, j1] = 0 or M [i1, j1] = 1) =⇒ M [i2, j1] = 1;
(ii) if i1 is the rank of a letter ai, and j1 and j2 the ranks of two letters aj , then

j1 < j2 and (M [i1, j1] = 0 or M [i1, j1] = −1) =⇒ M [i1, j2] = −1.
In the case where i = j, i.e., for the submatrix Mi,i (square and centered on the
diagonal), as we know that the diagonal is made of 0, the upper triangular part is
then made of −1.
In what follows, M(p1, . . . , pn) denotes the set of matrices in M verifying the

commutativity property.
• The second property, called the transitivity property, comes from the transitivity

of the order relation over the letters of the underlying alphabet: if ai < aj and aj < ak,
then ai < ak and so the comparisons of the positions of the letters of ranks i and j on
one hand, and j and k on the other hand, have an influence upon those of i and k. More
precisely, ∀i, j, k such that i < j < k, the triple (M(f)[i, j],M(f)[i, k],M(f)[j, k]),
which we represent under the triangular shape under which it appears in the matrix
M(f)[i, j] M(f)[i, k]

M(f)[j, k]
belongs to the following set T13 of triples:{ −1 −1

−1 ,
0 −1

−1 ,
1 −1

−1 ,
1 0

−1 ,
1 1

−1 ,
1 1
0

,
0 0
0

,
−1 −1

0
,

−1 −1
1

,
−1 0

1
,
−1 1

1
,
0 1
1

,
1 1
1

}
,

which, ordered by the componentwise order on integers, is a lattice too (cf. Figure 4.1).
One should remark that it is the same lattice as L(1, 1, 1).
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In what follows, M∗(p1, . . . , pn) denotes the set of matrices in M(p1, . . . , pn)
verifying the transitivity property.
We shall prove that these conditions do characterize the matrices associated with

words f such that ψ(f) = (p1, . . . , pn) (and that, consequently, this association is a
bijection between [f ] andM(p1, . . . , pn)), establishing the following theorem:

Theorem 4.2. Let M be a matrix of M. It is the matrix associated with a word
f ∈ L(p1, . . . , pn) if and only if it belongs to M∗(p1, . . . , pn).
Let M be a matrix of M(p1, . . . , pn), and let s = Σj≤npn. For all i such that

1 ≤ i ≤ s, let pri be the number of integers j > i such that M [i, j] = 1, and poi
the number of integers k < i such that M [k, i] = −1, and we evaluate the integer
pli = pri + poi.

Lemma 4.3. For all i ≤ s, the number of integers j verifying plj < pli is
exactly pli.

Proof. Let i and j be two indices such that i < j. These two indices define an
integer x =M [i, j] and the following six vectors: Vi is the vectorM [h, i] for 1 ≤ h < i ;
V ′j is the vector M [h, j] for 1 ≤ h < i ; V ′′j is the vector M [h, j] for i < h < j ; H ′i is
the vector M [i, h] for i < h < j ; H ′′i is the vector M [i, h] for j < h ≤ s ; and Hj is
the vector M [j, h] for j < h ≤ s, as indicated in Table 4.2.

Table 4.2

i j

Vi V ′
j

i 0 H′
i x H′′

i

V ′′
j

j 0 Hj

Let A be a vector; |A|1 denotes the number of 1’s in A and |A|−1 denotes the
number of −1’s in A. In each case, we compare |H ′′i |1 and |Hj |1 on one hand, |Vi|−1

and |V ′j |−1 on the other hand, and finally |H ′i|1 and |V ′′j |−1, comparisons between
vectors of same lengths.
Let i and j be two indices such that r(i) < r(j) (and hence i < j).
— In the case where x = M [i, j] = 1, one gets pri = |H ′i|1 + 1 + |H ′′i |1 and

poi = |Vi|−1, and prj = |Hj |1 and poi = |V ′j |−1 + |V ′′j |−1.
The transitivity property implies, ∀h > j, M [j, h] = 1 =⇒ M [i, h] = 1, and hence

|H ′′i |1 ≥ |Hj |1, ∀h < i, M [j, h] = −1 =⇒ M [i, h] = −1, and hence |Vi|−1 ≥ |V ′j |−1,
and ∀i < h < j, M [j, h] = −1 =⇒ M [h, i] = 1, and hence |H ′i|1 ≥ |V ′′j |−1. So
pli > plj .
— In the case where x = M [i, j] = −1, one gets pri = |H ′i|1 + |H ′′i |1 and poi =

|Vi|−1, and prj = |Hj |1 and poi = |V ′j |−1 + 1 + |V ′j |−1.
In the same way, the transitivity property implies |H ′′i |1 ≤ |Hj |1, |Vi|−1 ≤ |V ′j |−1,

and |H ′i|1 ≤ |V ′′j |−1. So pli < plj .
— In the case where x =M [i, j] = 0, one gets pri = |H ′i|1+|H ′′i |1 and poi = |Vi|−1,

and prj = |Hj |1 and poi = |V ′j |−1 + |V ′j |−1.
In the same way, the transitivity property implies |H ′′i |1 = |Hj |1, |Vi|−1 = |V ′j |−1,
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and |H ′i|1 = |V ′′j |−1. So pli = plj .
If i1 and i2 are two indices such that r(i1) = r(i2) (corresponding to the same i)

with i1 < i2, then, in the same way, following (i) one gets pri1 ≤ pri2 , and following
(ii) poi1 ≤ poi2 , and hence pli1 < pli2 .
To verify the lemma, it is sufficient now for a fixed i to count down.
To prove Theorem 4.2, it remains only to prove that the condition is sufficient.

Let M be a matrix in M∗(p1, . . . , pn); we are able to calculate for all i such that
1 ≤ i ≤ s the integer pli. A word f ∈ L(p1, . . . , pn) is then constructed by setting its
letter of rank i to the position 1 + pli.
As the matrices associated with congruent words have the same size, they can be

ordered by the comparison componentwise of the coefficients of these matrices.
Definition 4.4. Let f and g be two congruent words of X∗, and let s = ν(f) =

ν(g). f is dominated by g, which is denoted f � g, if, for all integers i, j such that
0 < i < j ≤ s, M(f)[i, j] ≤ M(g)[i, j] holds.
In the same way, M and N being two matrices ofM, the matrix M is dominated

by N (or N dominates M), which is denoted M � N , if, for all integers i, j such that
0 < i < j ≤ s, M [i, j] ≤ N [i, j] holds.
We introduce a distance between words in L(p1, . . . , pn).
Definition 4.5. Let d be the application from L(p1, . . . , pn)

2 to N, with s = Σpi,
defined by

d(f, g) =
∑

0≤i<j≤s
|M(f)[i, j]−M(g)[i, j]|.

This application is clearly a distance.
The next theorem is crucial.
Theorem 4.6. 〈f〉 = {g ∈ [f ] | f � g}.
Proof.
— Let us first prove the inclusion 〈f〉 ⊆ {g ∈ [f ] | f � g}.
It is sufficient to prove that if f −→ g, then f � g, since an easy induction on

the number of rewriting rules applied to obtain a word g ∈ 〈f〉 from f then gives the
result.

• If the applied rule is PQ −→ R (with R = P ∪Q and [∀x ∈ P,∀y ∈ Q : x < y]),
then let i be the rank of a letter in P and j the rank of a letter in Q; then i < j and
M(f)[i, j] = −1, and M(g)[i, j] = 0. As these coefficients are the only ones that are
changed, ∀i < j,M(f)[i, j] ≤ M(g)[i, j] holds.

• If the applied rule is R −→ QP (with R = P ∪Q and [∀x ∈ P,∀y ∈ Q : x < y]),
then let i be the rank of a letter in P and j the rank of a letter in Q; then i < j and
M(f)[i, j] = 0, and M(g)[i, j] = 1. As these coefficients are the only ones that are
changed, ∀i < j,M(f)[i, j] ≤ M(g)[i, j] holds.
— Let us now prove the converse inclusion.
The distance between words will allow us to make an induction on the distance

between a word of the set {g ∈ [f ] | f � g} and f itself.

Let Sn be the following property: {∀f ∈ X̂∗,∀g ∈ [f ] | f � g and d(f, g) ≤
n} =⇒ g ∈ 〈f〉. We have to prove Sn for all integer n.
Let g ∈ [f ] be such that f � g, and let n = d(f, g).
— If n equals 0, since d is a distance, g = f and f−→∗ f holds. So S0 is true.
— Suppose that n > 0 and that Sn−1 is true. Since f � g, there must exist two

indices i and j with 1 ≤ i < j ≤ s such that M(f)[i, j] < M(g)[i, j].
Case 1. There are two indices i and j with 1 ≤ i < j ≤ s such that M(f)[i, j] = 0
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and M(g)[i, j] = 1.
In this case, let R be the S-letter of f containing the two letters of ranks i and

j; among the occurrences of letters in R, there are two verifying the same property
as i and j and such that no letter in R has a rank which is an integer between their
respective ranks; let P be the set of the letters in R of rank smaller or equal to the
smallest of their two ranks, and let Q be the set of the others; R −→ QP is then a
rule of the Thue system. Then let f ′ be the word obtained from f by substituting to
the occurrence of the S-letter R the two S-letters word QP .

Case 2. It is not the case.
Then ∃i and j with 1 ≤ i < j ≤ s such that M(f)[i, j] = −1 and M(g)[i, j] ≥ −1;

we first show that there exist two such indices with, moreover, the condition that the
letters of rank i and j are in two consecutive S-letters of f : if not, let k be the rank of a
letter inside an intermediate S-letter; if i < k < j, then M(f)[i, k] =M(f)[k, j] = −1
and either M(g)[i, k] > −1, or M(g)[k, j] > −1, and so we have the same situation
for letters in S-letters that are strictly nearer; if i < j < k, then M(f)[k, j] = 1,
and according to the transitivity property M(f)[i, k] = −1, and since M(g)[k, j] >
M(f)[k, j], M(g)[k, j] = 1, and according to the transitivity property M(g)[i, k] = 1,
and also in this case we have the same situation for letters in S-letters that are strictly
nearer; if k < i < j symmetrically we get the same result.
Supposing now that the letters of rank i and j verifying 1 ≤ i < j ≤ s,

M(f)[i, j] = −1, and M(g)[i, j] > −1 are in two consecutive S-letters in f , say P and
Q, and that j − i is the smallest possible, let us show now that i is the largest among
the ranks of letters in P : if there is in P a letter of rank i′ > i, thenM(g)[i, i′] = 0 be-
cause otherwise (ifM(g)[i, i′] = 1) we would be in Case 1 and if i′ > j,M(f)[i′, j] = 1,
hence M(g)[i′, j] = 1, and according to the transitivity property M(g)[i, i′] = 1, and
again we would be in Case 1, and if i′ ≤ j, M(g)[i′, j] ≥ −1 would contradict j− i the
smallest possible, and M(g)[i′, j] = −1 implies according to the transitivity property
M(g)[i, i′] = 1, and again we would be in Case 1.
Symmetrically, one can prove that j is the smallest among the ranks of letters

in Q, and so if R = P ∪ Q, PQ −→ R is a rule of the Thue system. Then let f ′ be
a word obtained from the word f replacing the occurrence of the two S-letters word
PQ by the S-letter R.
In the two cases, clearly f −→ f ′ (and hence g ∈ [f ′]), and f ′ is dominated by g

and d(f ′, g) < n; hence, according to the induction hypothesis, f ′−→∗ g. So f−→∗ g
holds, and Sn is true.
Noticing that the triples of T13 are precisely the upper triangular parts of the

matrices attached to the S-words of L(1, 1, 1), we have just proved that the order
between S-words of L(1, 1, 1) and the order between the triples of T13 are in a complete
correspondence, justifying our former remark that it is the same lattice.

5. L(p1, p2, . . . , pn) is a lattice. Let f and g be two congruent S-words:
f←→∗ g with ν(f) = ν(g) = s. Since the relation −→∗ is confluent, 〈f〉 ∩ 〈g〉 = ∅
holds. Let h be an S-word in 〈f〉 ∩ 〈g〉. The matrix associated with h verifies the
following: ∀i < j,M(f)[i, j] ≤ M(h)[i, j] and ∀i < j,M(g)[i, j] ≤ M(h)[i, j]. Let
U be the matrix of M having in its upper triangular part the following coefficients:
∀i < j, U [i, j] = Max{M(f)[i, j],M(g)[i, j]}. This matrix has ipso facto the commu-
tativity property of matrices in M(p1, . . . , pn), but it may not have the transitivity
property, and so it may not be a matrix inM∗(p1, . . . , pn).

Example 5.1. Let f = {a1a4}{a2a3a4}{a3} and g = {a1a3a4}{a3}{a2a4}.
Their associated matrices are
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M(f) =

1 2 3 4 5 6

1 0 −1 −1 −1 0 −1
2 1 0 0 −1 1 0
3 1 0 0 −1 1 0
4 1 1 1 0 1 1
5 0 −1 −1 −1 0 −1
6 1 0 0 −1 1 0

and M(g) =

1 2 3 4 5 6

1 0 −1 0 −1 0 −1
2 1 0 1 1 1 0
3 0 −1 0 −1 0 −1
4 1 −1 1 0 1 −1
5 0 −1 0 −1 0 −1
6 1 0 1 1 1 0

and the matrix U is

1 2 3 4 5 6

1 0 −1 0 −1 0 −1
2 1 0 1 1 1 0
3 0 −1 0 −1 1 0
4 1 −1 1 0 1 1
5 0 −1 −1 −1 0 −1
6 1 0 0 −1 1 0

.

One can remark that, for example, the triple

U [1, 3] U [1, 5]
U [3, 5]

=
0 0
1

does not belong to the set T13.
However, since U comes from matrices having this transitivity property through

the Max operation, among the 14 triples contradicting this property, half of them
cannot be in U , namely, the triples
0 0

−1 ,
0 1
0
,
0 1

−1 ,
−1 0

0
,

−1 0
−1 ,

−1 1
0
,

−1 1
−1 .

Let us verify for example that 0 0
−1
cannot be in U : this triple comes from

two triples of T13
x y
−1
and x′ y′

−1
with x, x′, y, y′ ≤ 0. Hence y = y′ = −1,

and so we get a contradiction with 0 = Max{y, y′} = −1.
The other triples receive an analogous treatment.
So the only triples not in T13 that can be found in U are the following 7:
0 0
1
,
0 −1

0
,
0 −1

1
,
1 0
0
,
1 0
1
,
1 −1

0
,
1 −1

1
.

They are the inverses of the others.
Let T20 be the set of triples obtained adding these seven triples to T13.
If T is a subset of the set T27 of all the possible triples, letMT (p1, . . . , pn) be the

set of matrices M inM(p1, . . . , pn) such that all the triples (M [i, j],M [i, k],M [j, k])
belong to T . In particular,MT27(p1, . . . , pn) =M(p1, . . . , pn) andMT13(p1, . . . , pn) =
M∗(p1, . . . , pn).
It is remarkable that, for each of the seven new triples there exists, in the set T13

of allowed triples, a unique minimum triple that is bigger than it, respectively:

0 1
1
,
0 0
0
,
0 1
1
,
1 1
0
,
1 1
1
,
1 1
0
,
1 1
1
.

Let � be the operation over {−1, 0, 1} defined by the table

� −1 0 1
−1 −1 −1 −1
0 −1 0 1
1 −1 1 1

.
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We define an operation
⊙
over the matrices in M by the following: M

⊙
N is

the matrix in M whose coefficients of the upper triangular part are M
⊙

N [i, k] =
Maxi≤j≤kM [i, j]�N [j, k].

Example 5.2. Going further with the preceding example, we obtain for U
⊙

U

1 2 3 4 5 6

1 0 −1 0 −1 1 0
2 1 0 1 1 1 1
3 0 −1 0 −1 1 0
4 1 −1 1 0 1 1
5 −1 −1 −1 −1 0 −1
6 0 −1 0 −1 1 0

Lemma 5.1. Let M be a matrix of M(p1, . . . , pn). M
⊙

M is a matrix dominat-
ing M belonging to M(p1, . . . , pn).

Proof.
— M

⊙
M dominates M .

Since ∀i and j such that i < k, M
⊙

M [i, k] = Maxi≤j≤kM [i, j] � M [j, k] =
Max{M [i, i]�M [i, k],Maxi<j≤kM [i, j]�M [j, k]} holds, and sinceM [i, i] = 0,M [i, i]�
M [i, k] =M [i, k].
— M

⊙
M has the commutativity property.

First, clearly in a submatrix Mi,i the coefficients above the diagonal have value
−1; moreover, in a submatrix Mi,k with i < k, if i1 and i2 are the ranks of two letters
ai, and k1 is the rank of a letter ak, since M

⊙
M [i1, k1] = 0 or M

⊙
M [i1, k1] = 1

=⇒ ∃j | i1 ≤ j ≤ k1 andM [i1, j] = 0 orM [i1, j] = 1 andM [j, k1] = 0 orM [j, k1] = 1;
butM having itself the commutativity property, if i1 < i2, (M [i1, j] = 0 orM [i1, j] =
1) =⇒ M [i2, j] = 1, and hence M [i2, j]�M [j, k1] = 1, and M

⊙
M [i2, k1] = 1; in the

same way, if i1 is the rank of a letter ai, and k1 and k2 are the ranks of two letters
ak, k1 < k2 and M

⊙
M [i1, k1] = 0 or M

⊙
M [i1, k1] = −1 =⇒ M

⊙
M [i1, k2] =

−1.
Setting U (1) = U and U (i+1) = U (i)

⊙
U (i), starting from U and iterating the

operation as long as the obtained matrix does not have the transitivity property,
we get a strictly increasing (for the order �) sequence of matrices inM(p1, . . . , pn):
U (1) ≺ U (2) ≺ . . .. The process stops after repeating a finite number of times the
operation, and one gets a matrix, denoted U∗, belonging toM∗(p1, . . . , pn).
According to Theorem 4.2, there exists a word of L(p1, p2, . . . , pn) having this

matrix as its associated matrix. Let f � g be this word. It is a word in the class of f
and g.

Example 5.3. Going further with the preceding example, U
⊙

U owns the tran-
sitivity property. Hence we get U∗ = U

⊙
U which is the matrix associated to the

word f � g = {a4}{a1a3a4}{a3}{a2}.
Lemma 5.2. Let M be a matrix of MT20(p1, . . . , pn). M

⊙
M belongs to

MT20(p1, . . . , pn).
Proof. According to the preceding lemma, M

⊙
M ∈ MT27(p1, . . . , pn). Let us

review the seven possible cases of triples M 	M [i, j] M 	M [i, k]
M 	M [j, k]

that do not belong

to T20.
— Case where M

⊙
M [i, j] = −1, M ⊙

M [i, k] > −1 and M
⊙

M [j, k] < 1.
In this case, M [i, j] = −1, and since M ⊙

M [i, k] > −1, there exists j′ = j such
that M [i, j′] > −1 and M [j′, k] > −1. Suppose that j′ < j. Since M

⊙
M [i, k] > −1,

M [j′, j] = −1 holds. ButM [j, k] < 1, and so the triple M [j′, j] M [j′, k]
M [j, k]

is not in T20,

a contradiction. If j′ > j, since M [i, j] = −1 and M [i, j′] > −1, M [j, j′] = 1 holds
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because this triple is in T20, or M [j, j
′] = 1 and M [j′, k] > −1 implies M ⊙

M [j, k] =
1, a contradiction.
— Case where M

⊙
M [i, j] = 0, M

⊙
M [i, k] > −1, and M

⊙
M [j, k] = −1.

In this case, M [j, k] = −1, and since M ⊙
M [i, k] > −1, there exists j′ = j such

thatM [i, j′] > −1 andM [j′, k] > −1. Suppose that j < j′. SinceM
⊙

M [j, k] = −1,
M [j, j′] = −1 holds. But M [i, j] < 1, and so the triple M [i, j] M [i, j′]

M [j, j′] is not in T20,

a contradiction. If j > j′, since M [j, k] = −1 and M [j′, k] > −1, M [j′, j] = 1 holds
because this triple is in T20, orM [j

′, j] = 1 andM [i, j′] > −1 impliesM ⊙
M [i, j] = 1,

a contradiction.
— Case where M

⊙
M [i, j] = 0, M

⊙
M [i, k] = 1 and M

⊙
M [j, k] = 0.

In this case, M [i, j] < 1 and M [j, k] < 1, and since M
⊙

M [i, k] = 1, there exists
j′ = j such that M [i, j′] = 1 and M [j′, k] ≥ 0 or the converse. Suppose that j′ < j.
Since M

⊙
M [i, j] = 0, if M [i, j′] = 1, M [j′, j] = −1 holds. But M [j, k] < 1, and

so the triple M [j′, j] M [j′, k]
M [j, k]

is not in T20, a contradiction, and if M [i, j
′] = 0, and

hence M [j′, k] = 1, which with M [j, k] < 1 implies M [j′, j] = 1. Then M [i, j′] = 0
and M [j′, j] = 1 and hence M

⊙
M [i, j] = 1, a contradiction with the hypothesis.

If j′ > j, then M [j′, k] > −1 and M
⊙

M [j, k] = 0 implies that M [j, j′] < 1, which
with M [i, j] < 1 implies either M [i, j′] = −1, a contradiction with the hypothesis,
or M [i, j] = M [j, j′] = M [i, j′] = 0 ; but M [i, j′] = 0 =⇒ M [j′, k] = 1, which with
M [j, j′] = 0 implies M

⊙
M [j, k] = 1, a contradiction with the hypothesis.

Lemma 5.3. If M is a matrix of M∗(p1, . . . , pn) and N is a matrix of
MT20(p1, . . . , pn) that does not have the transitivity property, then M � N =⇒ M �
N

⊙
N .

Proof. Suppose that M does not dominate N
⊙

N . Then there exist i and k
such that i < k and N [i, k] ≤ M [i, k] < N

⊙
N [i, k]. Hence, there exists an integer

j with i < j < k such that N
⊙

N [i, k] = N [i, j] � N [j, k] > N [i, k]. So, the triple
N [i, j] N [i, k]

N [j, k]
does not belong to T13. Let us review the seven possible cases:

— If N [j, k] = 1 and hence N [i, j] > −1, then M [j, k] = 1 and M [i, j] > −1
because M dominates N , and M [i, k] < N

⊙
N [i, k] = 1. In all cases, the triple

M [i, j] M [i, k]
M [j, k]

does not belong to T13, a contradiction with M ∈ M∗(p1, . . . , pn).

— If N [i, j] = 1 and N [j, k] = 0, then M [i, j] = 1 and M [j, k] > −1 because M

dominates N , and M [i, k] < N
⊙

N [i, k] = 1. In all cases, the triple M [i, j] M [i, k]
M [j, k]

does not belong to T13, a contradiction with M ∈ M∗(p1, . . . , pn).
— Last, if N [i, j] = N [j, k] = 0 and hence N [i, k] > −1, then N

⊙
N [i, k] = 0 and

M [i, k] < N
⊙

N [i, k] =⇒ M [i, k] = −1, and M dominates N implies M [i, j] > −1
and M [j, k] > −1. In all cases, the triple M [i, j] M [i, k]

M [j, k]
does not belong to T13, a

contradiction with M ∈ M∗(p1, . . . , pn).
Proposition 5.4. ∀h ∈ 〈f〉 ∩ 〈g〉, f � g � h holds.
Proof. Per absurdo, let h ∈ 〈f〉 ∩ 〈g〉 be such that h = f � g, and let M(h) be

its associated matrix. So M(h) dominates U . Hence M(h) � U (1). If U (1) shares
the transitivity property, U (1) = U∗ holds, and hence M(h) � U∗. Otherwise, the
preceding lemma shows that M(h) � U (2), and iterating until U (i) = U∗, in all
cases, M(h) � U∗ holds. U∗ being the matrix associated with f � g, f � g � h
is true.
We can now state the following theorem.
Theorem 5.5. The relation −→∗ gives to L(p1, p2, . . . , pn) a structure of lattice.
Proof. Proposition 5.4 means that the word f �g is a least upper bound of f and

g over [f ], and L(p1, p2, . . . , pn) has a structure of semilattice.
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Symmetrically, −→∗ confers to L(p1, p2, . . . , pn) a structure of lattice.
As soon as n > 2, the lattice L(p1, p2, . . . , pn) has got L(1, 1, 1) as a sublattice.

So it is not a modular lattice, hence not a distributive lattice.
Remarks. Since taking the inverse order on the letters of the underlying alphabet

leads to the inverse relation of −→∗ , the least upper bound of the mirror images of
two congruent S-words is the mirror image of the greatest lower bound of these two
words.
Concerning the calculus of matrix U∗, recall that the operation

⊙
replaces a

triple in T20\T13 by the triple in T13 that is the smallest bigger than itself and that
this is always done by only increasing the value of the right upper element of the
triangle given by the triple. As a consequence, the entries in the matrix that are just
above the diagonal are unchanged by the operation, and clearly with each iteration
at least one new parallel to the diagonal is definitively set. If s is the dimension of
the matrix and if i is the integer for which U∗ = U (i), i ≤ s− 2 holds.
In [3], we present a complete C program, taking advantage of these remarks,

computing the least upper bound and the greatest lower bound of two S-words with
the method developed in this paper.

6. Conclusion. We have presented the formalism of S-words that we think is
beneficial for treating Delannoy paths. The S-alphabets allow us to describe exactly
the set of considered elementary steps. If someone would change the rule allowing
only a part of the set of diagonal steps (for instance, only diagonal steps over the faces
of a cube), one has only to consider the corresponding S-alphabet, a subalphabet of
the S-alphabet we considered, and to proceed to the intersection with the set of words
over this subalphabet.
We have associated with S-words, and hence to Delannoy paths, matrices that

characterize them. Whatever the rule is, this allows us to order these Delannoy paths
by means of the “domination” order, which is nothing more than the componentwise
natural order, restricted to the upper triangular part, over these matrices.
The rules could be changed even more drastically to give the possibility of having

diagonal steps composed of several elementary steps in a dimension. To describe such
paths one has only to make use of multi-S-alphabets, i.e., multisets of letters. In this
case, the commutativity property of the associated matrices would be weakened to
the following:
In a submatrix Mi,j , supposing i < j,
(i) if i1 and i2 are the ranks of two letters ai, and j1 the rank of a letter aj , then

i1 < i2 =⇒ M [i1, j1] ≤ M [i2, j1];
(ii) if i1 is the rank of a letter ai, and j1 and j2 the ranks of two letters aj , then

j1 < j2 =⇒ M [i1, j1] ≥ M [i1, j2].
An essential part of our work was to exhibit a Thue system that allows us to

define the set of Delannoy paths going from one point to another as a class for the
congruence generated by the system and to prove that the rewriting process defines
an order that coincides with the one of the associated matrices. We think that, if
necessary, it would be possible for other rules to exhibit such a Thue system.

Appendix. Table of the sets of triples T13, T20, and T27. We represent a
triple (M [i, j],M [i, k],M [j, k]) under the triangular shape it appears in the matrices:
M [i, j] M [i, k]

M [j, k]
.
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T27

0 0
-1

0 1
-1

-1 0
0

-1 1
0

-1 0
-1

-1 1
-1

0 1
0

T20

0 0
1

0 -1
1

1 0
0

1 -1
0

1 0
1

1 -1
1

0 -1
0

T13

-1 -1
-1

0 -1
-1

-1 -1
0

1 -1
-1

1 0
-1

1 1
-1

1 1
0

-1 -1
1

-1 0
1

-1 1
1

0 1
1

0 0
0

1 1
1

��

❅❅

��

❅❅

��

❅❅

Fig. A.1. The triples of T13, T20, and T27.

The triples of T20\T13 are connected to the triples of T13 that cover them. These
latter are obtained by replacing the right upper element by the value given by the
operation � applied to the other two elements of the triple.

REFERENCES

[1] J.-M. Autebert, Langages Algébriques, Masson, Paris, 1987.
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