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Abstract

The cotangent bundle T ∗X to a complex manifold X is classically endowed with
the sheaf of k-algebras WT∗X of deformation quantization, where k := W{pt} is a
subfield of C[[~, ~−1]. Here, we construct a new sheaf of k-algebras Wt

T∗X
which

contains WT∗X as a subalgebra and an extra central parameter t. We give the symbol
calculus for this algebra and prove that quantized symplectic transformations operate
on it. If P is any section of order zero of WT∗X , we show that exp(t~−1P ) is well
defined in Wt

T∗X
.

Mathematics subject Classification: 53D55, 32C38.

Introduction

A fundamental tool for spectral analysis in deformation quantization is the star-exponential
[1]. However, at the formal level, the star-exponential does not make sense as a formal
series in ~ and ~

−1. The goal of this article is to construct a new sheaf of algebras on
the cotangent bundle T ∗X to a complex manifold X in which the star-exponential has a
meaning and such that quantized symplectic transformations operate on such algebras.

On the cotangent bundle T ∗X to a complex manifold X, there is a well-known sheaf
of filtered algebras called deformation quantization algebra by many authors (see [1], [6],

etc.). This algebra, denoted ŴT ∗X here, is constructed in [7] as well as its analytic coun-
terpart WT ∗X . The sheaf WT ∗X is similar to the sheaf ET ∗X of microdifferential operators
of [8], but with an extra central parameter ~, a substitute to the lack of homogeneity1.
Here ~ belongs to the field k := W{pt}, a subfield of C[[~,~−1]. (Note that the notation
τ = ~

−1 is used in [7].) When X is affine and one denotes by (x;u) a point of T ∗X, a
section P of this sheaf on an open subset U ⊂ T ∗X is represented by its total symbol

1In this paper, we write ET∗X and WT∗X instead of the classical notations EX and WX .
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σtot(P ) =
∑

−∞<j≤m pj(x;u)~
−j , with m ∈ Z, pj ∈ OT ∗X(U), the pj’s satisfying suitable

inequalities and the product being given by the Leibniz formula.
In this paper, we construct a new sheaf of k-algebras Wt

T ∗X , with an extra central
holomorphic parameter t defined in a neighborhood of t = 0, with the property that com-
plex symplectic transformations may be locally quantized as isomorphisms of algebras and
there are natural morphisms of k-algebras WT ∗X

ι
−→ Wt

T ∗X

res
−−→ WT ∗X whose composition

is the identity on WT ∗X . We give the symbol calculus on Wt
T ∗X , which extends naturally

that of WT ∗X (however, now we get series in ~
j with −∞ < j < ∞) and finally we show

that, if P is a section of WT ∗X of order 0, then exp(t~−1P ) is well defined in Wt
T ∗X . We

also briefly discuss the case where T ∗X is replaced with a general symplectic manifold.
Our construction is as follows. First, we add a central holomorphic parameter s ∈ C

and consider the sheaf WC×T ∗X , the subsheaf of WT ∗(C×X) consisting of sections not
depending on ∂s. Denoting by a : C × T ∗X −→ T ∗X the projection, we first define an
algebra Ws

T ∗X := R1a!WC×T ∗X . The algebra structure with respect to the s-variable is
given by convolution, as in the case of the space H1

c (C;OC). In order to replace this
convolution product by an usual product, we define the sheaf Wt

T ∗X as the “formal”
Laplace transform with respect to the variables s~−1 of the algebra Ws

T ∗X .
In a deformation quantization context, the existence of exp(t~−1P ) in Wt

T ∗X gives
a precise meaning to the star-exponential [1] of P which is heuristically related to the
Feynman Path Integral of P .

Acknowledgments. We would like to thank Masaki Kashiwara for extremely useful
conversations and helpful insights. The first named author thanks Yoshiaki Maeda for
warm hospitality at Keio university where this work was finalized, and the JSPS for
financial support.

1 Symbols

The fields k̂ and k

We set k̂ := C[[~,~−1]. Hence, an element a ∈ k̂ is a series

a =
∑

−∞<j≤m

aj~
−j, aj ∈ C, m ∈ Z.

Consider the following condition on a:

{
there exist positive constants C, ε such that |aj| ≤ Cε−j(−j)!
for all j < 0.

(1.1)

We denote by k the subfield of k̂ consisting of series satisfying (1.1).
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Convention We endow k̂, hence k, with the filtration associated to

ord(~) = −1.(1.2)

The fields k̂ and k are Z-filtered2 and contain the subrings k̂(0) and k(0), respectively.
Note that k̂(0) = C[[~]] and k(0) = k ∩ k̂(0).

The sheaves Ô~
X and O~

X

Let (X,OX ) be a complex manifold.

Definition 1.1. (i) We denote by Ô~
X the sheaf OX [[~,~−1]. In other words, Ô~

X is the

filtered k̂-algebra defined as follows: A section f(x,~) of O~
X of order ≤ m (m ∈ Z)

on an open set U of X is a series

f(x,~) =
∑

−∞<j≤m

fj(x)~
−j ,(1.3)

with fj ∈ OX(U).

(ii) We denote by O~
X the filtered k-subalgebra of Ô~

X consisting of sections f(x,~) as
above satisfying:

{
for any compact subset K of U there exist positive constants
C, ε such that sup

K

|fj| ≤ Cε−j(−j)! for all j < 0.(1.4)

Note that

Ô~
X ≃ Ô~

X(0) ⊗
k̂(0)

k̂, O~
X ≃ O~

X(0) ⊗
k(0) k.(1.5)

(To be correct, we should have written kX , the constant sheaf with values in k, instead of
k in these formulas, and similarly for k(0), k̂(0) and k̂.)

Also note that there exist isomorphisms of sheaves (not of algebras)

Ô~

X(0) ≃ OX×C |̂X×{0},(1.6)

O~
X(0) ≃ OX×C|X×{0},(1.7)

where OX×C |̂X×{0} is the formal completion of OX×C along the hypersurface X × {0} of
X × C and OX×C|X×{0} is the restriction of OX×C to X × {0}.

Denoting by t the coordinate on C, the isomorphism (1.7) is given by the map

O~
X(0) ∋

∑

j≤0

fj~
−j 7→

∑

j≥0

f−j
tj

j!
∈ OX×C|X×{0}.

2In the sequel, we shall say “filtered” instead of “Z-filtered”.
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The convolution algebra H1
c (C;OC)

The results of this subsection are well known and elementary. We recall them for the
reader’s convenience.

We consider the complex line C endowed with a holomorphic coordinate s. Using this
coordinate, we identify the sheaf OC of holomorphic functions on C and the sheaf ΩC of
holomorphic forms on C.

The space H1
c (C;OC) is endowed with a structure of an algebra by

H1
c (C;OC) ×H1

c (C;OC) −→ H2
c (C2;OC2)

−→ H1
c (C;OC),

where the first arrow is the cup product and the second arrow is the integration along the
fibers of the map C

2 −→ C, (s, s′) 7→ s+ s′.
When representing the cohomology classes by holomorphic functions, the convolution

product is described as follows.
For a compact subsetK of C, we identify the vector space H1

K(C;OC) with the quotient
space Γ(C \K;OC)/Γ(C;OC) and, if f ∈ Γ(C \K;OC), we still denote by f its image in
H1

K(C;OC) or in H1
c (C;OC). Let K and L be compact subsets of C, let f ∈ Γ(C \K;OC)

and g ∈ Γ(C \ L;OC). The convolution product f ∗ g is given by

f ∗ g(z) =
1

2iπ

∫

γ

f(z − w)g(w)dw(1.8)

where γ is a counter clockwise oriented circle which contains L and |z| is chosen big enough
so that z+K is outside of the disc bounded by γ. It is an easy exercise to show that this
definition does not depend on the representatives f and g, and that to interchange the
role of f and g in the formula (1.8) modifies the result by a function defined all over C,
hence gives the same result in H1

c (C;OC). Therefore, we obtain a commutative algebra
structure on H1

c (C;OC).

Example 1.2.

1

zn+1
∗

1

zm+1
=

(n+m)!

n!m!

1

zn+m+1
.

The sheaf Os,~
X

From now on, we shall concentrate our study on O~
X .

Notation 1.3. We shall often denote by Cs the complex line C endowed with the coor-
dinate s.
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Lemma 1.4. Let Y be a complex manifold and Z a Stein submanifold of Y . Then

Hj(Z;O~
Y (0)|Z) vanishes for j 6= 0.

Proof. Using the isomorphism (1.7), we may replace the sheaf O~
Y (0) with the sheaf

OY ×Ct |t=0. By a theorem of Siu [10], Z × {0} admits a fundamental system of open
Stein neighborhoods in Y × Ct and the result follows. �

Let X be a complex manifold. The manifold Cs×X is thus endowed with the k-filtered
sheaf O~

Cs×X . Let a : Cs ×X −→ X denote the projection.

Lemma 1.5. (i) One has the isomorphism

Rja!O
~
Cs×X ≃ Rja!O

~
Cs×X(0) ⊗

k(0) k.

(ii) Rja!O
~

Cs×X(0) ≃ 0 for j 6= 1.

(iii) Let U ⊂⊂ V ⊂⊂ W be three open subsets of X and assume that W is Stein. Then

the natural morphism Γ(W ;R1a!O
~
Cs×X) −→ Γ(U ;R1a!O

~
Cs×X) factorizes through

lim
−→

K⊂Cs

Γ((Cs \K) × V ;O~
Cs×X)/Γ(Cs × V ;O~

Cs×X),

where K ranges over the family of compact subsets of C.

Proof. (i) follows from the projection formula for sheaves (i.e., Ra!(F⊗a−1G) ≃ Ra!F⊗G)
and (1.5).
(ii) For x ∈ X, we have

Hj(Ra!O
~

Cs×X(0))x ≃ lim
−→
K

Hj
K(Cs × {x};O~

Cs×X(0)|Cs×{x}).

Applying the distinguished triangle of functors

RΓK(Cs × {x}; • ) −→ RΓ(Cs × {x}; • ) −→ RΓ((Cs \K) × {x}; • )
+1
−−→

to the sheaf O~
Cs×X(0)|Cs×{x} we get the result by Lemma 1.4 for j > 1 and the case j = 0

follows from the principle of analytic continuation.

(iii) Recall first that if W is a Stein manifold and if W1 ⊂⊂W is open, there exists a Stein
open subset W2 of W with W1 ⊂⊂W2 ⊂⊂W .

For a compact subset L of X, Γ(L;R1a!O
~
Cs×X) ≃ Γ(L;R1a!O

~
Cs×X(0))⊗

k(0) k. Hence,

it is enough to prove the result for O~
Cs×X(0).
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By Lemma 1.4, Hj(D × U ;O~
Cs×X(0)) vanishes for D open in Cs, U Stein open in X

and j 6= 0. Therefore, Hj
K×U(Cs × U ;O~

Cs×X(0)) vanishes for j 6= 1 and we get the exact
sequence:

0 −→ Γ(Cs × U ;O~
Cs×X(0)) −→ Γ((Cs \K) × U ;O~

Cs×X(0))

−→ H1
K×U(Cs × U ;O~

Cs×X(0)) −→ 0.

�

Definition 1.6. We set Os,~
X :=R1a!O

~
Cs×X .

Clearly, Os,~
X is a sheaf of filtered k-modules. By Lemma 1.5, a section f(s, x,~) of

order m of the sheaf Os,~
X on a Stein open subset W of X may be written on any relatively

compact open subset U of W as a series

f(s, x,~) =
∑

−∞<j≤m

fj(s, x)~
−j ,

where fj(s, x) is a holomorphic function on (Cs \ K0) × U for a compact set K0 not
depending on j and the fj’s satisfy an estimate (1.4) on each compact subset K of (Cs \
K0) × U .

We shall extend the product (1.8) to Os,~
X as follows. For two sections f(s, x,~) =∑

−∞<j≤m fj(s, x)~
−j and g(s, x,~) =

∑
−∞<j≤m′ gj(s, x)~

−j of Os,~
X , we set:

{
f(s, x,~) ∗ g(s, x,~) =

∑
−∞<j≤m+m′ hj(s, x)~

−j ,

hk(s, x) =
∑

i+j=k
1

2iπ

∫
γ
fi(s −w, x)gj(w, x)dw.

(1.9)

Proposition 1.7. The sheaf Os,~
X has a structure of a filtered commutative k-algebra.

Proof. It is easily checked that multiplication by ~
−1 induces an isomorphism of sheaves

of k-modules Os,~
X (m) ∼−→ Os,~

X (m + 1). Hence we just need to check that the product of
two sections of order 0 is a section of order 0. Let f(s, x,~) =

∑
−∞<i≤0 fi(s, x)~

−i and

g(s, x,~) =
∑

−∞<j≤0 gj(s, x)~
−j be in Os,~

X (0) and K a compact subset of (Cs \K0)×U .
Let γ be a counter clockwise oriented circle which contains K0 and s > R big enough so
that s+K0 does not meet γ. Then for w ∈ γ and x ∈ K ∩ (Cs \K0) × U , we have:

|
∑

i+j=k,i,j≤0

fi(s− w, x)gj(w, x)| ≤ C2(−k)!
∑

i+j=k,i,j≤0

ε−i−j (−i)!(−j)!

(−k)!
≤ 3C2ε−k(−k)!.

Hence h(s, x,~) =
∑

−∞<j≤0 hk(s, x)~
−k defined by (1.9) is in Os,~

X (0). �
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The Laplace transform and the algebra Ot,~
X

In order to replace the convolution product in the s-variable with the ordinary product,
we shall apply a kind of Laplace transform to Os,~

X .

Definition 1.8. On a complex manifold X, we denote by Ot,~
X the filtered sheaf of k-

modules defined as follows. A section f(t, x,~) of Ot,~
X (m) (i.e., a section of order m) on

an open set U of X is a series

f(t, x,~) =
∑

−∞<j<∞

fj(t, x)~
−j , fj ∈ Γ(U ;OC×X|t=0

),(1.10)

with the condition that for any compact subsetK of U there exists η > 0 such that fj(t, x)
is holomorphic in a neighborhood of {|t| ≤ η} ×K and satisfies

{
there exist positive constants C, ε such that

sup
x∈K,|t|≤η

|fj(t, x)| ≤ C · ε−j(−j)! for all j < 0,(1.11)





there exist positive constants M and R such that

sup
x∈K

|fj(t, x)| ≤M
Rj−m

(j −m)!
|t|j−m for |t| ≤ η and all j ≥ m.

(1.12)

Let f(t, x,~) =
∑

−∞<j<∞ fj(t, x)~
−j and g(t, x,~) =

∑
−∞<j<∞ gj(t, x)~

−j be two

sections of Ot,~
X of order m and m′ respectively. Define formally

h(t, x,~) =
∑

−∞<j<∞

hj(t, x)~
−j , hk(t, x) =

∑

i+j=k

fi(t, x)gj(t, x).(1.13)

Lemma 1.9. (i) Multiplication by ~
−1 induces an isomorphism of sheaves of k(0)-

modules Ot,~
X (m) ∼−→ Ot,~

X (m+ 1).

(ii) The product (1.13) of a section f(t, x,~) ∈ Ot,~
X (m) and a section g(t, x,~) ∈ Ot,~

X (m′)

is well defined and belongs to Ot,~
X (m+m′).

Proof. (i) (a) Let f(t, x,~) =
∑

−∞<j<∞ fj(t, x)~
−j ∈ Ot,~

X (m), then ~
−1f(t, x,~) =∑

−∞<j<∞ f̃j(t, x)~
−j , with f̃j = fj−1. For any integer j < 0, we have:

sup
x∈K,|t|≤η

|f̃j(t, x)| = sup
x∈K,|t|≤η

|fj−1(t, x)| ≤ Cε−j+1(−j + 1)! ≤ (Cε)(εe)−j(−j)!.

Hence Condition (1.11) is satisfied.
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For j ≥ m+ 1, we have:

sup
x∈K

|f̃j(t, x)| = sup
x∈K

|fj−1(t, x)| ≤ M
Rj−m−1

(j −m− 1)!
|t|j−m−1,

which is simply Condition (1.12) for m+ 1 and ~
−1f(t, x,~) ∈ Ot,~

X (m+ 1).

(b) Let ~f(t, x,~) =
∑

−∞<j<∞ f̃j(t, x)~
−j , with f̃j = fj+1. For any integer j < −1, we

have:

sup
x∈K,|t|≤η

|f̃j(t, x)| = sup
x∈K,|t|≤η

|fj+1(t, x)| ≤ Cε−j−1(−j − 1)! ≤
C

ε
ε−j(−j)!.

For j = −1, we have:

sup
x∈K,|t|≤η

|f̃−1(t, x)| = sup
x∈K,|t|≤η

|f0(t, x)| = A ≥ 0,

since f0(t, x) is holomorphic in a neighborhood of {|t| ≤ η} × K. Set C ′ = max{A
ε
, C

ε
},

then for all integer j < 0, we have:

sup
x∈K,|t|≤η

|f̃j(t, x)| ≤ C ′ε−j(−j)!,

and Condition (1.11) is satisfied.
For j ≥ m− 1, we have:

sup
x∈K

|f̃j(t, x)| = sup
x∈K

|fj+1(t, x)| ≤ M
Rj−m+1

(j −m+ 1)!
|t|j−m+1,

which is Condition (1.12) for m−1 and ~f(t, x,~) ∈ Ot,~
X (m−1). Therefore, multiplication

by ~
−1 induces an isomorphism Ot,~

X (m) ∼−→ Ot,~
X (m+ 1).

(ii) By (i), we may assume m = m′ = 0. Let f =
∑

−∞<i<∞ fi(t, x)~
−i and g =∑

−∞<j<∞ gj(t, x)~
−j be in Ot,~

X (0). Let K be a compact set. There exists η > 0 such that
fi(t, x) and gj(t, x) are holomorphic in a neighborhood of {|t| ≤ η}×K. Conditions (1.11)
and (1.12) guarantee the existence of the positive constants C1, ε1, M1 and R1 for the
fi’s, and C2, ε2, M2 and R2 for the gj ’s. We set C = max{C1, C2}, ε = max{ε1, ε2},
M = max{M1,M2} and R = max{R1, R2}

We shall show that the product (1.13) is well defined. Let hk(t, x) =
∑

i+j=k fi(t, x)gj(t, x).
(a) Consider the case k < 0. The sum defining hk can be divided into three parts:

hk =
∑

k<i<0

figk−i +
∑

i≥0

figk−i +
∑

j≥0

fk−jgj .(1.14)
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The first sum is finite and defines a holomorphic function in a neighborhood of {|t| ≤
η} ×K.

In the second sum, k − i is strictly negative and for each term in this sum Condi-
tions (1.11) and (1.12) give the following estimates when x ∈ K and |t| ≤ η:

|fi(t, x)gk−i(t, x)| ≤ M
(Rη)i

i!
Cεi−k(i− k)!

≤ CMε−k(−k)!(Rηε)i
(
i− k

i

)

Recall that
∑

i≥0 α
i
(
n+i

i

)
= 1

(1−α)n+1 for |α| < 1. When Rηε < 1, (Rηε)i
(
i−k

i

)
is the

general term of an absolutely convergent series. Let η̃ = min{η, 1
2Rε

}. Then the second
sum in (1.14) converges uniformly on {|t| ≤ η̃} ×K.

The third sum is handled in a similar way and one gets the estimate:

|fk−j(t, x)gj(t, x)| ≤ CMε−k(−k)!(Rηε)j
(
j − k

j

)
.

It follows from the preceding that hk for k < 0 is a holomorphic function in a neighborhood
of {|t| ≤ η̃} ×K.

Let now show that hk satisfies Condition (1.11). For x ∈ K and |t| ≤ η̃, the first sum
in (1.14) is bounded by:

|
∑

k<i<0

fi(t, x)gk−i(t, x)| ≤ C2
∑

k<i<0

ε−iεi−k(−i)!(i − k)! ≤ C2ε−k(−k)!.

For the second and third sums we have:

|
∑

i≥0

fi(t, x)gk−i(t, x)| ≤ CMε−k(−k)!
1

(1 −Rη̃ε)−k+1
,

|
∑

j≥0

fk−j(t, x)gj(t, x)| ≤ CMε−k(−k)!
1

(1 −Rη̃ε)−k+1
.

Let ε̃ = max{ε, ε
(1−Rη̃ε)}. For x ∈ K and |t| ≤ η̃, we find that:

|hk(t, x)| ≤ (C2 +
2CM

(1 −Rη̃ε)
)ε̃−k(−k)!.

Hence hk satisfies Condition (1.11).

(b) The case k ≥ 0. We again split the sum defining hk into three parts:

hk =
∑

0≤i≤k

figk−i +
∑

i<0

figk−i +
∑

j<0

fk−jgj .(1.15)
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The first sum is a holomorphic function in a neighborhood of {|t| ≤ η} ×K.
For each term in the second sum, we have the following estimates when x ∈ K and

|t| ≤ η:

|fi(t, x)gk−i(t, x)| ≤ Cε−i(−i)!M
Rk−i

(k − i)!
|t|k−i ≤ CM(εRη)−iR

k

k!
|t|k.

(εRη)−i is the general term of the geometric series, hence the second sum in (1.15) defines
a holomorphic function in a neighborhood of {|t| ≤ η̃} ×K where η̃ = min{η, 1

2Rε
}.

Similarly, for the third sum we have:

|fk−j(t, x)gj(t, x)| ≤ CM(εRη)−jR
k

k!
|t|k.

Therefore hk for k ≥ 0 is a holomorphic function in a neighborhood of {|t| ≤ η̃} ×K.
We now show that hk satisfies Condition (1.12) with m = 0. For x ∈ K and |t| ≤ η̃,

the first sum in (1.15) is bounded by:

|
∑

0≤i≤k

fi(t, x)gk−i(t, x)| ≤M2R
k

k!
|t|k

∑

0≤i≤k

(
k

i

)
≤M2 (2R)k

k!
|t|k.

For the second and third sums we find:

|
∑

i<0

fi(t, x)gk−i(t, x)| ≤ CM
Rη̃ε

1 −Rη̃ε

Rk

k!
|t|k

|
∑

j<0

fk−j(t, x)gj(t, x)| ≤ CM
Rη̃ε

1 −Rη̃ε

Rk

k!
|t|k.

For x ∈ K and |t| ≤ η̃, we have:

|hk(t, x)| ≤ (M2 + 2CM
Rη̃ε

1 −Rη̃ε
)
(2R)k

k!
|t|k.

Hence hk satisfies Condition (1.12) with m = 0.
The product of f ∈ Ot,~

X (0) and g ∈ Ot,~
X (0) is well defined and fg ∈ Ot,~

X (0). �

Therefore:

Proposition 1.10. The sheaf Ot,~
X is naturally endowed with a structure of a commutative

filtered k-algebra.
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Let U be an open subset of X and let f(s, x,~) ∈ Γ((Cs \K)×U ;O~
Cs×X). One defines

formally the Laplace transform L(f) of f by

L(f)(t, x,~) =
1

2iπ

∫

γ

f(s, x,~) exp(st~−1) ds,

where γ is a counter clockwise oriented circle centered at 0 with radius R≫ 0.

Example 1.11.

L(s−n−1) = ~
−ntn/n!, L(

1

s− 1
) = exp(t~−1).

Lemma 1.12. The Laplace transform induces a k-linear monomorphism

s−1 · OX [[s−1]][[~,~−1] →֒ OX [[t]][[~,~−1]]

Proof. One notices that the Laplace transform is given by:

∑

−∞<j≤m

∑

n≥0

an,js
−n−1

~
−j 7→

∑

j≤m

∑

n≥0

an,j

n!
tn~

−n−j,

and the result follows. �

Theorem 1.13. The Laplace transform induces a k-linear isomorphism of filtered k-

algebras

L : Os,~
X

∼−→ Ot,~
X .(1.16)

Proof. (i) By Lemma 1.9, it is enough to check that L induces an isomorphism Os,~
X (0) ∼−→

Ot,~
X (0).

(ii) Let W be a Stein open subset of X and let U be a relatively compact open subset
of W . Let us develop a section f(s, x,~) of Γ(W ;R1a!O

~
Cs×X(0)) with respect to s−1 for

s > R. We get

f̃(s, x,~) =
∑

−∞<j≤0

f̃j(s, x)~
−j

=
∑

−∞<j≤0

∑

n≥0

fj,n(x)s−n−1
~
−j

with the following Cauchy’s estimates:
{

for any compact subset K of U there exist positive constants
C, ε,R such that sup

x∈K

|fj,n(x)| ≤ Cε−j(−j)!Rn.

11



Applying the Laplace transform to f̃(s, x,~) means to replace s−n−1 with
tn

n!
~
−n. Hence,

we find

L(f̃)(t, x,~) =
∑

−∞<j<∞

fj(t, x)~
−j =

∑

−∞<j≤0

∑

n≥0

fj,n(x)
tn

n!
~
−j−n

where

fj(t, x) =
∑

j≤n,0≤n

fj−n,n(x)
tn

n!

satisfies

|fj(t, x)| ≤ C
∑

j≤n,0≤n

εn−j (n− j)!

n!
(|t|R)n.

Let η < (εR)−1. It follows that fj(t, x) is holomorphic in a neighborhood of {|t| ≤ η}×K.
Assume j < 0, |t| ≤ η and x ∈ K. We get

|fj(t, x)| ≤ Cε−j(−j)!
∑

0≤n

(n− j)!

(−j)!n!
(ηεR)n ≤

C

1 − ηεR
(

ε

1 − ηεR
)−j(−j)!,

hence Condition (1.11) is satisfied.
Assume j ≥ 0. We get for |t| ≤ η and x ∈ K

|fj(t, x)| ≤ C
ε−j

j!

∑

j≤n

j!(n − j)!

n!
(|t|Rε)n ≤

C

1 − ηεR

Rj

j!
|t|j ,

hence Condition (1.12) for m = 0 is satisfied and L(f)(t, x,~) is in Ot,~
X (0).

(iii) Conversely, let f(t, x,~) be a section of Ot,~
X (0). We develop f as

f(t, x,~) =
∑

−∞<j<∞

fj(t, x)~
−j =

∑

−∞<j<∞

∑

n≥0

n!fj,n(x)
tn

n!
~
−n

~
−j+n.(1.17)

For any compact set K, there exists η > 0 such that fj(t, x) is holomorphic in a neighbor-
hood of {|t| ≤ η} ×K. Conditions (1.11) and (1.12) give the Cauchy’s estimates

|fj,n(x)| ≤ Cε−j(−j)!η−n for j < 0,

|fj,n(x)| ≤M
Rj

j!
ηj−n for j ≥ 0.

12



Notice that Condition (1.12) for j > 0 implies that

fj(0, x) =
∂fj

∂s
(0, x) = · · · =

∂j−1fj

∂sj−1
(0, x) = 0,(1.18)

or fj,n(x) = 0 for 0 ≤ n ≤ j − 1.

The inverse Laplace transform consists formally in remplacing
tn

n!
~
−n by s−n−1 in

(1.17), we then get

L−1(f)(s, x,~) = f̃(s, x,~) =
∑

−∞<j<∞

∑

n≥0

n!fj+n,n(x)s−n−1
~
−j .

Writing f̃(s, x,~) =
∑

−∞<j<∞ f̃j(s, x)~
−j , (1.18) implies that f̃j(s, x) = 0 for j ≥ 1.

Let R1 > R large enough so that (ηR1)
−1 ≤ 1. We shall check that the sum f̃j(s, x) =∑

n≥0 n!fj+n,n(x)s−n−1 defines a holomorphic function in a neighborhood of {|s| ≥ R1}×K
for any j ≤ 0.

For j ≤ 0, let us split the sum f̃j(s, x) as

f̃j(s, x) =
∑

n≥−j

n!fj+n,n(x)s−n−1 +
∑

0≤n<−j

n!fj+n,n(x)s−n−1.(1.19)

In the first sum we have n+ j ≤ 0 and for |s| ≥ R1 and x ∈ K, we get from the Cauchy’s
estimates

|n!fj+n,n(x)s−n−1| ≤ n!M
Rn+j

(n+ j)!
ηj |s|−n−1 ≤

M

R1
(ηR)j(−j)!

(
n

−j

)
(
R

R1
)n.(1.20)

The right-hand side is the general term of a convergent series since R1 > R and we get
the result by noticing that the second sum in (1.19) is finite.

Finally we shall show that f̃j(s, x) satisfies the required estimates. From (1.20), the
first sum in (1.19) is bounded by

|
∑

n≥−j

n!fj+n,n(x)s−n−1| ≤
M

R1
(ηR)j(−j)!

∑

n≥−j

(
n

−j

)
(
R

R1
)n

≤
M

R1 −R

( 1

η(R1 −R)

)−j
(−j)!.

Similarly, for the second sum we have

|
∑

0≤n<−j

n!fj+n,n(x)s−n−1| ≤
C

R1
ε−j(−j)!

∑

0≤n<−j

1(−j
n

)(
1

ηR1
)n ≤

2C

R1
ε−j(−j)!,

13



where the last inequality follows from (ηR1)
−1 ≤ 1 and

∑
0≤n<−j

1

(−j
n )

≤ 2.

Combining these estimates we get for j ≤ 0

|f̃j(s, x)| ≤ C̃ε̃−j(−j)!,

with C̃ = max{ M
R1−R

, 2C
R1

} and ε̃ = max{ε, 1
η(R1−R)}.

Therefore f̃(s, x,~) =
∑

j≤0 f̃j(s, x)~
−j is a section of Os,~

X (0) and L(f̃)(t, x,~) =
f(t, x,~).

(iv) The fact that L is a morphism of algebras follows easily from Example 1.2. �

The ring grOt,~
X

If A is a filtered sheaf of rings, we denote as usual by grA the associated graded ring.
Let Cu be the complex line endowed with the coordinate u and denote by b : X×Cu −→

X the projection.

Definition 1.14. (i) One denotes by Oexp u
X the subsheaf of C-algebras on X of the

sheaf b∗OX×Cu whose sections on an open set U ⊂ X are the holomorphic functions
f(x, u) on U × Cu satisfying:

{
for any compact subset K of U there exist positive constants
C,R such that sup

x∈K

|f(x, u)| ≤ C exp(R|u|).

(ii) One sets Oexp t~−1

X [~,~−1] = Oexp t~−1

X ⊗
C

C[~,~−1].

Proposition 1.15. There is a natural isomorphism of graded sheaves of rings

grOt,~
X ≃ Oexp t~−1

X [~,~−1].

Proof. First note the isomorphism

Os,~
X (0)/Os,~

X (−1) ≃ R1a!OCs×X ,

from which we deduce the isomorphism

grOs,~
X ≃ R1a!OCs×X ⊗

C
C[~,~−1].

The classical Paley-Wiener theorem says that the Laplace transform induces an isomor-
phism between H1

c (C;OC) and the space of entire functions of exponential type. An
extension of this result with holomorphic parameters provides an isomorphism

L : R1a!OCs×X
∼−→ Oexp t~−1

X

and the result follows. �
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The formal case

It is possible to replace O~
X with Ô~

X in the preceding constructions and to set

Ôs,~
X := R1a!Ô

~
Cs×X .(1.21)

However the Laplace transform of Ôs,~
X does not seem to have an easy description. Indeed,

its sections are no longer germs of holomorphic functions with respect to t as shown in
the next example.

Example 1.16. Consider a sequence {cj}j≤0 of complex numbers and the section f of

Ôs,~
X given by

f(s,~) =
∑

j≤0

cj
(s− 1)

~
−j .

Then, formally, the Laplace transform of f is given by

L(f)(t, ~) =
∑

j≤0

∑

n≥0

cj
tn

n!
~
−n−j,

and the coefficient of ~
0 is

∑
n≥0 c−n

tn

n! , which does not belong to OCt |t=0 in general.

2 The algebra WT ∗X

Let (X,OX ) be a complex manifold. The cotangent bundle T ∗X is a homogeneous sym-
plectic manifold endowed with the C

×-conic sheaf of rings ET ∗X of finite-order microdif-
ferential operators. This ring is filtered and contains in particular the subring ET ∗X(0) of
operators of order ≤ 0. This ring is constructed in [8] and we assume that the reader is
familiar with this theory, referring to [5] or [9] for an exposition.

On the symplectic manifold T ∗X there exists another (no more conic) useful sheaf of
rings constructed as follows (see [7]). Let C be the complex line endowed with the coordi-
nate t and (t; τ) the associated coordinates on T ∗

C. Set T ∗
{τ 6=0}(X ×C) = {(x, t; ξ, τ); τ 6=

0} and consider the map

ρ : T ∗
{τ 6=0}(X × C) −→ T ∗X, (x, t; ξ, τ) 7→ (x; ξ/τ).(2.1)

Set

ET ∗(X×C),t̂ = {P ∈ ET ∗(X×C); [P, ∂/∂t] = 0}.(2.2)

The ring WT ∗X on T ∗X is given by

WT ∗X := ρ∗(ET ∗(X×C),t̂).

15



In the sequel we set

~ := τ−1.(2.3)

The ring WT ∗X is filtered and we denote by WT ∗X(j) the subsheaf of WT ∗X consisting
of sections of order less or equal to j. The following result was obtained in [7].

Theorem 2.1. (i) The sheaf WT ∗X is naturally endowed with a structure of a filtered

k-algebra and grWT ∗X ≃ OT ∗X [~,~−1].

(ii) Consider two complex manifolds X and Y , two open subsets UX ⊂ T ∗X and UY ⊂
T ∗Y and a symplectic isomorphism ψ : UX

∼−→ UY . Then, locally, ψ may be

quantized as an isomorphism of filtered k-algebras Ψ: WT ∗X
∼−→ WT ∗Y such that

the isomorphism induced on the graded algebras coincides with the isomorphism

OT ∗X [~,~−1] ∼−→ OT ∗Y [~,~−1] induced by ψ.

Total symbols

Assume that X is affine of dimension n, that is, X is open in some C-vector space V of
dimension n.

Theorem 2.2. Assume X is affine. There is an isomorphism of filtered sheaves of k-

modules (not of algebras), called the “total symbol” morphism:

σtot : WT ∗X
∼−→ O~

T ∗X .(2.4)

The total symbol of a product is given by the Leibniz formula. Denote by (x) a local

coordinate system on X and denote by (x, u) the associated local symplectic coordinate

system on T ∗X. If Q is an operator of total symbol σtot(Q), then

σtot(P ◦Q) =
∑

α∈Nn

~
|α|

α!
∂α

uσtot(P ) · ∂α
xσtot(Q).(2.5)

The total symbol of a section P ∈ WT ∗X(U) is thus written as a formal series:

σtot(P ) =
∑

−∞≤j≤m

pj(x;u)~
−j , m ∈ Z, pj ∈ OT ∗X(U),(2.6)

with the condition (1.4).
Note that (2.5) does not depend of the choice of a local coordinate system on X but

only on the affine structure of V . Indeed, (2.5) may be rewritten as

σtot(P ◦Q) = (exp(~〈du, dy〉)σtot(P )(x, u)σtot(Q)(y, v))|x=y,u=v .

where 〈du, dy〉 =
∑n

i=1 ∂ui
∂yi

does not depend on the affine coordinate system.

16



Remark 2.3. Let us identify X with the zero section of T ∗X. Then the sheaf O~
X (see

Def. 1.1) is isomorphic to the left coherent WT ∗X-module obtained as the quotient of
WT ∗X by the left ideal generated the vector fields on X.

3 The algebra Ws
T ∗X

Operations on W

Let S be a complex manifold of complex dimension dS . One defines the sheaf WS×T ∗X

on S × T ∗X as the subsheaf of WT ∗(S×X) consisting of sections which commute with the
holomorphic functions on S. Heuristically, WS×T ∗X is the sheaf WT ∗X with holomorphic
parameters on S. For a morphism of complex manifolds f : S −→ Z we shall still denote
by f the map S ×X −→ Z ×X, as well as the map S × T ∗X −→ Z × T ∗X. One denotes as
usual by ΩS the sheaf of holomorphic forms of maximal degree and one sets for short:

W
(dS )
S×T ∗X = WS×T ∗X ⊗OS

ΩS .(3.1)

Let us recall well-known operations of the theory of microdifferential operators. Al-
though these results do not seem to be explicitly written in the literature, their proofs are
straightforward and will not be given here.

Let f : S −→ Z be a morphism of complex manifolds. The usual operations of inverse
image f∗ : f−1OZ −→ OS and of direct image

∫
f
: Rf !ΩS [dS ] −→ ΩZ [dZ ] extend to WS×T ∗X .

More precisely, there exist morphisms of sheaves of k-modules (the second morphism holds
in the derived category Db(kZ×T ∗X)):

f∗ : f−1WZ×T ∗Z −→ WS×T ∗X ,(3.2) ∫

f

: Rf !(W
(dS )
S×T ∗X [dS ]) −→ W

(dZ )
Z×T ∗X [dZ ],(3.3)

these morphisms having the following properties:

• they are functorial with respect to f , that is, for a morphism of complex manifolds
g : Z −→ W , one has (g ◦ f)∗ ≃ f∗ ◦ g∗ and

∫
g◦f =

∫
g
◦
∫
f
, and moreover the inverse

(resp. direct) image of the identity morphism is the identity,

• when X is affine, f∗ and
∫
f

commute with the total symbol morphism (2.4).

As a convention, we choose the morphism in (3.3) so that the integral of
ds

s
∈

H1
c (Cs; ΩCs) is 1. In other words,

∫

a

1

s
=

1

2iπ

∫

γ

ds

s
,

where γ is a counter clockwise oriented circle around the origin.
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The algebra Ws
T ∗X

Denote by

a : Cs × T ∗X −→ T ∗X(3.4)

the projection. Then, after identifying the sheaves OCs and ΩCs by f(s) 7→ f(s)ds, the
sheaf R1a!WCs×T ∗X is endowed with a structure of a filtered k-algebra by

H1
c (Cs × T ∗X;WCs×T ∗X) ×H1

c (Cs′ × T ∗X;WCs′×T ∗X)

−→ H2
c (C2

s,s′ × T ∗X;WC2

s,s′
×T ∗X)

−→ H1
c (Cs;WCs×T ∗X),

where the first arrow is the cup product and the second arrow is the integration along the
fibers of the map C

2 −→ C, (s, s′) 7→ s+ s′.

Definition 3.1. The sheaf Ws
T ∗X of k-modules on T ∗X is given by

Ws
T ∗X = R1a!(WCs×T ∗X).(3.5)

After identifying the holomorphic function
1

s
with the cohomology class it defines in

H1
c (Cs;OCs), we define the morphism of sheaves

ι : WT ∗X −→ Ws
T ∗X , P 7→

1

s
P.(3.6)

Clearly, the morphism (3.6) is a monomorphism of sheaves of k-algebras.
We define the morphism of sheaves

res : Ws
T ∗X −→ WT ∗X(3.7)

by the integration morphism (3.3) associated to the map (3.4). Clearly, the morphism
(3.7) is a morphism of sheaves of k-algebras. Hence:

Theorem 3.2. (i) The sheaf Ws
T ∗X is naturally endowed with a structure of a filtered

k-algebra and grWs
T ∗X ≃ R1a!OCs×T ∗X [~,~−1].

(ii) The monomorphism ι in (3.6) is a morphism of filtered k-algebras, the integration

morphism res in (3.7) is a morphism of filtered k-algebras and the composition res ◦
ι : WT ∗X −→ Ws

T ∗X −→ WT ∗X is the identity.

(iii) Consider two complex manifolds X and Y , two open subsets UX ⊂ T ∗X and UY ⊂
T ∗Y and a symplectic isomorphism ψ : UX

∼−→ UY . Then, locally, ψ may be

quantized as an isomorphism of filtered k-algebras Ψ: Ws
T ∗X

∼−→ Ws
T ∗Y such that

the isomorphism induced on the graded algebras coincides with the isomorphism

R1a!OCs×T ∗X [~,~−1] ∼−→ R1a!OCs×T ∗Y [~,~−1] induced by ψ.

18



(iv) Assume X is affine. There is an isomorphism of filtered sheaves of k-modules (not

of algebras), called the “total symbol” morphism:

σtot : W
s
T ∗X

∼−→ Os,~
T ∗X .(3.8)

The total symbol of a product is given by the Leibniz formula with a convolution

product in the s variable (see (3.10)).

Proof. These results follow immediately from Theorem 2.1. �

Assume that X is affine. For each Stein open subset W of T ∗X and each relatively
compact open subset U ⊂⊂W , a section P of Ws

T ∗X on W admits a total symbol

σtot(P )(s, x, u) =
∑

−∞<j≤m

pj(s, x;u)~
−j , m ∈ Z(3.9)

where pj belongs to Γ((Cs \ K0) × U ;OCs×T ∗X), for a compact subset K0 of Cs which
depends only on P and U , and the pj’s satisfy an estimate as in (1.4) on each compact
subset K of (Cs \K0) × U .

Consider now two sections P and Q of Ws
T ∗X on a Stein open set W with total symbols

as in (3.9) (replacing pj with qj and m with m′ for Q). Then the total symbol of P ◦Q is
given by the Leibniz formula:

σtot(P ◦Q) =
∑

α∈Nn

~
|α|

α!
∂α

uσtot(P ) ∗ ∂α
xσtot(Q),(3.10)

where, setting f(s, x, u) = ∂α
uσtot(P )(s, x;u) and g(s, x, u) = ∂α

xσtot(Q)(s, x;u), the prod-
uct f ∗ g is given by (1.9).

4 The Laplace transform and the algebra W t
T ∗X

The filtered k-algebra Wt
T ∗X on T ∗X is the algebra Ws

T ∗X , but with a different symbol
calculus.

Definition 4.1. We set Wt
T ∗X := Ws

T ∗X . For X affine, the total symbol morphism of
k-modules (not of algebras)

σtot : W
t
T ∗X

∼−→ Ot,~
T ∗X(4.1)

is the composition Ws
T ∗X

∼−−→
σtot

Os,~
T ∗X

∼−→
L

Ot,~
T ∗X .
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For P a section of Wt
T ∗X on a Stein open subset V of T ∗X and an open subset U ⊂⊂ V ,

σtot(P ) is written as a series

σtot(P )(t, x, u,~) =
∑

−∞<j<∞

pj(t, x, u)~
−j , pj ∈ OC×T ∗X|t=0

(U)

satisfying (1.11) and (1.12).
Applying Theorem 3.2, we get:

Theorem 4.2. (i) Wt
T ∗X is a filtered k-algebra and grWt

T ∗X ≃ Oexp t~−1

T ∗X [~,~−1] (see
Definition 1.14).

(ii) The morphism ι in (3.6) induces a monomorphism of filtered k-algebras ι : WT ∗X →֒
Wt

T ∗X , the morphism res in (3.7) induces a morphism of filtered k-algebras res : Wt
T ∗X −→

WT ∗X and the composition WT ∗X −→ Wt
T ∗X −→ WT ∗X is the identity.

(iii) Consider two complex manifolds X and Y , two open subsets UX ⊂ T ∗X and UY ⊂
T ∗Y and a symplectic isomorphism ψ : UX

∼−→ UY . Then, locally, ψ may be

quantized as an isomorphism of filtered k-algebras Ψ: Wt
T ∗X

∼−→ Wt
T ∗Y such that

the isomorphism induced on the graded algebras coincides with the isomorphism

Oexp t~−1

T ∗X [~,~−1] ∼−→ Oexp t~−1

T ∗Y [~,~−1] induced by ψ.

(iv) Assume X is affine. There is an isomorphism of filtered sheaves of k-modules (not

of algebras), called the “total symbol” morphism:

σtot : W
t
T ∗X

∼−→ Ot,~
T ∗X .(4.2)

The total symbol of a product is given by the Leibniz formula.

For P and Q two sections of Wt
T ∗X on an open subset U of T ∗X, with X affine, the

total symbol of P ◦Q is thus given by the formula:

σtot(P ◦Q) =
∑

α∈Nn

~
|α|

α!
∂α

uσtot(P ) · ∂α
xσtot(Q),(4.3)

where the product ∂α
uσtot(P ) · ∂α

xσtot(Q) is given by the usual commutative algebra struc-
ture of Ot,~

T ∗X of Lemma 1.9.

Remark 4.3. In Theorem 4.2, the monomorphism WT ∗X −→ Wt
T ∗X is given on sym-

bols by σtot(P ) 7→ σtot(P ) and the morphism Wt
T ∗X −→ WT ∗X is given on symbols by

σtot(P )(t, x;u, ~) 7→ σtot(P )(0, x;u, ~).
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The formal case

The above constructions also work when replacing the sheaf WT ∗X with its formal coun-
terpart, the sheaf ŴT ∗X . Let us briefly explain it.

Let X be a complex manifold, as above. Replacing the sheaf of rings ET ∗X on T ∗X
with the sheaf of rings ÊT ∗X of formal microdifferential operators and proceeding as for
WT ∗X , we get the sheaf of rings ŴT ∗X of finite-order formal WKB-operators on T ∗X. It
is defined by

ŴT ∗X := ρ∗(ÊT ∗(X×C),t̂).

When X is affine of dimension n, the total symbol morphism induces an isomorphism of
k̂-modules

σtot : ŴT ∗X
∼−→ Ô~

T ∗X

and the symbol σtot(P ◦ Q) is given by the Leibniz formula (2.5). Then by a similar

construction as for Ws
T ∗X we construct the filtered sheaf of k̂-algebras Ŵs

T ∗X . Namely, we
set

Ŵs
T ∗X :=R1a!ŴC×T ∗X .

If X is affine, the total symbol morphism induces an isomorphism of k̂-modules Ŵs
T ∗X

∼−→

Ôs,~
T ∗X and the product is again given by the Leibniz formula (3.10).

However, as already noticed, the Laplace transform does not seem to behave as well for
the formal case as for the analytic case, and we shall not construct the Laplace transform
of Ôs,~

T ∗X .

5 Remark: The algebra Ws
X

on a symplectic manifold X

The complex case

Consider a complex symplectic manifold X. There exists an open covering X =
⋃

i Ui and
complex symplectic isomorphisms ϕi : Ui

∼−→ Vi where the Vi’s are open in some cotangent
bundles T ∗Xi of complex manifolds Xi. Set WUi

:= ϕ−1
i WT ∗Xi|Vi

. In general, the WUi
’s

do not glue in order to give a globally defined sheaf of algebras WX on X. However the
prestack S on X (roughly speaking, a prestack is a sheaf of categories) Ui 7→ Mod(WUi

)
is a stack and the category Mod(WX) := S(X) is well defined. Moreover, one can give
a precise meaning to WX by replacing the notion of a sheaf of algebras with that of an
algebroid. We refer to [4] for the construction of (an analogue of) this stack in the contact

complex case and to [6] in the symplectic complex case for ŴX and for the definition of
an algebroid. See also [7] for a construction of WX (by a different method). By adapting
the construction of [7], one easily constructs the algebroid Ws

X
associated with the locally

defined sheaves of algebras Ws
Ui

. Details are left to the reader.
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The real case

Let M be a real analytic manifold, X a complexification of M and denote by ωX the
canonical 2-form on T ∗X. The conormal bundle T ∗

MX is Lagrangian for Re ωX and
symplectic for Im ωX . In particular, the real manifold T ∗

MX is symplectic. For an open
subset U of T ∗

MX, we set WU := WT ∗X |U .
Now, consider a real analytic symplectic manifold M. It is well known that it is possible

to construct a globally defined sheaf of algebras WM on M such that:

• there exists an open covering M =
⋃

i∈I Ui and real symplectic isomorphisms ϕi : Ui
∼−→

Vi where the Vi’s are open in the conormal bundles T ∗
Mi
Xi for some real manifolds

Mi with complexification Xi,

• WM|Vi
≃ ϕ−1

i WVi
for all i ∈ I.

Replacing M with Cs × M, one easily contructs the sheaf of algebras WCs×M of sections
with holomorphic parameter s ∈ Cs. Setting

Ws
M :=R1a!WCs×M

we get a filtered k-algebra similar to the algebra Ws
T ∗X of Definition 3.1. Then, if P

belongs to WM and has order 0, the section
1

s− P
is well defined in Ws

M
.

6 Applications

As an application, let us construct the exponential of sections of order 0 of WT ∗X .
Consider a section P of WT ∗X(0) on an open subset U of T ∗X. For each compact

subset K of U , there exists R > 0 such that the section s−P of Ws
T ∗X defined on Cs ×U

is invertible on (Cs \D(0, R)) ×K, where D(0, R) denotes the closed disc centered at 0

with radius R. Therefore
1

s− P
defines an element of H1

c (Cs × U ;WCs×T ∗X), hence, an

element of Γ(U ;Ws
T ∗X). We still denote this section of Ws

T ∗X on U by
1

s− P
.

By developing
1

s− P
as

∑
n≥0

Pn

sn+1
and applying the Laplace transform, we get for-

mally: L( 1
s−P

) = exp(t~−1P ).

Notation 6.1. We denote by exp(t~−1P ) the image in Wt
T ∗X of the section

1

s− P
of

Ws
T ∗X .
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Proposition 6.2. For P ∈ WT ∗X(0), there is a section exp(t~−1P ) ∈ Wt
T ∗X such that,

when X is affine:

σtot(exp(t~−1P )) =
∑

n≥0

(t~−1σtot(P ))⋆n

n!
,

where the star-product f⋆n means the product given by the Leibniz formula (2.5).

Remark 6.3. The Leibniz formula (2.5) is nothing but the standard or normal or Wick
star-product and Proposition 6.2 tells us that the star-exponential [1] of P makes sense in
Wt

T ∗X .

In a holomorphic deformation quantization context, the star-exponential of P is heuris-
tically related to the Feynman Path Integral FPI(P ) of P . Indeed, the Feynman Path
Integral of a Hamiltonian H is the symbol of the evolution operator associated to H, the
precise relation being given (see [2]) by

exp(−xu~
−1)FPI(P ) = σtot(exp(t~−1P )).

Example 6.4. As a simple example, take X = C and P ∈ WT ∗X(0) with σtot(P ) =
p0(t, x;u) = θxu, θ ∈ C. Up to a change of holomorphic symplectic coordinates, σtot(P )
represents the Hamiltonian of the harmonic oscillator in the holomorphic representation.
Clearly P is in WC(0), and the total symbol of exp(t~−1P ) is easily computed:

∂

∂t
σtot(exp(t~−1P )) =σtot(~

−1P ◦ exp(t~−1P ))

=~
−1

(
σtot(P )σtot(exp(t~−1P )) + ~

∂

∂u
σtot(P )

∂

∂x
σtot(exp(t~−1P ))

)

=~
−1θuxσtot(exp(t~−1P )) + θx

∂

∂x
σtot(exp(t~−1P )).

Since σtot(exp(t~−1P ))|t=0 = 1, the solution to the preceding equation is:

σtot(exp(t~−1P )) = exp
(
(exp(θt) − 1)xu~

−1
)
.

The Feynman Path Integral for the harmonic oscillator is well known in the Physics
literature and is given by exp

(
exp(θt)xu~

−1
)

[3].
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