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SCATTERING THEORY FOR RADIAL NONLINEAR

SCHRÖDINGER EQUATIONS ON HYPERBOLIC SPACE

VALERIA BANICA, RÉMI CARLES, AND GIGLIOLA STAFFILANI

Abstract. We study the long time behavior of radial solutions to nonlinear
Schrödinger equations on hyperbolic space. We show that the usual distinction
between short range and long range nonlinearity is modified: the geometry of
the hyperbolic space makes every power-like nonlinearity short range. The
proofs rely on weighted Strichartz estimates, which imply Strichartz estimates
for a broader family of admissible pairs, and on Morawetz type inequalities.
The latter are established without symmetry assumptions.
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1. Introduction

This paper is devoted to the scattering theory for the nonlinear Schrödinger
equation

(1.1) i∂tu+ ∆Hnu = |u|2σu ; e−it∆Hnu(t)
∣∣
t=t0

= ϕ ,

on the hyperbolic space (n > 2):

H
n = {R

n+1 ∋ Ω = (x0, . . . , xn) = (x0, x
′) = (cosh r, sinh r ω), r > 0, ω ∈ S

n−1}.
We consider a defocusing power nonlinearity. One could also prove some results
in the focusing case, but this case will not be discussed in this paper. When a
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function of time and space u(t,Ω) depends only on t and r, we say that it is radial.
The reason is that r is the hyperbolic distance between Ω and the origin of the
hyperboloid O = (x0 = 1, x′ = 0). With the usual abuse of notation, we write
u(t, r). We prove that for any σ > 0, a short range (large data) scattering theory is
available for radial solutions to (1.1). This is in sharp contrast with the Euclidean
case, where the nonlinearity |u|2σu cannot be short range as soon as σ 6 1/n
(see Section 2.3). A crucial argument to prove this phenomenon is the existence
of weighted Strichartz estimates for radial solutions to Schrödinger equations on
Hn, established in [2] and [31]. Note that if these weighted Strichartz estimates
were available for general solutions to Schrödinger equations on Hn (and not only
radial), then all the results of this paper could be adapted, with the same proofs.
Also, similar results can be extended to the equation posed on Damek-Ricci spaces,
thanks to the weighted Strichartz estimates obtained in [31]. Finally, let us recall
that recently the nonlinear Schrödinger equation in a non-Euclidean setting has
been intensively studied (see e.g. [4, 6, 7]). Most of the results concern the local-
in-time point of view, and to the best of our knowledge, until now there was no
result of large data scattering in a non-Euclidean manifold.

With the above parameterization for the hyperbolic space, the Laplace-Beltrami
operator reads:

∆Hn = ∂2
r + (n− 1)

cosh r

sinh r
∂r +

1

sinh2 r
∆Sn−1 .

In order to define wave operators, we introduce the free Schrödinger generalized
initial value problem:

(1.2)

{
i∂tu+ ∆Hnu = 0 ,

u|t=t0 = ϕ.

We denote U(t) = eit∆Hn , so that in (1.2), u(t,Ω) = U(t)ϕ(Ω). When considering
solutions to (1.1), we use the convention that if t0 = −∞ (resp. t0 = +∞), then
we denote ϕ = u− (resp. ϕ = u+), and solving (1.1) means that we construct wave
operators. If t0 = 0, then we denote ϕ = u0, and (1.1) is the standard Cauchy
problem. In all the cases, we seek mild solutions to (1.1), that is, we solve

(1.3) u(t) = U(t)ϕ− i

∫ t

t0

U(t)(t− s)
(
|u|2σu

)
(s)ds.

We can now state our main results. The first one deals with existence of wave
operators and asymptotic completeness for small L2 data:

Theorem 1.1. Let n > 2, 0 < σ 6 2/n, and t0 ∈ R. There exists ǫ = ǫ(n, σ) such
that if ϕ ∈ L2

rad(H
n) with ‖ϕ‖L2 < ǫ, then (1.1) has a unique solution

u ∈ C(R;L2) ∩ L2+2σ(R × H
n).

Moreover, its L2-norm is constant, ‖u(t)‖L2 = ‖ϕ‖L2 for all t ∈ R.
There exist u± ∈ L2

rad(H
n) such that

‖u(t) − U(t)u±‖L2 → 0 as t → ±∞.

If t0 = −∞ (resp. t0 = +∞), then u− = ϕ (resp. u+ = ϕ).

The existence of solutions in C(R;L2) for data which are small in L2 is analogous
to the Euclidean case ([37], see also [13]). For σ = 2/n, our result is the exact
analogue to its Euclidean counterpart recalled in Proposition 2.3. Note however
that for 0 < σ < 2/n, the space where the solutions belong, and the existence of a
scattering theory, distinguish the hyperbolic space Hn from the Euclidean space Rn.
In particular, there is no long range effect in hyperbolic space, even if 0 < σ 6 1/n.
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Our second result establishes the existence of the wave operator in the Sobolev
space H1, when the nonlinearity is H1-subcritical (see Appendix A for the notion
of criticality). Here again, the power σ can go down to 0, with no long range effect.

Theorem 1.2. Let n > 2, 0 < σ < 2/(n − 2), and t0 = −∞. For any ϕ =
u− ∈ H1

rad(Hn), there exists T < ∞ such that (1.3) has a unique solution in
C ∩ L∞(] −∞,−T ];H1) ∩ L2σ+2(] −∞,−T ];W 1,2σ+2).
Moreover, this solution u is defined globally in time: u ∈ L∞(R;H1). That is, u is
the only solution to (1.1) with

‖u(t) − U(t)u−‖H1 = ‖U(−t)u(t) − u−‖H1 → 0 as t→ −∞.

Of course, we could prove the existence of wave operators with data at time
t0 = +∞. Since the proof is similar, we shall skip it.

The proofs of Theorems 1.1 and 1.2 rely on two remarks. First, the weighted
Strichartz estimates proven in [2, 31] for radial solutions to Schrödinger equations
on Hn, n > 3, make it possible to state Strichartz estimates which are the same as on
R

d, for any d > n. We show in this paper that similar results are available when n =
2. Second, the classical proofs for the counterparts of Theorems 1.1 and 1.2 in the
Euclidean space Rd rely only on functional analysis arguments, based on Strichartz
estimates, Hölder inequality and Sobolev embeddings. This is why the proofs of
Theorems 1.1 and 1.2, presented in Sections 4 and 5 respectively, are rather short.
Finally, let us notice that in dimension 3, the Strichartz estimates without weights
were proved to hold also for non-radial data ([2]). Therefore Theorems 1.2 holds
for the usual range of nonlinearities 2/3 < σ < 2 without symmetry assumption.

The next natural step in scattering theory consists in proving the invertibility of
the wave operators on their range, that is, asymptotic completeness. We prove a
Morawetz type inequality that combined with the Strichartz estimates for higher-
dimension admissible couples gives us a scattering result without lower restriction
on the nonlinearity power. Note that the asymptotic completeness that we prove
is for n = 3 only (see the discussion in Section 7).

Theorem 1.3. Let n = 3, 0 < σ < 2, and t0 = 0. For any ϕ = u0 ∈ H1
rad(H3)

(1.1) has a unique, global solution in C(R;H1
rad) ∩ L4(R × H

3). Moreover, there
exist u− and u+ in H1

rad(H3) such that

‖u(t) − U(t)u±‖H1(H3) → 0 as t→ ±∞.

Moreover, if 2/3 < σ < 2, then we need not assume that ϕ is radial: for any
ϕ = u0 ∈ H1(H3), (1.1) has a unique, global solution in C(R;H1) ∩ L4(R × H3),
and there exist u− and u+ in H1(H3) such that

‖u(t) − U(t)u±‖H1(H3) → 0 as t→ ±∞.

Notation. In this paper we often use the notation A . B to denote that there
exists an absolute constant C such that A 6 CB. Another standard notation is
to use for any 1 6 p 6 ∞ the symbol p′ to denote the Hölder-conjugate exponent,
that is 1/p+ 1/p′ = 1.

The rest of this paper is organized as follows. In Section 2, we review the
scattering result for nonlinear Schrödinger equations on the Euclidean space: small
L2 data, existence of wave operators in H1(Rd), non-existence of wave operators
when σ 6 1/d, and asymptotic completeness. In Section 3, we show that for radial
solutions to (1.1), the same Strichartz estimates as in Rd are available in Hn, for any
d > n > 2. Theorems 1.1 and 1.2 are proven in Sections 4 and 5 respectively. We
prove a general interaction Morawetz inequality in Section 6, and infer Theorem 1.3
in Section 7. In Appendix A , we prove that the notion of criticality, as far as the
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Cauchy problem (1.1) is concerned, is the same on Hn as on Rn. We study the
large time behavior of radial solutions to the linear Schrödinger equation (1.2) on
H3 in Appendix B. Finally, we discuss the existence of an analogue to the Galilean
operator in the radial framework on H

3 in Appendix C.

2. A review of scattering theory in Rd

In this paragraph, we consider, in the Euclidean space, the equation

(2.1) i∂tu+ ∆Rdu = |u|2σu ; (t, x) ∈ R × R
d.

We recall some results concerning scattering theory, in order to compare them with
their counterpart in hyperbolic space. We also sketch some proofs that we mimic
in the hyperbolic setting.

First, the Schrödinger operator in the Euclidean space satisfies the following
Strichartz estimates.

Definition 2.1. Let d > 2. A pair (p, q) is d-admissible if 2 6 q 6 2d
d−2 and

2

p
= δ(q) := d

(
1

2
− 1

q

)
, (p, q) 6= (2,∞) .

Proposition 2.2. Let d > 2. Denote Sd(t) = eit∆
Rd .

1. For any d-admissible pair (p, q), there exists Cq such that

‖Sd(·)φ‖Lp(R;Lq) 6 Cq‖φ‖L2, ∀φ ∈ L2(Rd).

2. For any d-admissible pairs (p1, q1) and (p2, q2) and any interval I, there exists
Cq1,q2 independent of I such that

∥∥∥∥∥

∫

I∩{s6t}

Sd(t− s)F (s)ds

∥∥∥∥∥
Lp1(I;Lq1)

6 Cq1,q2 ‖F‖Lp′
2

(
I;Lq′

2

) ,

for every F ∈ Lp′
2

(
I;Lq′

2(Rd)
)
.

Let t0 ∈ R, and consider (2.1) along with the initial data:

(2.2) Sd(−t)u(t)
∣∣
t=t0

= ϕ.

We use the convention that if t0 = −∞ (resp. t0 = +∞), then we denote ϕ = u−
(resp. ϕ = u+), and solving (2.1)–(2.2) means that we construct wave operators.
If t0 = 0, then we denote ϕ = u0, and (2.1)–(2.2) is the standard Cauchy problem.
In all these cases, we seek mild solutions to (2.1)–(2.2), that is, we solve

(2.3) u(t) = Sd(t)ϕ− i

∫ t

t0

Sd(t− s)
(
|u|2σu

)
(s)ds =: Φ(u)(t).

2.1. Small data in the L2-critical case. Recall the result of [14]. The L2-critical
case corresponds to the power σ = 2/d. In that case, the pair

(p, q) =

(
2 +

4

d
, 2 +

4

d

)
.

is d-admissible, and this is the main remark to prove:

Proposition 2.3. Let d > 2, σ = 2/d, and t0 ∈ R. There exists ǫ = ǫ(d) such that
if ϕ ∈ L2(Rd) with ‖ϕ‖L2 < ǫ, then (2.1)–(2.2) has a unique solution

u ∈ C(R;L2) ∩ L2+ 4
d (R × R

d).
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Moreover, its L2-norm is constant, ‖u(t)‖L2 = ‖ϕ‖L2 for all t ∈ R.
There exist u± ∈ L2(Rd) such that

‖u(t) − Sd(t)u±‖L2 → 0 as t→ ±∞.

If t0 = −∞ (resp. t0 = +∞), then u− = ϕ (resp. u+ = ϕ).

Sketch of the proof. The idea is to apply a fixed point argument to (2.3) in

X =
{
u ∈ C(R;L2) ∩ L2+ 4

d (R × R
d) ; ‖u‖

L2+4
d (R×Rd)

6 2C2+ 4
d
‖ϕ‖L2

}
.

Here, C2+ 4
d

is the constant given in the first part of Proposition 2.2. Indeed,

denoting γ = 2 + 4/d, Strichartz estimates and Hölder inequality yield:

‖Φ(u)‖Lγ(R×Rd) 6 Cγ‖ϕ‖L2(Rd) + Cγ,γ‖u‖1+ 4
d

Lγ(R×Rd)
.

This shows that for ‖ϕ‖L2 sufficiently small, X is invariant under the action of
Φ. Similarly, Φ is a contraction on X if ‖ϕ‖L2 is sufficiently small, thus providing
a unique solution to (2.3) in X . The conservation of mass is classical, and holds
without the smallness assumption.

Scattering then follows from the Cauchy criterion: for t1 6 t2, we have

‖Sd(−t2)u(t2) − Sd(−t1)u(t1)‖L2 6 C2,γ‖u‖1+ 4
d

Lγ([t1,t2]×Rd)
.

The right hand side goes to zero when t1, t2 → ±∞. The proposition follows easily,
since the group Sd is unitary on L2. �

2.2. Existence of wave operators in H1. We recall the existence of wave op-
erators for negative time; for positive time, the proof is similar. This means that
we solve (2.3) with t0 = −∞ (and ϕ = u−). The strategy consists first in solving
(2.3) in a neighborhood of t = −∞, that is on ]−∞,−T ] for T possibly very large.
Then the conservation of mass and energy makes it possible to extend the solution
to t ∈ R. We simply recall the first step. The proof of this result appears in [25].
The proof we give is a simplification, which may be found for instance in [21]. We
shall not recall or use the results available in weighted Sobolev spaces (see e.g.
[15, 23, 24]).

Proposition 2.4. Let t0 = −∞, d > 2 and 2/d 6 σ < 2/(d − 2). For any
ϕ = u− ∈ H1(Rd), there exists T < ∞ such that (2.3) has a unique solution in
C ∩L∞(]−∞,−T ];H1)∩Lp(]−∞,−T ];W 1,2σ+2), where p is such that (p, 2σ+2)
is d-admissible.
Moreover, this solution u is defined globally in time: u ∈ L∞(R;H1).

In other words, we construct the only solution u to (2.1) such that

‖u(t) − Sd(t)u−‖H1 = ‖Sd(−t)u(t) − u−‖H1 → 0 as t→ −∞.

The wave operator W− is the map

W− : H1 ∋ u− 7→ u|t=0 ∈ H1.

Proof. Recall that p is such that (p, 2σ + 2) is d-admissible:

p =
4σ + 4

dσ
·

With the notation Lβ
TY = Lβ(] −∞,−T ];Y ), we introduce:

XT :=
{
u ∈ C(] −∞,−T ];H1) ; ‖u‖Lp

T
W 1,2σ+2 6 2C2σ+2‖u−‖H1 ,

‖u‖L∞
T H1 6 2‖u−‖H1 , ‖u‖Lp

T L2σ+2 6 2 ‖Sd(·)u−‖Lp
T L2σ+2

}
,



6 V. BANICA, R. CARLES, AND G. STAFFILANI

where C2σ+2 is given by Proposition 2.2. Set q = s = 2σ + 2: we have

1

q′
=

1

q
+

2σ

s
,

1

p′
=

1

p
+

2σ

k
,

where (p, q) is d-admissible and p 6 k <∞ since 2/d 6 σ < 2/(d−2). For u ∈ XT ,
Strichartz estimates and Hölder inequality yield:

‖Φ(u)‖Lp

T
W 1,2σ+2 6 C2σ+2‖u−‖H1 + C

(∥∥|u|2σu
∥∥

Lp′

T
Lq′ +

∥∥|u|2σ∇u
∥∥

Lp′

T
Lq′

)

6 C2σ+2‖u−‖H1 + C‖u‖2σ
Lk

T
Ls

(
‖u‖Lp

T Lq + ‖∇u‖Lp

T Lq

)

6 C2σ+2‖u−‖H1 + C‖u‖2σθ
Lp

T
Lq‖u‖2σ(1−θ)

L∞
T

Lq ‖u‖Lp

T
W 1,2σ+2 ,

for some 0 < θ 6 1, where we have used the property q = s = 2σ + 2. Sobolev
embedding and the definition of XT then imply:

‖Φ(u)‖Lp

T W 1,2σ+2 6 C2σ+2‖u−‖H1 + C ‖Sd(·)u−‖2σθ
Lp

T Lq ‖u‖2σ(1−θ)
L∞

T H1 ‖u‖Lp

T
W 1,2σ+2 .

We have similarly

‖Φ(u)‖L∞
T H1 6 ‖u−‖H1 + C ‖Sd(·)u−‖2σθ

Lp

T Lq ‖u‖2σ(1−θ)
L∞

T H1 ‖u‖Lp

T
W 1,2σ+2

‖Φ(u)‖Lp

T
L2σ+2 6 ‖Sd(·)u−‖Lp

T
L2σ+2 + C ‖Sd(·)u−‖2σθ

Lp

T
Lq ‖u‖2σ(1−θ)

L∞
T

H1 ‖u‖Lp
T W 1,2σ+2 .

¿From Strichartz estimates, Sd(·)u− ∈ Lp(R;Lq), so

‖Sd(·)u−‖Lp

T
Lq → 0 as T → +∞.

Since θ > 0, we infer that Φ sends XT to itself, for T sufficiently large.

We have also, for u2, u1 ∈ XT :

‖Φ(u2) − Φ(u1)‖Lp

T
Lq . max

j=1,2
‖uj‖2σ

Lk
T

Ls ‖u2 − u1‖Lp

T
Lq

. ‖Sd(·)u−‖2σθ
Lp

T
Lq ‖u−‖2σ(1−θ)

H1 ‖u2 − u1‖Lp

T
Lq .

Up to choosing T larger, Φ is a contraction on XT , and the proposition follows. �

2.3. Non-existence of wave operators for σ 6 1/d. Even though the scattering
result we recalled shows the existence of wave operators in H1(Rd) for σ > 2/d,
it is natural to expect the nonlinearity to be negligible for large time as soon as
σ > 1/d. Many results exist, supporting this assertion; we shall not state them,
but rather point out that it is not possible to go below 1/d. The result recalled
below was established in [34, 3] (see also [27]).

Proposition 2.5. Let d > 2, 0 < σ 6 1/d and T > 0. Let u ∈ C(]−∞,−T ];L2(Rd))
be a solution of (2.1) such that there exists u− ∈ L2(Rd) and

‖u(t) − Sd(t)u−‖L2 = ‖Sd(−t)u(t) − u−‖L2 → 0 as t→ −∞.

Then u ≡ 0 and u− ≡ 0.

Sketch of the proof. Let ψ ∈ C∞
0 (Rd) and t1 6 t2 6 −T : by assumption,

〈ψ, Sd(−t2)u(t2) − Sd(−t1)u(t1)〉 = −i
∫ t2

t1

〈
Sd(τ)ψ,

(
|u|2σu

)
(τ)
〉
dτ

goes to zero as t1, t2 → −∞. But for τ → −∞, we have

Sd(τ)ψ ∼ c
ei|x|2/(4τ)

|τ |d/2
ψ̂
( x

2τ

)
; u(τ) ∼ Sd(τ)u− ∼ c

ei|x|2/(4τ)

|τ |d/2
û−

( x
2τ

)
.
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Therefore,
〈
Sd(τ)ψ,

(
|u|2σu

)
(τ)
〉
∼ C

|t|σd

〈
ψ̂, |û−|2σ û−

〉
.

This function of τ is not integrable, unless
〈
ψ̂, |û−|2σ

û−

〉
= 0.

Since ψ ∈ C∞
0 (Rd) is arbitrary, this means that û− ≡ 0 ≡ u−. The assumption and

the conservation of mass then imply u ≡ 0. �

When σ 6 1/d, long range effects must be taken into account, even in a radial
setting (see e.g. [29, 9] for the case d = 1, [22] for d > 2).

2.4. Asymptotic completeness in H1. To get a complete picture of large time
behavior of solutions to (2.1), we proceed to the next step which consists in estab-
lishing asymptotic completeness, that is, proving that the wave operators W± are
invertible on their range. Here we only recall some results in H1(Rd), and we do
not mention what can be done in weaker Sobolev spaces, or in weighted Sobolev
spaces (see e.g. [15, 24, 28, 38]).

The original proof of the asymptotic completeness for (2.1) in H1(Rd) is due to
Ginibre and Velo [25]. Let t0 = 0 and ϕ ∈ H1(Rd): the local in time H1 solution
to the Cauchy problem (2.1)–(2.2) is actually global in time for 0 < σ < 2/(d− 2),
thanks to the conservations of mass and energy, since the nonlinearity is defocusing:

‖u(t)‖L2 = ‖ϕ‖L2,

‖∇u(t)‖2
L2 +

1

σ + 1
‖u(t)‖2σ+2

L2σ+2 = ‖∇ϕ‖2
L2 +

1

σ + 1
‖ϕ‖2σ+2

L2σ+2 .

Using Morawetz inequality and dispersive estimates for Sd(t), they prove that

‖u(t)‖Lq(Rd) → 0 as t→ ±∞, ∀q ∈
]
2,

2

d− 2

[
.

This makes it possible to show that u ∈ Lp(R;Lq(Rd)) for all d-admissible pairs
(p, q), as soon as 2/d < σ < 2/(d− 2). Asymptotic completeness follows easily:

Proposition 2.6 ([25], see also [13]). Let d > 3, t0 = 0 and ϕ ∈ H1(Rd). If
2/d < σ < 2/(d− 2), then there exist u± ∈ H1(Rd) such that

‖u(t) − Sd(t)u±‖H1(Rd) → 0 as t→ ±∞.

More recently, a simplified proof was proposed by Tao, Visan and Zhang [36],
relying on an interaction Morawetz inequality as introduced in [17]. We recall this
approach for essentially two reasons:

• It is shorter than the original one [25] (or [13]).
• It does not use dispersive estimates for Sd(t).

The second point seems to be crucial to prove Theorem 1.3 as a consequence of
the proof in [36] and of the interaction Morawetz inequality that we establish in
Section 6. The interaction Morawetz inequality presented in [36] reads as follows:

Proposition 2.7 ([36]). Let d > 3, t0 = 0 and ϕ ∈ H1(Rd). Let I be a compact
time interval. There exists C independent of I such that the following holds.

• If d = 3, then the solution to (2.1)–(2.2) satisfies:

(2.4)

∫

I

∫

R3

|u(t, x)|4dxdt 6 C‖u‖4
L∞(I;H1).
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• If d > 4, then the solution to (2.1)–(2.2) satisfies:

(2.5)

∫

I

∫

R3

|u(t, y)|2|u(t, x)|2
|x− y|3 dxdydt 6 C‖u‖4

L∞(I;H1).

These inequalities imply that there exists C̃ independent of I such that:

(2.6)
∥∥u
∥∥

Ld+1

(
I;L

2(d+1)
d−1 (Rd)

) 6 C̃‖u‖L∞(I;H1).

In Section 6, we establish the analogue of (2.4)–(2.5) on the hyperbolic space
Hn, so we do not recall how (2.4) and (2.5) are proven here: the method on Hn is
similar, with an additional drop of geometry.

If d = 3, then (2.6) is exactly (2.4). On the other hand, when d > 4, (2.6) follows
from (2.5) by interpreting the convolution with 1

|x|3 as differentiation, and thanks

to the inequality ([36, Lemma 5.6])

(2.7)
∥∥∥|∇|−

d−3
4 f

∥∥∥
2

L4
.
∥∥∥|∇|−

d−3
2 |f |2

∥∥∥
L2
,

which can be established by using paradifferential calculus.

Remark 2.8. The pair
(
d+ 1, 2(d+1)

d−1

)
present in (2.6) is 2-admissible.

Using the a priori estimate provided by the conservations of mass and energy,
one infers the a priori bound

∥∥u
∥∥

Ld+1

(
R;L

2(d+1)
d−1 (Rd)

) 6 C̃‖u‖L∞(R;H1) . ‖ϕ‖H1 .

Let η > 0 be a small constant to be fixed later. The line R can be divided into J
(for some finite J from the above estimate) subintervals Ij = [τj , τj+1] such that

∥∥u
∥∥

Ld+1

(
Ij ;L

2(d+1)
d−1 (Rd)

) 6 η.

As a consequence of [36, Lemma 2.7], if d > 3 and 2/d < σ < 2/(d− 2), there exist
C > 0, δ ∈]0, 1[ and a d-admissible pair (p0, q0) such that for any time interval I:

(2.8)
∥∥|u|2σu

∥∥
L2

(
I;W

1, 2d
d+2

) 6 C ‖u‖2σδ

Ld+1

(
I;L

2(d+1)
d−1

) ‖u‖2σ(1−δ)
L∞(I;H1) ‖u‖Lp0(I;W 1,q0 ) .

This estimate follows from Hölder inequality (see [36]), and algebraic computations
on d-admissible pairs. Using Strichartz estimates on (2.3) (with t0 replaced by τj
and ϕ replaced by u(τj)), and (2.8), we get, for 1 6 j 6 J , and any d-admissible
pair (p, q),

‖u‖Lp(Ij ;W 1,q) . ‖u(τj)‖H1 +
∥∥|u|2σu

∥∥
L2

(
I;W

1, 2d
d+2

)

. ‖u‖L∞(R;H1) + ‖u‖2σδ

Ld+1

(
Ij ;L

2(d+1)
d−1

) ‖u‖2σ(1−δ)
L∞(Ij ;H1) ‖u‖Lp0(Ij ;W 1,q0 )

. ‖u‖L∞(R;H1) + η2σδ ‖u‖2σ(1−δ)
L∞(R;H1) ‖u‖Lp0(Ij ;W 1,q0 ) .

Fix (p, q) = (p0, q0): taking η > 0 sufficiently small, we find

‖u‖Lp0(Ij ;W 1,q0 ) 6 C‖u‖L∞(R;H1), ∀1 6 j 6 J,

hence u,∇u ∈ Lp0(R;W 1,q0). We deduce u,∇u ∈ Lp(R;W 1,q) for all d-admissible
pairs (p, q). Asymptotic completeness is then straightforward: let t2 > t1 > 0.
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From inhomogeneous Strichartz estimates with (p2, q2) = (2, 2n
n−2 ) and (2.8), we

have:

‖Sd(−t2)u(t2) − Sd(−t1)u(t1)‖H1 .
∥∥|u|2σu

∥∥
L2

(
[t1,+∞[;W

1, 2d
d+2

)

. ‖u‖2σδ

Ld+1

(
[t1,+∞[;L

2(d+1)
d−1

) .

Since the last term goes to zero as t1 → +∞, this proves Proposition 2.6 for positive
time. The proof for negative time is similar.

Remark 2.9. In Proposition 2.6, we assume that σ < 2/(d− 2). Scattering for the
H1-critical case σ = 2/(d − 2) was recently proved for d = 3 in [18], for d = 4 in
[33] and finally for d > 5 in [35]. These results are not yet available in hyperbolic
spaces since their proof, among other tools, uses very subtle arguments in Fourier
analysis, arguments that are not at hand yet in H

n.

3. Weighted Strichartz inequalities and consequences

The general idea is that weighted Strichartz estimates are available on hyperbolic
space H

n, provided that we restrict our study to radial functions. The weight has
exponential decay in space. This decay gives us the “usual” Strichartz estimates
recalled in Proposition 2.2, for d-admissible pairs, for any d > n. As usual for
Strichartz estimates, we distinguish the case n > 3 from the case n = 2. The
former is easier to present, and we start with it. In Hn, we denote

wn(r) :=

(
sinh r

r

)n−1
2

; U(t) = eit∆Hn .

3.1. Case n > 3. The following global result was established in [2] for n = 3, and
in [31] for n > 4:

Proposition 3.1 (Weighted Strichartz estimates in H
n, n > 3). Let n > 3.

1. For any n-admissible pair (p, q), there exists Cq such that
∥∥∥∥w

1− 2
q

n U(·)φ
∥∥∥∥

Lp(R;Lq)

6 Cq‖φ‖L2

for every radial function φ ∈ L2
rad(H

n).
2. For any n-admissible pairs (p1, q1) and (p2, q2) and any interval I, there exists
Cq1,q2 independent of I such that

∥∥∥∥∥w
1− 2

q1
n

∫

I∩{s6t}

U(t− s)F (s)ds

∥∥∥∥∥
Lp1(I;Lq1)

6 Cq1,q2

∥∥∥∥w
1− 2

q′
2

n F

∥∥∥∥
Lp′

2

(
I;Lq′

2

)

for every radial function F ∈ Lp′
2

(
I;L

q′
2

rad(H
n)
)
.

Corollary 3.2. Let d > n > 3. Then Strichartz estimates hold for d-admissible
pairs and radial functions on H

n:
1. For any d-admissible pair (p, q), there exists Cq = Cq(n, d) such that

‖U(·)φ‖Lp(R;Lq) 6 Cq‖φ‖L2, ∀φ ∈ L2
rad(Hn).

2. For any d-admissible pairs (p1, q1) and (p2, q2) and any interval I, there exists
Cq1,q2 = Cq1,q2(n, d) independent of I such that

∥∥∥∥∥

∫

I∩{s6t}

U(t− s)F (s)ds

∥∥∥∥∥
Lp1(I;Lq1)

6 Cq1,q2 ‖F‖Lp′
2

(
I;Lq′2

) ,
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for every F ∈ Lp′
2

(
I;L

q′
2

rad(H
n)
)
.

Proof. To prove the first estimate, it is enough to prove it for the endpoint estimate,
(p, q) = (2, 2d

d−2). Define s by

1

n
=

1

d
+

1

s
·

We have s > 0, since d > n. Let φ ∈ L2
rad(H

n). Hölder inequality and the first part
of Proposition 3.1 yield:

(3.1) ‖U(·)φ‖
L2

(
R;L

2d
d−2

) 6
∥∥∥w2/n

n U(·)φ
∥∥∥

L2

(
R;L

2n
n−2

)
∥∥∥w−2/n

n

∥∥∥
Ls

6 C 2n
n−2

‖φ‖L2(Hn)

∥∥∥w−2/n
n

∥∥∥
Ls
.

If d = n, then s = ∞, and we have obviously w
−2/n
n ∈ L∞. If d > n, then

w
−2/n
n ∈ Ls if and only if

∫ ∞

0

( r

sinh r

)s n−1
n

(sinh r)
n−1

dr <∞.

This integral is convergent, since s > n (d is finite). The first estimate of the
corollary follows by interpolation, by conservation of the L2 norm.

We turn to the inhomogeneous estimates. Let (p1, q1) and (p2, q2) be d-admissible
pairs. Let (p1, r1) and (p2, r2) be the corresponding n-admissible pairs:

2

pj
= d

(
1

2
− 1

qj

)
= n

(
1

2
− 1

rj

)
.

Note that since d > n, qj 6 rj . Therefore, sj , given by

1

qj
=

1

rj
+

1

sj
, ,

is non-negative. Using Hölder inequality and the second part of Proposition 3.1,
we find:
∥∥∥∥∥

∫

I∩{s6t}

U(t− s)F (s)ds

∥∥∥∥∥
Lp1(I;Lq1)

6

6
∥∥∥w

1− 2
r1

n

∫

I∩{s6t}

U(t− s)F (s)ds
∥∥∥

Lp1(I;Lr1)

∥∥∥∥w
−1+ 2

r1
n

∥∥∥∥
Ls1

.

∥∥∥∥w
1− 2

r′
2

n F

∥∥∥∥
Lp′

2(I;Lr′
2)

∥∥∥∥w
−1+ 2

r1
n

∥∥∥∥
Ls1

. ‖F‖
Lp′

2(I;Lq′2)

∥∥∥∥w
1− 2

r′
2

n

∥∥∥∥
Ls2

∥∥∥∥w
−1+ 2

r1
n

∥∥∥∥
Ls1

.

Therefore, we have to check that w

−1+ 2
rj

n ∈ Lsj (Hn). If qj = 2, then rj = 2 and
sj = ∞. If qj > 2, then the above integrability condition is equivalent to:

sj

(
1

2
− 1

rj

)
> 1 ⇔ 1

2
− 1

rj
>

1

sj
=

1

qj
− 1

rj
.

Since qj > 2, this is satisfied, and the corollary follows. �
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3.2. Case n = 2. When n = 2, the analogue of Proposition 3.1 is not proven, but
we have from [2]:

(3.2) eit∆
H2φ(Ω) =

c

|t|3/2
e−it/2

∫

H2

φ(Ω′)

∫ ∞

ρ

seis2/4t

√
cosh s− cosh ρ

dsdΩ′,

where ρ = d(Ω,Ω′). The following weighted dispersion estimate holds for radial
functions in H

2. Denote

w̃2(r) =

(
sinh r

r(1 + r)

)1/2

·

Proposition 3.3. Let ε ∈]0, 1[. There exists Cε > 0 such that

w̃
1−ε
2 (r)eit∆

H2φ(Ω) 6
Cε

|t|3/2

∫

H2

|φ(Ω′)| dΩ′

w̃
1−ε
2 (r′)

, ∀t 6= 0, ∀φ ∈ L1
rad(H2),

where r = d(0,Ω) and r′ = d(0,Ω′).

Remark 3.4. For small time, this weighted estimate is worse than the one in R2

in terms of powers of t: |t|−3/2 instead of |t|−1. Formally, we could get a rate in
|t|−1−ε by integration by parts in the s integral in (3.2), by considering derivatives
of order 1/2 − ε. We shall not pursue this approach here, and content ourselves
with Proposition 3.3.

Proof. We first prove

(3.3)

∣∣∣∣∣

∫ ∞

ρ

seis2/4t

√
cosh s− cosh ρ

ds

∣∣∣∣∣ 6 C

(
ρ

sinh ρ

)1/2√
1 + ρ,

where C is independent of ρ > 0. Note that this estimate is analogous to the
one given in [19]: for the heat operator, an additional Gaussian decay is available

(replace eis2/4t with e−s2/4t). The computation below shows that this extra decay
is not necessary in order for (3.3) to be true. We have obviously

∣∣∣∣∣

∫ ∞

ρ

seis2/4t

√
cosh s− cosh ρ

ds

∣∣∣∣∣ 6

∫ ∞

ρ

s√
cosh s− cosh ρ

ds.

Using ”trigonometry”, we find:
∫ ∞

ρ

s√
cosh s− cosh ρ

ds =

∫ ∞

ρ

s√
2 sinh

(
s+ρ
2

)
sinh

(
s−ρ
2

)ds.

With the change of variable y = s− ρ, we estimate:
∫ ∞

0

y + ρ√
sinh

(
ρ+ y

2

)
sinh

(
y
2

)dy =

∫ ∞

0

(y + 2ρ) − ρ√
sinh

(
ρ+ y

2

)
sinh

(
y
2

)dy.

For the first term, we use the fact that

s 7→ s

sinh s
is non-increasing,

to have the estimate:∫ ∞

0

y + 2ρ√
sinh

(
ρ+ y

2

)
sinh

(
y
2

)dy 6

√
2

ρ

sinhρ

∫ ∞

0

√
y + 2ρ√
sinh

(
y
2

)dy

.

√
ρ

sinh ρ




∫ ∞

0

√
y

sinh
(

y
2

)dy +
√
ρ

∫ ∞

0

dy√
sinh

(
y
2

)





.

√
ρ

sinh ρ

√
1 + ρ.
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For the second term, we have:

ρ

∫ ∞

0

1√
sinh

(
ρ+ y

2

)
sinh

(
y
2

)dy 6
ρ√

sinh ρ

∫ ∞

0

dy√
sinh

(
y
2

) ,

and (3.3) follows. To infer the proposition, we mimic the computations of [2], §5.
From (3.2) and (3.3), we have:

∣∣eit∆
H2φ(Ω)

∣∣ .
1

|t|3/2

∫

H2

|φ(Ω′)|
(

ρ

sinh ρ

)1/2√
1 + ρ dΩ′.

Recall that φ is radial: with the usual abuse of notations,

φ(Ω′) = φ(cosh r′, ω′ sinh r′) = φ(r′).

Using hyperbolic coordinates,

ρ = d(Ω,Ω′) = cosh−1 (cosh r cosh r′ − sinh r sinh r′ω · ω′) ,

and we can write:

∣∣eit∆
H2φ(Ω)

∣∣ .
1

|t|3/2

∫

H2

|φ(Ω′)|K(r, r′)dΩ′,

where the kernel K is given by:

K(r, r′) =

∫

S1

√
f
(
cosh−1 (cosh r cosh r′ − sinh r sinh r′ω · ω′)

)
dω′,

with

f(y) =
y

sinh y
(1 + y).

With x = ω · ω′, we have:

K(r, r′) =

∫ 1

−1

√
f
(
cosh−1 (cosh r cosh r′ − x sinh r sinh r′)

) dx√
1 − x2

.

The lemma follows from Hölder inequality. For λ > 0, we have

K(r, r′) 6 Cλ

(∫ 1

−1

f
(
cosh−1 (cosh r cosh r′ − x sinh r sinh r′)

)1+λ
dx

)1/(2+2λ)

.

With the change of variable

cosh y = cosh r cosh r′ − x sinh r sinh r′,

this yields

K(r, r′) 6 Cλ

(
1

sinh r sinh r′

∫ r+r′

|r−r′|

f(y)1+λ sinh ydy

)1/(2+2λ)

6 C′
λ

(
1

sinh r sinh r′

∫ r+r′

|r−r′|

y(1 + y)dy

)1/(2+2λ)

6 C′
λ

(
(r + r′)3 − |r − r′|3

sinh r sinh r′

)1/(2+2λ)

6 C′′
λ

(
r′(1 + r′)r(1 + r)

sinh r sinh r′

)1/(2+2λ)

.

This completes the proof of the proposition, with 1
1+λ = 1 − ε. �
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We find a weighted dispersive estimate and weighted Strichartz estimates which
are similar to the ones for radial functions in H3. The difference is that we must
replace w3 with w̃

1−ε
2 . Even though the value ε = 0 is excluded, we can consider

d > 3 arbitrarily close to 3 and repeat the argument in (3.1). On the other hand,
since w̃2 is bounded, we have the Strichartz estimates as in R3 for free: this yields
the Corollary 3.2 with n = 2 and d > 3.

¿From Proposition 3.3 we have the dispersion

∥∥eit∆
H2φ
∥∥

L∞
rad(H2)

.
1

|t|3/2
‖φ‖L1

rad(H2), ∀t 6= 0.

For small time, [2, Theorem 1.2] yields:

∥∥eit∆
H2φ
∥∥

L∞(H2)
.

1

|t| ‖φ‖L1(H2), ∀t ∈ [−1, 1] \ {0}.

We infer the global dispersive estimate, for 2 6 d 6 3 (not necessarily an integer):

∥∥eit∆
H2φ
∥∥

L∞
rad(H2)

6
Cd

|t|d/2
‖φ‖L1

rad(H2), ∀t 6= 0.

We conclude:

Corollary 3.5. Let d > 2. Then Strichartz estimates hold for d-admissible pairs
and radial functions on H2:
1. For any d-admissible pair (p, q), there exists Cq = Cq(d) such that

‖U(·)φ‖Lp(R;Lq) 6 Cq‖φ‖L2, ∀φ ∈ L2
rad(H2).

2. For any d-admissible pairs (p1, q1) and (p2, q2) and any interval I, there exists
Cq1,q2 = Cq1,q2(d) independent of I such that

∥∥∥∥∥

∫

I∩{s6t}

U(t− s)F (s)ds

∥∥∥∥∥
Lp1(I;Lq1)

6 Cq1,q2 ‖F‖Lp′
2

(
I;Lq′2

) ,

for every F ∈ Lp′
2

(
I;L

q′
2

rad(H
2)
)
.

4. Scattering for small data in L2
rad(H

n)

The proof of Theorem 1.1 is straightforward in view of Section 2.1 and Corollar-
ies 3.2 and 3.5.

Let n > 2 and 0 < σ 6 2/n. Set d = 2/σ: Corollaries 3.2 and 3.5 yield the
same Strichartz estimates as in R

d, provided that we work with radial functions.
Simply notice that the proof of Proposition 2.3 relies only on functional analysis:
Hölder inequality and Strichartz estimates. Theorem 1.1 follows: the statement is
the analogue of Proposition 2.3, with d = 2/σ.

Remark 4.1. This result shows that there are no long range effects, at least in a
neighborhood of the origin in L2

rad(Hn). This can be compared to [10, Proposi-
tion 1.1]. There, the following nonlinear Schrödinger equation is considered:

i∂tu+
1

2
∆Rnu = −x

2
1

2
u+ V (x2, . . . , xn)u+ κ|u|2σu ; x ∈ R

n, n > 1,

where V is any quadratic polynomial (V ≡ 0 if n = 1). It is proved that for
0 < σ 6 2/n, there is a small data scattering theory in L2, just as in Theorem 1.1.
This is because the repulsive potential −x2

1 yields an exponential decay in time of
the free solution. Here, this exponential decay in time is replaced by an exponential
decay in space. The proof relies on the same idea though: we have Strichartz
estimates that make it possible to pretend that we work in R

d with d > n.
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5. Wave operators in H1
rad(H

n)

The argument for the proof of Theorem 1.2 is similar. First, taking d = n, we
cover the range 2/n 6 σ < 2/(n− 2). To cover the range 0 < σ < 2/n, we keep the
value d = 2/σ: d > n. The proof of Proposition 2.4 uses the same arguments as
the proof of Proposition 2.3, plus Sobolev embeddings. Therefore, we simply have
to check that the step where Sobolev embeddings are used can be adapted.

Recall that we work in Hn, and that we pretend that we work in Rd, with
d = 2/σ > n. In the proof of Proposition 2.4, we used the embedding:

H1(Rd) ⊂ L2σ+2(Rd).

Since we assume σ < 2/(n− 2), we have:

H1(Hn) ⊂ L2σ+2(Hn).

Therefore, we can argue as in Section 4: we can mimic the approach to prove
Proposition 2.4, which is based on functional analysis.

6. Morawetz estimates in Hn

In this section we prove some Morawetz type estimates for general solutions
to the equation (1.1). Note that in this section the solutions are not necessarily
radial. We start by stating these inequalities. Their proof will be a consequence
of more general geometric set up already used by Hassell, Tao and Wunsch [26]
while studying the same type of estimates for non-trapping asymptotically conic
manifolds. This last paper in turn was based on the interaction Morawetz inequality
introduced by Colliander et al. [17].

Define the operator H̃ acting on a function f defined on Hn × Hn as

H̃f(Ω,Ω′) = −∆Hn×Hnf(Ω,Ω′) = −∆Ωf(Ω,Ω′) − ∆Ω′f(Ω,Ω′),

and the distance function d(Ω,Ω′) = distHn(Ω,Ω′). Then we can state the following
theorem

Theorem 6.1. For any compact interval of time I and for any u solution to (1.1),

−
∫

I

∫

Hn×Hn

H̃2(d(Ω,Ω′))|u(t,Ω)|2|u(t,Ω′)|2 dΩdΩ′ dt 6 C‖u‖4
L∞(I;H1).

Since

−H̃2 (d(Ω,Ω′)) =





δΩ′(Ω) + δΩ(Ω′) if n = 3,

2
cosh(d(Ω,Ω′))

sinh3(d(Ω,Ω′))
if n > 3,

we also have the following corollary:

Corollary 6.2. For any compact interval of time I and for any u solution to (1.1)
we have:

• If n = 3:

(6.1)

∫

I

∫

H3

|u(t,Ω)|4 dΩ dt 6 C‖u‖4
L∞(I;H1).

• If n > 3:
∫

I

∫

Hn

∫

Hn

cosh(d(Ω,Ω′))

sinh3(d(Ω,Ω′))
|u(t,Ω′)|2|u(t,Ω)|2 dΩ dΩ′ dt 6 C‖u‖4

L∞(I;H1).
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Remark 6.3. Few comments are in order at this point. First we note that in the
above results, we do not assume that u is radial. Second we recall that while the
Morawetz type estimate proved in [26] was local in time, ours is global, just like in
the Euclidean case in [17]. More comments will be made about this fact at the end
of the proof of Theorem 6.1 and Corollary 6.2.

Let M be a general Riemannian manifold with metric g. We denote by 〈·, ·〉g
the product on the tangent space given by the metric g. We define the real inner
product for functions on M

(6.2) 〈u, v〉M = Re

∫

M

u(z)v(z) dVg(z).

We will often use the commutator [A,B] among pseudo-differential operators A and
B defined as [A,B] = AB − BA. We have the following lemma corresponding to
[26, Lemma 2.1].

Lemma 6.4. Let a(x) be a real-valued tempered distribution on a manifold M ,
acting as a multiplier operator (af)(x) = a(x)f(x) on Schwartz functions. Then
we have the commutator identities, with H = −∆M :

(6.3) i[H, a] = −i〈∇a,∇〉g + iHa = −i(∇αa)∇α + iHa,

and the double commutator identity

(6.4) −[H, [H, a]] = −∇βHess(a)αβ∇α − (H2a),

where Hess(a)αβ is the symmetric tensor

Hess(a)αβ = (∇da)αβ = gαγgβδ(∂γ∂δ + Γρ
γδ∂ρa).

We now assume that U is solution to

(6.5) i∂tU + ∆MU = F.

Then it is easy to see that given a real pseudo-differential operator A on M we have

∂t〈AU(t), U(t)〉M = 〈i[H,A]U(t), U(t)〉M +(6.6)

+〈−iAF (t), U(t)〉M + 〈iAU(t), F (t)〉M .

Next, given a real valued tempered distribution a and a function U(t, x) we define

(6.7) Ma(t) = 〈i[H, a]U(t), U(t)〉M .

By using (6.3) and the definition (6.2) we recover the familiar form of the first order
momentum

(6.8) Ma(t) = Im

∫

M

〈∇a,∇U(t)〉gU(t)dVg .

Now, by taking U solution to (6.5) and A = i[H, a] in (6.6) and using (6.4), one
gets

d

dt
Ma(t) = −〈[H, [H, a]]U(t), U(t)〉M +(6.9)

+〈[H, a]F (t), U(t)〉M + 〈−[H, a]U(t), F (t)〉M
= −〈H2aU(t), U(t)〉M − 〈∇βHess(a)αβ∇αU(t), U(t)〉M

+〈[H, a]F (t), U(t)〉M + 〈−[H, a]U(t), F (t)〉M .

Lemma 6.5. If M is a Riemannian manifold with a non-positive sectional curva-
ture and if a is a distance function defined on M , that is |∇a| = 1, then for any
smooth function φ,

(6.10) 〈Hess(a)αβ∇αφ,∇βφ〉g > 0.
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Proof. This is a well-known result in Riemannian geometry. We refer the reader
for example to Theorem 3.6 in [30]. �

Using (6.9) and (6.10) after an integration by parts in space variable, we obtain
for all T > 0 the key inequality:

Ma(T ) −Ma(0) >

∫ T

0

−〈H2aU(t), U(t)〉M +(6.11)

+

∫ T

0

〈[H, a]F (t), U(t)〉M + 〈−[H, a]U(t), F (t)〉M dt.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Following again the argument in [26], we assume now that
M = Hn ×Hn, with the usual metric g̃ = g⊗ g. Assume also that u is a solution to
the equation (1.1). It is easy to show that U(t,Ω,Ω′) := u(t,Ω)u(t,Ω′) is solution
to the equation

i∂tU(t,Ω,Ω′) + ∆Ω ⊕ ∆Ω′U(t,Ω,Ω′) =
(
|u|2σu

)
(t,Ω)u(t,Ω′)+

+
(
|u|2σu

)
(t,Ω′)u(t,Ω)

=:F (t,Ω,Ω′).

We now set H̃ = − (∆Ω ⊕ ∆Ω′) and a(Ω,Ω′) = distHn(Ω,Ω′). It is easy to see that
this function a is a distance function with respect to the manifold (M, g̃). Also one
can check that this manifold has a nonpositive sectional curvature. Finally one can
also prove, using (6.3) and the definition of the real inner product (6.2), that

〈[H̃, a]F (t), U(t)〉M + 〈−[H̃, a]U(t), F (t)〉M =(6.12)

= 〈−〈∇a,∇F (t)〉g̃ , U(t)〉M + 〈〈∇a,∇U(t)〉g̃ , F (t)〉M =(6.13)

= 2
σ

σ + 1

∫

M

∆Ωa(Ω,Ω
′) |u|2σ+2(t,Ω) |u|2(t,Ω′).

Since (§5.7 of [19])

∆Ωa(Ω,Ω
′) = (n− 1) cotanhd(Ω,Ω′),

we infer by (6.11) that

(6.14) Ma(T ) −Ma(0) >

∫ T

0

−〈H̃2aU(t), U(t)〉M dt.

Using (6.8) and the fact that a is a distance function, we also have, for all t ∈ I =
[0, T ],

(6.15) |Ma(t)| 6 C‖u‖4
L∞(I;H1).

The proof of the theorem now follows by combining (6.14) and (6.15). �

Remark 6.6. To follow up on Remark 6.3, we can now add that while in the above
proof we were inspired by [26], we obtained a global estimate thanks to the fact
that we could pick the function a to be everywhere the distance between two points,
just like in the Euclidean space. This was not possible in [26], due to the presence
of “asymptotic cones”, and as a consequence the distance function was only good
inside a large ball. Surprisingly enough, the distance function is not longer a good
function even in Rd, for d = 1, 2. In fact in [20], where the case R2 is considered,
a space localization is also needed and again, as a consequence, the Morawetz type
estimate obtained is only local in time.
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7. Asymptotic completeness in H1(H3)

First, we note that the proof recalled in Section 2.4 can be mimicked on H3: the
Morawetz estimate (2.4) was adapted to the hyperbolic case, (6.1). This proves
Theorem 1.3 for 2/3 < σ < 2. The reason why we do not have to assume that u is
radial at this stage is that global in time Strichartz estimates are available on H3,
from [2].

To decrease σ, we proceed with the same idea as before, and pretend that we
work on Rd, for d > 3. Fix d > 3: we first claim that (6.1) implies

(7.1)
∥∥u
∥∥

Ld+1

(
R;L

2(d+1)
d−1 (H3)

) . ‖u‖L∞(R;H1).

Indeed, we noticed in Section 2.4 that for any d > 3, the pair
(
d+ 1, 2(d+1)

d−1

)

is 2-admissible. Interpolating between the pairs (4, 4) and (∞, 2) yields the pair(
d+ 1, 2(d+1)

d−1

)
, hence (7.1). Having the analogue of (2.6), we can go on with

the proof presented in Section 2.4, thanks to Corollary 3.2 for radial solutions.
This completes the proof of Theorem 1.3 for any 0 < σ < 2. Note also that if
Corollary 3.2 holds for solutions that are not necessarily radial, then Theorem 1.3
will be true without the symmetry hypothesis.

The reason why we stated Theorem 1.3 in the case n = 3 only is the following.
In Section 6, we have proved the analogue of (2.4) and (2.5) for the solutions to
(1.1) (not necessarily radial). To go on with the proof of [36], we would need the
analogue of (2.7) on hyperbolic space H

n, n > 4. A paradifferential calculus on H
n

would be welcome then, which we do not have at hand.

If the recent proof of Tao, Visan and Zhang [36] cannot be used on Hn for n > 4,
one might want to use the original proof of Ginibre and Velo [25] (or [13]). As we
recalled in Section 2.4, this proof uses dispersive estimates for the free Schrödinger
group. Unfortunately, the dispersive estimates of the free Schrödinger group on H

n

are only local in time as soon as n > 4 [2]. For this reason, even proving the same
scattering results on Hn as on Rn, n > 4, does not seem obvious at all.

Appendix A. On the notion of criticality

Consider the equation (1.1). The critical scaling in Rn is

sc =
n

2
− 1

σ
.

At first glance, it is not clear whether the critical indices for (1.1) are the same as
in the Euclidean case, since the linear part of the equation is not scale invariant.

Note that in the case of a positive curvature, the geometry changes the notion
of criticality (see e.g. [7, 6], [1]), but always in the “same order”: the positive
curvature “creates” more instabilities.

However, it is established in [2] that there is local well-posedness in Hs(Hn) for
(1.1) if s > sc:

subcritical in the Euclidean case ⇒ subcritical in the hyperbolic case.

This stems from the fact that we have the same local Strichartz inequalities as in
the Euclidean space. Moreover, in the focusing setting, blow-up may occur “as in
the Euclidean case”, thanks to a new virial identity, where the negative curvature
of the hyperbolic space shows up.

On the other hand, some proofs of ill-posedness rely on highly concentrated
initial data and solutions, so that the geometry is not relevant. To prove that the
notion of criticality is the same in the Euclidean and in the hyperbolic case, it
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suffices to prove the analogue of the results of [16]. We resume the semi-classical
approach of these results, as in [8, Appendix] and [11, Appendix B].

We give the proof for a nonlinearity which may be focusing: let κ ∈ {−1,+1}.
Assume s < sc, and for 0 < λ 6 1, consider:

(A.1) i∂tu+ ∆Hnu = κ|u|2σu ; u|t=0 = λ−
n
2 +sa0

( r
λ

)
,

where a0 ∈ C∞
0 (R+; C) is such that

supp a0 ⊂ {1 6 r 6 2} .
Then u(0, ·) is bounded in Hs(Hn), uniformly for λ ∈]0, 1]. Since u(0, ·) is radially
symmetric, so is u(t, ·), and we write u(t, r). Define ψ by:

ψ(t, r) = λ
n
2 −su

(
λ

nσ
2 +1−sσt, λr

)
, or u(t, r) = λ−

n
2 +sψ

(
t

λ
nσ
2 +1−sσ

,
r

λ

)
.

Denote ε = λ
nσ
2 −1−sσ. Because we assumed s < sc, λ and ε go to zero simultane-

ously. We have:

iε∂tψ
ε + ε2∂2

rψ
ε + (n− 1)ε2λ cotanh(λr)∂rψ

ε = κ|ψε|2σψε ; ψε(0, r) = a0(r) .

The idea is that for very small times, the Laplacian is negligible. Introduce the
approximate solution

iε∂tϕ
ε = κ|ϕε|2σϕε ; ϕε(0, r) = a0(r) .

We have explicitly:

ϕε(t, r) = a0(r)e
−iκ t

ε
|a0(r)|2 .

In particular, the support of ϕε(t, ·) is the same as that of a0.

Proposition A.1. Fix k > n/2. Then we can find c0, c1, θ, C > 0 independent of
ε ∈]0, 1] such that ψε and ϕε satisfy:

‖ψε − ϕε‖L∞([0,c0ε| ln ε|θ ];Hk) 6 Cε| ln ε|c1 .

Proof. Denote wε = ψε − ϕε. It solves:

iε∂tw
ε + ε2∂2

rw
ε + (n− 1)ε2λ cotanh(λr)∂rw

ε =κ (F (ψε) − F (ϕε)) − ε2∂2
rϕ

ε

− (n− 1)ε2λ cotanh(λr)∂rϕ
ε,

with wε
|t=0 = 0, where we have set F (z) = |z|2σz. Introduce the vector-fields

Hj = ωj∂r .

They commute with the Laplacian ∆Hn . Moreover, since w is radially symmetric,

Hj

(
∂2

r + (n− 1)λ cotanh(λr)∂r

)
wε =

= Hj

(
∂2

r + (n− 1)λ cotanh(λr)∂r +
λ2

sinh2(λr)
∆Sn−1

)
wε

=

(
∂2

r + (n− 1)λ cotanh(λr)∂r +
λ2

sinh2(λr)
∆Sn−1

)
Hjw

ε .

For k > 0, we apply Hj1 ◦ . . . ◦ Hjk
to the equation solved by wε. The usual L2

estimate yields:

‖wε‖L∞([0,t];Hk) .
1

ε
‖F (wε + ϕε) − F (ϕε)‖L1([0,t];Hk)

+ ε‖∂2
rϕ

ε‖L1([0,t];Hk) + ε‖λ cotanh(λr)∂rϕ
ε‖L1([0,t];Hk).

Since suppϕε(t, ·) ⊂ {1 6 r 6 2},
‖λ cotanh(λr)∂rϕ

ε‖L1([0,t];Hk) . ‖∂rϕ
ε‖L1([0,t];Hk) ,
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and we infer:

‖wε‖L∞([0,t];Hk) .
1

ε
‖F (wε + ϕε) − F (ϕε)‖L1([0,t];Hk) + ε‖ϕε‖L1([0,t];Hk+2)

.
1

ε
‖F (wε + ϕε) − F (ϕε)‖L1([0,t];Hk) + ε

∫ t

0

〈s
ε

〉k+2

ds.

Since σ is an integer, the fundamental theorem of calculus yields, when k > n/2:

‖F (wε(t) + ϕε(t)) − F (ϕε(t))‖Hk .
(
‖wε(t)‖2σ

Hk + ‖ϕε(t)‖2σ
Hk

)
‖wε(t)‖Hk

.

(
‖wε(t)‖2σ

Hk +

〈
t

ε

〉2σk
)
‖wε(t)‖Hk .

On any time interval where we have, say, ‖wε‖Hk 6 1, we infer:

‖wε‖L∞([0,t];Hk) 6
C0

ε

∫ t

0

〈s
ε

〉2σk

‖wε(s)‖Hkds+ C1ε

∫ t

0

〈s
ε

〉k+2

ds.

Gronwall lemma yields:

‖wε‖L∞([0,t];Hk) .

∫ t

0

ε
〈s
ε

〉k+2

exp

(
C0

∫ t

s

1

ε

〈τ
ε

〉2σk

dτ

)
ds

.

∫ t

0

ε
〈s
ε

〉k+2

exp

(
C′ t

ε

〈
t

ε

〉2σk
)
ds

. εt

〈
t

ε

〉k+2

exp

(
C′ t

ε

〈
t

ε

〉2σk
)
.

For t = c0ε| ln ε|θ, we have:

‖wε‖L∞([0,c0ε| ln ε|θ ];Hk) . ε2| ln ε|(k+3)θ exp
(
C′c1+2σk

0 | ln ε|(1+2σk)θ
)
.

Now if we take θ = (1 + 2σk)−1 and c0 sufficiently small, we have the estimate
of the proposition. A continuity argument completes the proof, for ε sufficiently
small. �

Corollary A.2. Let n > 2, κ ∈ R \ {0} and σ > 0. For s < n
2 − 1

σ , (1.1) is not
locally well-posed in Hs(Hn): for any δ > 0, we can find families (uε

01)0<ε61 and
(uε

02)0<ε61 of radially symmetric functions with

uε
0j(r) ∈ C∞

0 (R+) ; ‖uε
01‖Hs , ‖uε

02‖Hs 6 δ , ‖uε
01 − uε

02‖Hs → 0 as ε→ 0 ,

such that if uε
1 and uε

2 denote the solutions to (1.1) with these initial data, there
exist 0 < tε → 0, and c > 0 independent of ε ∈]0, 1], such that

‖uε
1 (tε) − uε

2 (tε)‖Hs > c.

Remark A.3. We could also prove the norm inflation phenomenon, as called in [16].
It is rather this result which is proven in [8, Appendix].

Proof. Let a0 as above, and u1 the solution to (A.1). Let

uε
02(r) = (1 + δε)uε

01(r),

where δε → 0 as ε→ 0. Denote

ψε
j (t, r) = λ

n
2 −suj

(
λ

nσ
2 +1−sσt, λr

)
.

¿From Proposition A.1, for k > n/2,
∥∥ψε

j − ϕε
j

∥∥
L∞([0,c0ε| ln ε|θ ];Hk)

→ 0 as ε→ 0 .
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Note that the constants c0 and θ for ψ2 can be taken uniform with respect to ε,
since δε is bounded. Now we have

‖ϕε
1(t) − ϕε

2(t)‖Ḣs =
∥∥∥a0e

iκ t
ε
|a0|

2 − (1 + δε) a0e
iκ t

ε
(1+δε)2|a0|

2
∥∥∥

Ḣs

∼
ε→0

∥∥∥a0

(
eiκ t

ε
|a0|

2 − eiκ t
ε
(1+δε)2|a0|

2
)∥∥∥

Ḣs

∼
ε→0

∥∥∥a0e
iκ t

ε
|a0|

2
(
1 − eiκ t

ε (2δε+(δε)2)|a0|
2
)∥∥∥

Ḣs
.

With tε = c0ε| ln ε|θ, we find:

‖ϕε
1(t

ε) − ϕε
2(t

ε)‖Ḣs ∼
ε→0

∥∥∥a0

(
1 − eiκ2δε| ln ε|θ|a0|

2
)∥∥∥

Ḣs
.

If we take δε = | ln ε|−θ, then the corollary follows, since ψ and u have the same

Ḣs norms. �

Appendix B. Asymptotic behavior of free solutions in L2
rad(H

3)

We stick to the case n = 3, because the Harish-Chandra coefficient is simpler.
In this appendix, all irrelevant “physical”/geometrical constants are denoted by c.

The Fourier transform in the radially symmetric case is defined as:

(B.1) f̂(λ) =
c

λ

∫ ∞

0

sin(λr)f(r) sinh rdr .

Plancherel formula reads:

(B.2)

∫ ∞

0

|f(r)|2 sinh2 rdr = c

∫ ∞

0

∣∣∣f̂(λ)
∣∣∣
2

λ2dλ .

Lemma B.1. For u0 ∈ L2(H3), radially symmetric, denote:

uasym(t, r) = c
e−it+i r2

4t

t3/2

r

sinh r
û0

( r
2t

)
.

Then we have: ∥∥eit∆
H3u0 − uasym(t)

∥∥
L2(H3)

−→
t→+∞

0 .

Proof. First, we show an explicit representation for radial solutions:

(B.3) eit∆
H3u0(r) = c

e−it+i r2

4t

t3/2

∫ ∞

0

ei ρ2

4t

sinh r sinh ρ
t sin

(rρ
2t

)
u0(ρ) sinh2 ρdρ .

To prove this we recall the representation of the free solution for n = 3:

(B.4) u(t,Ω) =
c

|t|3/2
e−it

∫

H3

u0(Ω
′) ei d2(Ω,Ω′)

4t
d(Ω,Ω′)

sinh d(Ω,Ω′)
dΩ′ ,

where d(Ω,Ω′) is the hyperbolic distance between Ω and Ω′ (see [2]). ¿From (B.4),
one gets that for radial initial data, the free solution writes

eit∆
H3u0(cosh r, sinh rω) = c

e−it

t3/2

∫ ∞

0

∫

S2

K(t, r, ρ, ω · ω′)dω′u0(ρ) sinh2 ρdρ ,

with

K(t, r, ρ, ω · ω′) = ei z2

4t
z

sinh z

∣∣∣
z=cosh−1 (cosh r cosh ρ−sinh r sinh ρ ω·ω′)

.

Let us consider an isometry T ∈ SO(3) such that T (1, 0, 0) = ω. Then a given
ω′ ∈ R3 ∩ S2 defines a unique pair (α, θ) ∈ (0, π)×R2 ∩ S1, related by the formula:

ω′ = T (cosα, sinα θ).
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Moreover, ω · ω′ = cosα and dω′ = sinαdα dθ. With this change of variable,
∫

S2

K(t, r, ρ, ω · ω′)dω′ = c

∫ π

0

K(t, r, ρ, cosα) sinαdα .

Next, we change cosα into x, so
∫

S2

K(t, r, ρ, ω · ω′)dω′ = c

∫ 1

−1

K(t, r, ρ, x) dx .

Finally, we do a last change of variable,

cosh r cosh ρ− sinh r sinh ρ x = cosh y ,

and get ∫

S2

K(t, r, ρ, ω · ω′)dω′ =
c

sinh r sinh ρ

∫ r+ρ

|r−ρ|

ei y2

2t y dy.

By simple integration formula (B.3) follows. We infer:

eit∆
H3u0(r)−uasym(t, r) =

= c
e−it+i r2

4t

t3/2

r

sinh r

∫ ∞

0

(
ei ρ2

4t − 1

)
2t

r
sin
(rρ

2t

)
u0(ρ) sinh ρdρ .

Therefore:
∥∥∥eit∆

H3u0−uasym(t)
∥∥∥

2

L2
=

=
c

t3

∫ ∞

0

r2
∣∣∣∣
∫ ∞

0

(
ei ρ2

4t − 1

)
t

r
sin
(rρ

2t

)
u0(ρ) sinh ρdρ

∣∣∣∣
2

dr

= c

∫ ∞

0

r2
∣∣∣∣
∫ ∞

0

(
ei ρ2

4t − 1

)
1

r
sin (rρ) u0(ρ) sinh ρdρ

∣∣∣∣
2

dr .

Use Plancherel formula (B.2):

∥∥∥eit∆
H3u0 − uasym(t)

∥∥∥
2

L2
= c

∫ ∞

0

∣∣∣∣
(
ei ρ2

4t − 1

)
u0(ρ)

∣∣∣∣
2

sinh2 ρdρ .

Now we conclude with a density argument, thanks to the estimate (for instance)

|eiθ − 1| . |θ| .
�

Remark B.2. This asymptotic behavior is essentially the same as in the Euclidean
case, up to a new oscillation in time, and the weight r

sinh r . This can also be seen
as follows: in the proof, we have used the identity

eit∆
H3u0(r) = WMtDtFMtu0 ,

where F is the Fourier transform, Mt(r) is the multiplication by eir2/(4t), Dt is the
dilation at scale 1/(2t) with L2 scaling:

Dtϕ(r) =
1

t3/2
ϕ
( r

2t

)
,

and W is the weight W = e−it r
sinh r . In the Euclidean case, we have the same

formula, with the only change W = Id, and the usual asymptotics is:

eit∆Rn = MtDtFMt ∼
t→+∞

MtDtF .

The proof of the L2 asymptotics is the same as above.
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Appendix C. A Galilean operator?

In the Euclidean case, a nice object for scattering theory (and also blow-up, see
e.g. [39]) is the Galilean operator

Jeucl(t) = x+ 2it∇x = 2itei |x|2

4t ∇x

(
e−i |x|2

4t ·
)

= eit∆Rnxe−it∆Rn .

Recall that for any radial function φ on R3, we have:

∆R3

(
φ(r)

r

)
=

1

r
∂2

rφ.

A similar identity is available for radial functions on H3:

∆H3

(
φ(r)

sinh r

)
=

1

sinh r
∂2

rφ.

Using the Galilean operator on the (half-)line, it is then natural to introduce the
following operator, acting on radial functions on H3:

(C.1) J(t) =
2it

sinh r
ei r2

4t ∂r

(
e−i r2

4t sinh r ·
)

= r + 2it∂r + 2it cotanh r .

Now we have

[J, i∂t + ∆H3 ]u(t, r) = 0 ,

provided that u is radial. Note that as in the Euclidean case, J is an Heisenberg
observable (see e.g. [32]):

(C.2) J(t) = eit∆
H3 re−it∆

H3 .

We already saw that in the radial framework, J commutes with the Schrödinger
operator. Proceeding as in [12, Lemma 6.2], we find:

Lemma C.1. Let n = 3. For every q ∈ [2, 6[, there exists cq such that
∥∥∥∥w

1− 2
q

3 φ

∥∥∥∥
Lq

6
cq

|t|δ(q) ‖φ‖
1−δ(q)
L2 ‖J(t)φ‖δ(q)

L2 , ∀t 6= 0, for every radial function φ,

where we have denoted w3(r) =
sinh r

r
and δ(q) = 3

(
1

2
− 1

q

)
∈ [0, 1].

It is important to understand how J acts on nonlinear terms. Let F be a C1

function such that F (z) = G(|z|2)z (the usual gauge invariance). We compute:

(C.3) J(t)F (u) = ∂zF (u)J(t)u− ∂z̄F (u)J(t)u+ it cotanh rF (u).

Forgetting the last term, we would have the same expression as in Rn, and J would
act on such nonlinearities like a derivative. Unfortunately, this last term cumulates
two features: extra linear growth in time, and singularity as r → 0.

As a matter of fact, the above drawback is also present in the radial Euclidean
case. There, it can be removed by using Jeucl, even in a radial framework (see e.g.
[5]). However, the analogue for Jeucl in hyperbolic space (not only in the radial
case) may just not exist. . . Consider the Euclidean case in R3. We have

∆R3 = ∂2
r +

2

r
∂r +

1

r2
∆S2 .

For a radial function u(t, r), we have the commutation relation

[xj + 2it∂j, i∂t + ∆R3 ]u(t, r) = 0,

where (xj+2it∂j)u(t, r) = (rωj+2itωj∂r)u(t, r). The factor ωj is crucial: in general,

[r + 2it∂r, i∂t + ∆R3 ]u(t, r) 6= 0.
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On the other hand, [
r + 2it∂r + 2i

t

r
, i∂t + ∆R3

]
= 0.

The above operator can also be written as

J(t) = r + 2it∂r + 2i
t

r
=

2it

r
ei r2

4t ∂r

(
e−i r2

4t r ·
)
.

When acting on gauge invariant nonlinearities, it is not like a derivative:

J(t)F (u) = ∂zF (u)J(t)u − ∂z̄F (u)J(t)u +
it

r
F (u).

The last factor has the same drawback as above. Note that even in the radial case,
one uses Jeucl and not J (see e.g. [5]). So we may try to extend J to a non-radial
framework. Yet, seeking Jhyper of the form

Jhyper = rωj + 2itωj∂r + 2ith(r) =
2it

f(r)
ei r2

4t ωj∂r

(
e−i r2

4t f(r) ·
) (

h =
f ′

f

)
,

and writing

[Jhyper, i∂t + ∆H3 ]u(t, r) = 0,

yields incompatible conditions.

Using the operator J and Lemma C.1, one can prove the following scattering
result though. For T > 0 possibly large, define:

YT = {u, Ju ∈ C(] −∞,−T ];L2), with w
2/3
3 u, w

2/3
3 Ju ∈ L2(] −∞,−T ];L6) ;

‖u‖L∞(]−∞,−T ;L2) 6 2‖u−‖L2, ‖w2/3
3 u‖L2(R;L6) 6 2C6‖u−‖L2,

‖Ju‖L∞(]−∞,−T ;L2) 6 2‖ru−‖L2 , ‖w2/3
3 Ju‖L2(R;L6) 6 2C6‖ru−‖L2},

where C6 is given by Proposition 3.1 when n = 3.

Proposition C.2. Let n = 3, t0 = −∞ and 1/4 < σ < 1. For every radial function
ϕ = u− ∈ L2(H3) with ru− ∈ L2(H3), there exists T = T (σ, ‖u−‖L2 , ‖ru−‖L2) such
that (1.3) has a unique solution in YT .

Remark C.3. The condition 1/4 < σ < 1 looks rather strange at first glance. It
appears because of the singular term that shows up when J acts on the nonlinearity,
as discussed above. Without this term, we could virtually cover the range 0 < σ < 2.
Note however that we can go below σ = 1/3, thus showing the absence of (the usual)
long range effects.

Proof. We want to show that the map

Φ(u)(t) := U(t)u− − i

∫ t

−∞

U(t− s)|u|2σu(s)ds

has a fixed point in YT for T sufficiently large. Let (q, p) be an 3-admissible pair to
be chosen later. Proposition 3.1 yields:

∥∥∥w2/3
3 Φ(u)

∥∥∥
L2

T
L6

6 C6‖u−‖L2 + C6,p

∥∥∥w1−2/p′

3 |u|2σu
∥∥∥

Lq′

T
Lp′

,

where we denote from now on: La
TL

b := La(]−∞,−T ];Lb(H3)). Introduce indices
such that:

(C.4)





1

q′
=

1

q
+

2σ

s
+

1

θ
,

1

p′
=

1

p
+

2σ

k
,

with s ∈]2, 6[.
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Hölder’s inequality then yields:
∥∥∥w1−2/q′

3 |u|2σu
∥∥∥

Lp′

T
Lq′

6
∥∥∥w1−2/q

3 u
∥∥∥

Lp

T
Lq

∥∥∥w1−2/s
3 u

∥∥∥
2σ

Lk
T

Ls

∥∥∥w4/q−2+2σ(2/s−1)
3

∥∥∥
Lθ
.

The last term is finite provided that:

(C.5) 2 − 4

q
+ 2σ

(
1 − 2

s

)
>

2

θ
·

In view of (C.4), this is equivalent to σ > 0.
Now we show that (C.4) can be achieved for a 3-admissible pair (p, q). Letting

(p, q) = (2, 6), we find k = ∞ and (C.5) is satisfied for any σ > 0. Then s ∈]2, 6[
provided that σ < 2. Since these algebraic conditions are open, they still hold if we
take q = 6 − ε for ε > 0 sufficiently small, and p such that (p, q) is 3-admissible:

∥∥∥w1−2/q′

3 |u|2σu
∥∥∥

Lp′

T Lq′
6 C

∥∥∥w1−2/q
3 u

∥∥∥
Lp

T Lq

∥∥∥w1−2/s
3 u

∥∥∥
2σ

Lk
T Ls

.

Note also that now, p > 2, hence k < ∞. By interpolation, the first factor of the
right hand side is controlled by:

∥∥∥w1−2/q
3 u

∥∥∥
Lp

T
Lq

6 ‖u‖1−δ(q)
L∞

T
L2

∥∥∥w2/3
3 u

∥∥∥
δ(q)

L2
T

L6
.

¿From Lemma C.1, we have, for t 6 −T :
∥∥∥w1−2/s

3 u(t)
∥∥∥

Ls
.

1

|t|δ(s) ‖u‖
1−δ(s)
L∞

T
L2 ‖Ju‖δ(s)

L∞
T

L2 .

We check that (C.4) implies

kδ(s) = 2 +
k

σ

(
−1 +

3σ

2
+

3

2

(
1 − 2

q

)
− 3σ

s

)

> 2 +
k

σ

(
3σ

2
− 3σ

s

)
> 2.

Therefore, ∥∥∥w1−2/s
3 u

∥∥∥
2σ

Lk
T Ls

. T−2σ/k
(
‖u‖L∞

T L2 + ‖Ju‖L∞
T L2

)2σ
.

Then choosing T sufficiently large, we see that for u ∈ YT ,
∥∥∥w2/3

3 Φ(u)
∥∥∥

L2
T

L6
6 2C6‖u−‖L2.

The similar estimate for ‖Φ(u)‖L∞
T L2 proceeds along the same lines.

To estimate JΦ(u), we find:
∥∥∥w2/3

3 JΦ(u)
∥∥∥

L2
T

L6
6 C6‖ru−‖L2 + C

∥∥∥w1−2/q′

3 |u|2σJu
∥∥∥

Lp′

T
Lq′

+ C
∥∥∥w1−2/q′

1
3 t cotanh r|u|2σ+1

∥∥∥
L

p′
1

T
Lq′1

,

with the same admissible pair (p, q) as before, and where (p1, q1) is a possibly
different admissible pair. For the second term of the right hand side, we proceed
as before, to find:

∥∥∥w1−2/q′

3 |u|2σJu
∥∥∥

Lp′

T
Lq′

6 C
∥∥∥w1−2/q

3 Ju
∥∥∥

Lp

T
Lq

∥∥∥w1−2/s
3 u

∥∥∥
2σ

Lk
T

Ls
.

We are left with the next term, involving w
1−2/q′

3 t cotanh r|u|2σ+1. Introduce the
condition

(C.6)
1

q′1
=

1

q1
+

2σ

s1
+

1

θ1
·
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When it is satisfied for s1, θ1 > 1, we have:
∥∥∥w1−2/q′

1
3 cotanh r|u|2σ+1

∥∥∥
Lq′

1

6
∥∥∥w1−2/q1

3 u
∥∥∥

Lq1

∥∥∥w1−2/s1

3 u
∥∥∥

2σ

Ls1
×

×
∥∥∥w4/q1−2+2σ(2/s1−1)

3 cotanh r
∥∥∥

Lθ1

.

For the last term to be finite, a new condition appears, for the integral to converge
near r = 0 (for r → ∞, nothing is changed):

(C.7) 1 6 θ1 < 3.

For q1, s1 ∈]2, 6[, Lemma C.1 then yields:
∥∥∥w1−2/q′

1
3 cotanh r|u|2σ+1

∥∥∥
Lq′

1

.
1

|t|δ(q1)+2σδ(s1)

(
‖u‖L∞

T L2 + ‖Ju‖L∞
T L2

)2σ+1
.

The right hand side multiplied by t is in Lp′
1(] −∞,−T ]) as soon as:

(C.8) δ(q1) + 2σδ(s1) − 1 >
1

p′1
·

So we are left with the following situation: if we can meet (C.6), (C.7) and (C.8)
with (p1, q1) admissible and q1, s1 ∈]2, 6[, then choosing T sufficiently large, Φ maps
YT to itself.

The line of reasoning is the same as above: if we pick q1 = s1 = 6, then (C.6)
and (C.7) imply σ < 1, and (C.8) yields σ > 1/4. Conversely, if 1/4 < σ < 1,
then taking (p1, q1) = (2, 6) and s1 = 6, θ1 given by (C.6) satisfies (C.7), and (C.8)
holds. By continuity, all the conditions required are satisfied if we take q1 = 6− ε1,
with ε1 > 0 sufficiently small.

Up to increasing T , Φ is a contraction on YT , and the Proposition C.2 follows. �

We finally notice that an analogue to the pseudo-conformal conservation law [24]
is available:

(C.9)

d

dt

(
‖J(t)u‖2

L2 +
4t2

σ + 1
‖u(t)‖2σ+2

L2σ+2

)
=

=
4t

σ + 1

∫ ∞

0

(2 − σ − 2σr cotanh r) |u|2σ+2(t, r) sinh2 rdr.

This evolution law should make it possible to establish some asymptotic complete-
ness results in weighted Sobolev spaces, but we leave out the discussion here.
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