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SCATTERING THEORY FOR RADIAL NONLINEAR
SCHRODINGER EQUATIONS ON HYPERBOLIC SPACE

VALERIA BANICA, REMI CARLES, AND GIGLIOLA STAFFILANI

ABSTRACT. We study the long time behavior of radial solutions to nonlinear
Schrédinger equations on hyperbolic space. We show that the usual distinction
between short range and long range nonlinearity is modified: the geometry of
the hyperbolic space makes every power-like nonlinearity short range. The
proofs rely on weighted Strichartz estimates, which imply Strichartz estimates
for a broader family of admissible pairs, and on Morawetz type inequalities.
The latter are established without symmetry assumptions.
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1. INTRODUCTION

This paper is devoted to the scattering theory for the nonlinear Schrédinger
equation
(1.1) i0u + Agnu = |ul*"u e_itAH"u(t)’t:to =y,
on the hyperbolic space (n > 2):
H" = {R"™ 5 Q = (x0,...,2,) = (z0,2") = (coshr,sinhrw), r >0, we S" 1.
We consider a defocusing power nonlinearity. One could also prove some results

in the focusing case, but this case will not be discussed in this paper. When a
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2 V. BANICA, R. CARLES, AND G. STAFFILANI

function of time and space u(t, ) depends only on ¢t and r, we say that it is radial.
The reason is that r is the hyperbolic distance between 2 and the origin of the
hyperboloid O = (29 = 1,2’ = 0). With the usual abuse of notation, we write
u(t,r). We prove that for any o > 0, a short range scattering theory is available for
radial solutions to (CIl). This is in sharp contrast with the Euclidean case, where the
nonlinearity |u|??u cannot be short range as soon as o < 1/n (see Section EJ)). A
crucial argument to prove this phenomenon is the existence of weighted Strichartz
estimates for radial solutions to Schrodinger equations on H”, established in [2]
and [29]. Note that if these weighted Strichartz estimates were available for general
solutions to Schrodinger equations on H” (and not only radial), then all the results
of this paper could be adapted, with the same proofs. Also, similar results can
be extended to the equation posed on Damek-Ricci spaces, thanks to the weighted
Strichartz estimates obtained in [29)].

With the above parameterization for the hyperbolic space, the Laplace-Beltrami
operator reads:

coshr 1

(1.2) Agn =92+ (n—1) Agn-1.

sinhr " ginh?r
In order to define wave operators, we introduce the free Schrodinger generalized
initial value problem:

) A n ==
(1.3) { 10+ Agrnu =0
Ujt=ty = P-
We denote U (t) = e®#"  so that in (), u(t,Q) = U(t)p(Q). When considering
solutions to ([l), we use the convention that if g = —oo (resp. tg = +00), then

we denote ¢ = u_ (resp. ¢ = u4 ), and solving ([CI]) means that we construct wave
operators. If ¢p = 0, then we denote ¢ = up, and () is the standard Cauchy
problem. In all the cases, we seek mild solutions to ([[l), that is, we solve

t
(1.4) u(t) = U(t)e — z/ U)(t — 5) (JuPu) (s)ds.

to
We can now state our main results. The first one deals with existence of wave
operators and asymptotic completeness for small L? data:

Theorem 1.1. Letn >2,0< o < 2/n, and tg € R. There exists ¢ = e(n, o) such
that if o € L2 (H™) with ||p||r2 < €, then ) has a unique solution

u € C(R; L) N L2T27 (R x H).

Moreover, its L?-norm is constant, ||u(t)||z2 = |||z for all t € R.
There exist ux € L2 (H™) such that

rad

lu(t) = U(t)utl|,» — 0 ast— +oo.
Iftg = —oco (resp. to = +00), then u_ = ¢ (resp. uy = ).

The existence of solutions in C'(R; L?) for data which are small in L? is analogous
to the Euclidean case (J35], see also [[2]). For o = 2/n, our result is the exact
analogue to its Euclidean counterpart recalled in Proposition 2.3. Note however
that for 0 < o < 2/n, the space where the solutions belong, and the existence of a
scattering theory, distinguish the hyperbolic space H"™ from the Euclidean space R™.
In particular, there is no long range effect in hyperbolic space, even if 0 < o < 1/n.

Our second result establishes the existence of the wave operator in the Sobolev

space H!, when the nonlinearity is H!-subcritical (see Appendix [A] for the notion
of criticality). Here again, the power o can go down to 0, with no long range effect.
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Theorem 1.2. Letn > 2, 0 < 0 < 2/(n —2), and ty = —o0. For any ¢ =
u_ € HL, (H"), there exists T < oo such that ([CA) has a unique solution in
CNL®(—o0,-T); H) N L?°*2(] — 0o, —T]; W129+2),

Moreover, this solution u is defined globally in time: u € L>°(R; H'). That is, u is
the only solution to ([[Ll) with

la(t) = Uty g2 = |U(=8)u(t) = u_l ;s — 0 as t — .

Of course, we could prove the existence of wave operators with data at time
to = +oo. Since the proof is similar, we shall skip it.

The proofs of Theorems [Tl and rely on two remarks. First, the weighted
Strichartz estimates proven in [2, 29] for radial solutions to Schrédinger equations
on H", n > 3, make it possible to state Strichartz estimates which are the same
as on R, for any d > n. We show in this paper that similar results are available
when n = 2. Second, the classical proofs for the counterparts of Theorems [Tl and
in the Euclidean space R? rely only on functional analysis arguments, based
on Strichartz estimates, Holder inequality and Sobolev embeddings. This is why
the proofs of Theorems [Tl and [C2, presented in Sections B and B respectively, are
rather short.

The next natural step in scattering theory consists in proving the invertibility
of the wave operators on their range, that is, asymptotic completeness. Note that

the asymptotic completeness that we prove is for n = 3 only (see the discussion in
Section [).

Theorem 1.3. Letn =3,0 < 0 < 2, and ty = 0. For any ¢ = ug € H} ,(H?)
I has a unique, global solution in C(R; H ) N L*(R x H3). Moreover, there
exist u— and uy in HL j(H?) such that

||u(t) - U(t)uiHHl(Hs) — 0 ast— *oo.

Moreover, if 2/3 < o < 2, then we need not assume that ¢ is radial: for any
o =up € HY(H3), (T has a unique, global solution in C(R; H') N L*(R x H?3),
and there exist u_ and uy in H*(H?) such that

||u(t) - U(t)uiHHl(Hs) — 0 ast— *oo.

Notation. In this paper we often use the notation A < B to denote that there
exists an absolute constant C' such that A < CB. Another standard notation is
to use for any 1 < p < oo the symbol p’ to denote the Holder-conjugate exponent,
that is 1/p+1/p’ = 1. Finally we use the symbol Rz and Sz to denote respectively
the the real and the imaginary part of a complex number z.

The rest of this paper is organized as follows. In Section Bl we review the
scattering result for nonlinear Schrédinger equations on the Euclidean space: small
L? data, existence of wave operators in H!(R?), non-existence of wave operators
when o < 1/d, and asymptotic completeness. In Section Bl we show that for radial
solutions to (ICI]), the same Strichartz estimates as in R are available in H", for any
d > n > 2. Theorems [Tl and are proven in Sections Bl and B respectively. We
prove a general interaction Morawetz inequality in Section[d and infer Theorem [[3
in Section [ In Appendix [Al, we prove that the notion of criticality, as far as the
Cauchy problem ([l) is concerned, is the same on H" as on R™. We study the
large time behavior of radial solutions to the linear Schrédinger equation ([L3) on
H? in Appendix [Bl Finally, we discuss the existence of an analogue to the Galilean
operator in the radial framework on H?® in Appendix
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2. A REVIEW OF SCATTERING THEORY IN R?
In this paragraph, we consider, in the Euclidean space, the equation
(2.1) i0pu + Agau = |u/*u ;5 (t,z) € R x RL

We recall some results concerning scattering theory, in order to compare them with
their counterpart in hyperbolic space. We also sketch some proofs that we mimic
in the hyperbolic setting.

First, the Schrodinger operator in the Euclidean space satisfies the following
Strichartz estimates.

Definition 2.1. Let d > 2. A pair (p, q) is d-admissible if 2 < ¢ < d2—_dQ and

§5<q>:d(13), (hrq) # (2,00).

Proposition 2.2. Let d > 2. Denote Sy(t) = ez,
1. For any d-admissible pair (p,q), there exists Cy such that

15a(-)0ll 1o (s oy < Calldllrz, Vo € L*(RY).

2. For any d-admissible pairs (p1,q1) and (p2,q2) and any interval I, there exists
Cq1.q. independent of I such that

/ Sa(t — s)F(s)ds
IN{s<t}

for every F € LP> (I; L% (Rd)).

S Ctn,q2 HFHLP/Z(I;Lqé) ’

Lri(I;L91)

Let to € R, and consider () along with the initial data:
(2.2) Sd(—t)u(t)‘t:to = .

We use the convention that if tg = —oco (resp. tg = +00), then we denote ¢ = u_
(resp. ¢ = u4), and solving [ZI)—E2) means that we construct wave operators.
If to = 0, then we denote ¢ = ug, and ZI)-(32) is the standard Cauchy problem.
In all these cases, we seek mild solutions to ZI)—(2), that is, we solve

(2.3) u(t) = Sa(t)p — z/t Sa(t — s) (|ul*7u) (s)ds =: @(u)(t).

2.1. Small data in the L?-critical case. Recall the result of [[3]. The L?-critical
case corresponds to the power o = 2/d. In that case, the pair

(pa)=(2+ 2242
p.q) = 22+

is d-admissible, and this is the main remark to prove:

Proposition 2.3. Let d > 2, 0 = 2/d, and to € R. There exists ¢ = e(d) such that
if ¢ € L2(RY) with ||p||L2 < €, then @I)-@2) has a unique solution

u e C(R; L?) N L*T4 (R x RY).

Moreover, its L?>-norm is constant, ||u(t)||z = ||¢|/z2 for all t € R.
There exist ux € L*(R?) such that

[lu(t) — Sa(t)usl|l;2 = 0 ast— too.

Iftg = —oco (resp. to = +00), then u_ = ¢ (resp. uy = ).
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Sketch of the proof. The idea is to apply a fixed point argument to Z3) in
4
X ={ue CRIHNLFA®RXRY) & Null 2vg g pu) < 2Cars llelliz } -

Here, Cy, 4 is the constant given in the first part of Proposition Indeed,
denoting v = 2 + 4/d, Strichartz estimates and Hoélder inequality yield:
1+4
1@ (W)l v @xrey < Cyll@llL2may + Crnllull o (e

This shows that for ||p||z2 sufficiently small, X is invariant under the action of
®. Similarly, ® is a contraction on X if ||¢||z2 is sufficiently small, thus providing
a unique solution to ([Z3)) in X. The conservation of mass is classical, and holds
without the smallness assumption.

Scattering then follows from the Cauchy criterion: for ¢; < t2, we have

1+4
ISa(—ta)u(ts) — Sa(—t)u(t)]l 2 < Copllull;hE, pay

The right hand side goes to zero when t¢1,t; — +o0o0. The proposition follows easily,
since the group Sy is unitary on L2. O

2.2. Existence of wave operators in H'. We recall the existence of wave op-
erators for negative time; for positive time, the proof is similar. This means that
we solve ([Z3)) with tg = —oco (and ¢ = u_). The strategy consists first in solving
E3) in a neighborhood of ¢ = —oco, that is on | — oo, —T'] for T possibly very large.
Then the conservation of mass and energy makes it possible to extend the solution
to t € R. We simply recall the first step. The proof of this result appears in [23].
The proof we give is a simplification, which may be found for instance in [T9]. We
shall not recall or use the results available in weighted Sobolev spaces (see e.g.
[T2, 21, 221).

Proposition 2.4. Let tg = —o0, d > 2 and 2/d < 0 < 2/(d —2). For any
¢ =u_ € HY(RY), there exists T < oo such that @) has a unique solution in
CNL>®(]—o0,—T); HY)YNLP(] — oo, —=T]; W29+2) " where p is such that (p,20 +2)
s d-admaissible.

Moreover, this solution u is defined globally in time: u € L>°(R; H').

In other words, we construct the only solution u to () such that
[u(t) = Sa(®)u- g2 = [1Sa(=t)u(t) —u-|zn —0 ast— —oo.
The wave operator W_ is the map
W_: H'>u_ = Upp—g € H'.
Proof. Recall that p is such that (p, 20 + 2) is d-admissible:
4o +4
P= "
With the notation LY = LA(] — oo, —T);Y), we introduce:

Xy = {u€ C( =00, =T} H') 3 [Jull g ypiaera < 2Cags2lu-lm,

lull g < 2llu—llms s Nullpp peore < 2[1Sal)u—llpg oz 4
T T T

where Cos44 is given by Proposition 22 Set ¢ = s = 20 4+ 2: we have

1 1 2
St
1 1 2
vop k.
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where (p, q) is d-admissible and p < k < oo since 2/d < 0 < 2/(d—2). For u € X,
Strichartz estimates and Holder inequality yield:

1@ g wsese < Campallutlm +C (|l o+ 1270l )

< Cosallu—tms + Clul . (el o + V0l g 20

20(1—6
< Cogzllu-lm + Cllull35 s lull 78 1 ull oy zose

for some 0 < 6 < 1, where we have used the property ¢ = s = 20 + 2. Sobolev
embedding and the definition of X7 then imply:

2060 20(1—-60
1D ()| 1202 < Caopallu |l + C1Sal)u-l1750 Il 720" ull g wova.

We have similarly

2060 20(1—-6
12| i < Nzl + C N1SalYu— 2575 Tl el iy o0

6 —0
1@ ()| porss < 1Sa( Il g pares + C 1SaCYu— 250 Nl 22 Nl prioe o

From Strichartz estimates, Sq(-)u— € LP(R; L?), so
||Sd(')u—||y;m —0 asT — +oo.

Since 6 > 0, we infer that ® sends Xr to itself, for T" sufficiently large.

We have also, for us, u; € Xrp:
2

[ ®(u2) = () g0 S mas [l 135 1 a2 = vl g 1
206 20(1—6
SSaCyu 1750 N 5™ e = wall o g -

Up to choosing T larger, ® is a contraction on Xr, and the proposition follows. [

2.3. Non-existence of wave operators for o < 1/d. Even though the scattering
result we recalled shows the existence of wave operators in H!(R?) for o > 2/d,
it is natural to expect the nonlinearity to be negligible for large time as soon as
o > 1/d. Many results exist, supporting this assertion; we shall not state them,
but rather point out that it is not possible to go below 1/d. The result recalled
below was established in [32, B] (see also [25]).

Proposition 2.5. Letd > 2,0 < o < 1/d andT > 0. Letu € C(]—o0, —T]; L?(R%))
be a solution of () such that there exists u_ € L*(R?) and

ut) = Sal®u_l = = [1Sa(~t0u(t) —u_l = =0 as ¢ — —cc.
Then v =0 and u_ = 0.
Sketch of the proof. Let ¢ € C3°(RY) and t; < ta < —T: by assumption,

to
(6. Sulta)ultz) = Sa(~tryu(tr)) = =i [ (Sutr)u (uf*u) (7)) dr
t1
goes to zero as t1,ty — —oo. But for 7 — —o0, we have
eilzl?/(4m) __ , o
Sa(T)p ~ ¢ (

ei|l|2/(47') P ( T )
|7|4/2 27 '

rjaz " \ar

) ;ou(r) ~ Sa(t)u_ ~e¢
Therefore,

(Sa(r (070 (7)) ~ g (Bl ).
This function of 7 is not integrable, unless

@, |6:|2"6:> =0.
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Since 1 € C§°(RY) is arbitrary, this means that #_ = 0 = u_. The assumption and
the conservation of mass then imply u = 0. (I

When o < 1/d, long range effects must be taken into account, even in a radial
setting (see e.g. [27, [§] for the case d = 1, [20)] for d > 2).

2.4. Asymptotic completeness in H'. To get a complete picture of large time
behavior of solutions to ([ZI), we proceed to the next step which consists in estab-
lishing asymptotic completeness, that is, proving that the wave operators W, are
invertible on their range. Here we only recall some results in H!(R%), and we do
not mention what can be done in weaker Sobolev spaces, or in weighted Sobolev
spaces (see e.g. [[4] 22 26, 36]).

The original proof of the asymptotic completeness for @) in H!(R?) is due to
Ginibre and Velo [2Z3]. Let to = 0 and ¢ € H'(R9): the local in time H' solution
to the Cauchy problem -3 is actually global in time for 0 < o < 2/(d — 2),
thanks to the conservations of mass and energy, since the nonlinearity is defocusing;:

lu®)llzz = llel L2,
1 1
IVu@®l7z + — @757 = [Vellz: + U—Hllsﬁlli‘éif»

Using Morawetz inequality and dispersive estimates for Sy(t), they prove that
2
Il ~ 0wt oo, vae 272

This makes it possible to show that u € LP(R; L(R?)) for all d-admissible pairs
(p,q), as soon as 2/d < o0 < 2/(d — 2). Asymptotic completeness follows easily:

Proposition 2.6 ([Z3], see also [IZ]). Let d > 3, to = 0 and ¢ € H*(RY). If
2/d < o <2/(d—2), then there exist uy € Hl(Rd) such that

Hu(t) - Sd(t)uiHHl(]Rd) — 0 ast— *oo.

More recently, a simplified proof was proposed by Tao, Visan and Zhang [34],
relying on an interaction Morawetz inequality as introduced in [I6]. We recall this
approach for essentially two reasons:

e It is shorter than the original one [23] (or [12]).

o It does not use dispersive estimates for Sy(t).
The second point seems to be crucial to prove Theorem as a consequence of
the proof in [34] and of the interaction Morawetz inequality that we establish in
Section @l The interaction Morawetz inequality presented in [34] reads as follows:

Proposition 2.7 ([34]). Let d > 3, to = 0 and ¢ € H'(RY). Let I be a compact
time interval. There exists C independent of I such that the following holds.

o Ifd =3, then the solution to I)-E2) satisfies:

(2.4) /I/R fut, @) dzdt < Cllulldm -
o Ifd >4, then the solution to ZI)-E2) satisfies:
u(t,y)|*|lu(t, z 2
(2.5) // )Pl o W dwdydt < Clullt .
R3 |z —

These inequalities imply that there exists C independent of I such that:

(2.6) HuHLdﬂ(];LZ%dff) (Rd)> < Cllullpoeasmm)-
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In Section Bl we establish the analogue of ZA)-E3) on the hyperbolic space
H", so we do not recall how (Z4l) and &) are proven here: the method on H" is
similar, with an additional drop of geometry.

If d = 3, then [Z0) is exactly ). On the other hand, when d > 4, [28) follows
from (ZH) by interpreting the convolution with Tl | 5 as dlfferentlatlon and thanks

to the inequality ([34, Lemma 5.6])

(2.7) H|v

)
2

which can be established by using paradifferential calculus.

Remark 2.8. The pair (d +1, (dH)) present in ([0 is 2-admissible.

Using the a priori estimate provided by the conservations of mass and energy,
one infers the a priori bound

. < Ollull poorsany S :
[ HLd+1< j1>(Rd)> Cllull Loy S lellan
Let n > 0 be a small constant to be fixed later. The line R can be divided into J
(for some finite J from the above estimate) subintervals I; = [7;, 7j41] such that
u <n.
H "Ld+l(1j;L%cf—Lllz(Rd)> ’r]
As a consequence of [34, Lemma 2.7], if d > 3 and 2/d < o < 2/(d — 2), there exist
C >0, 9 €]0,1] and a d-admissible pair (po, qo) such that for any time interval I:

(2.8) |||u|2‘7uHL2<

206 20(1-0)
vt ) S C”””LZH@L%:%P) Il remy Nl oo sy
This estimate follows from Holder inequality (see [34]), and algebraic computations
on d-admissible pairs. Using Strichartz estimates on [3)) (with ¢¢ replaced by 7;
and ¢ replaced by u(7;)), and @), we get, for 1 < j < J, and any d-admissible
pair (p, q),

ull Lo (zyswray S llu(T) e + H|U|2UUHL2< 124 )

I,w > d+2
S Nl oo sy + Nl aeuy [ull3 7 by
Leo(R;HY) Ld+1<[ LAd—_lz) L (I;;H") LPo(I;;Wlao)

206 ||u||2<7(1—5)

N ||u||L°°(R;H1) +n Lo=(R;H1) ||u||LP0(Iu;W1vqo) .

Fix (p,q) = (po, qo): taking n > 0 sufficiently small, we find
lullLeo(z;;wria0y < Cllullpoe@;mry, V1<7 <,

hence u, Vu € LP(R; Wh40). We deduce u, Vu € LP(R; W19) for all d-admissible
pairs (p,q). Asymptotic completeness is then straightforward: let to > ¢; > 0.
From inhomogeneous Strichartz estimates with (p2,¢2) = (2,2%) and @), we
have:

2
1Sa(—t2)u(tz) — Sa(—t)ult)| g < [[lul UUHLQ([thJFOO[;Wl,%)
< 2d41)

£t ([ oot 1)

Since the last term goes to zero as t; — +00, this proves Proposition 28 for positive
time. The proof for negative time is similar.



SCATTERING FOR NLS ON HYPERBOLIC SPACE 9

Remark 2.9. In Proposition L8 we assume that o < 2/(d — 2). Scattering for the
H'-critical case 0 = 2/(d — 2) was recently proved for d = 3 in [I7], for d = 4 in
[B0] and finally for d > 5 in [33]. These results are not yet available in hyperbolic
spaces since their proof, among other tools, uses very subtle arguments in Fourier
analysis, arguments that are not at hand yet in H".

3. WEIGHTED STRICHARTZ INEQUALITIES AND CONSEQUENCES

The general idea is that weighted Strichartz estimates are available on hyperbolic
space H™, provided that we restrict our study to radial functions. The weight has
exponential decay in space. This decay gives us the “usual” Strichartz estimates
recalled in Proposition B2 for d-admissible pairs, for any d > n. As usual for
Strichartz estimates, we distinguish the case n > 3 from the case n = 2. The
former is easier to present, and we start with it. In H", we denote

n—1

W, (r) = (smhr) . U(t) = eithnm,

r

3.1. Case n > 3. The following global result was established in [2] for n = 3, and
in [29] for n > 4:

Proposition 3.1 (Weighted Strichartz estimates in H", n > 3). Let n > 3.

1. For any n-admissible pair (p,q), there exists Cy such that

1

wn "U()o < Cylléll e

LP(R;L9)
for every radial function ¢ € L? (H").

rad
2. For any n-admissible pairs (p1,q1) and (pa2,q2) and any interval I, there exists

Cy1,q. independent of I such that

1—2

2
1—= b
W, F

W, / U(t— s)F(s)ds
IN{s<t} Le(1L0)

for every radial function F € LP2 (I; Lféd (H”))

<C,

1,92

LPh (I;Lqé>

Corollary 3.2. Let d > n > 3. Then Strichartz estimates hold for d-admissible
pairs and radial functions on H™:
1. For any d-admissible pair (p,q), there exists Cq = Cy(n,d) such that

1Tl o gz < Callgllze, Vo € Li,q(H").

2. For any d-admissible pairs (p1,q1) and (p2,q2) and any interval I, there exists
Co.02o = Cyy 4o (n,d) independent of I such that

/ U(t— s)F(s)ds
IN{s<t}

for every F € LP> (I; Lféd(H")).

< C‘haqz HFH

LD’Q(I;Lqé) ;
Lr1(I;L91)

Proof. To prove the first estimate, it is enough to prove it for the endpoint estimate,
(p,q) = (2, 2%). Define s by

1_11
n d s
We have s > 0, since d > n. Let ¢ € L2, (H"). Hélder inequality and the first part
of Proposition Bl yield:
1 . < ’ 2/n . ’ . ’ —2/n
B0 OBl ) < VO i [
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—2/n
w2/

< Coan [|0]] 2 (gan) L

If d = n, then s = 0o, and we have obviously WEQ/" € L. If d > n, then
w;2/n € L? if and only if

n—1

/ ( .Th )s " (sinh )" dr < oo.
o \sinhr

This integral is convergent, since s > n (d is finite). The first estimate of the
corollary follows by interpolation, by conservation of the L? norm.

We turn to the inhomogeneous estimates. Let (p1, ¢1) and (p2, g2) be d-admissible
pairs. Let (p1,71) and (pe,r2) be the corresponding n-admissible pairs:

2 (1 1) (1 1)
—=d|l=—-—)=n(=—-—].
V2 2 g 2

Note that since d > n, ¢; < r;. Therefore, s;, given by
1 1 1

- I )

)
q;j i 8

is non-negative. Using Holder inequality and the second part of Proposition Bl
we find:

/ U(t— s)F(s)ds <
IN{s<t} Loy (ILa)
1-2 —14+2
< ‘ wn ! / Ut — s)F(s)ds’ .
In{s<t} LP1(L;L"1) Ls1
1-% 142
<\|wp ?*F W o
LP2(I;L™2) Lo
A -1+
5 HFHL”£(I;L"§) Wn 2 Wn 1
Ls2 L

-1+ 2
Therefore, we have to check that w, 7 € L% (H"). If ¢; = 2, then r; = 2 and
s; = oo. If g; > 2, then the above integrability condition is equivalent to:

(1 1 ) PN 1 1 o 1 1 1
sil=—— - > —=— — —,
J 2 7’]' 2 7’]' Sj Qj Tj
Since g; > 2, this is satisfied, and the corollary follows. ([l
3.2. Case n = 2. When n = 2, the analogue of Proposition Bl is not proven, but
we have from [2:
.2

) c ) oo sels /4t
3.2 eZtAHIQ 0) = e—zt/Q/ QI / I
(82) () |t]3/2 2 o) » +/coshs —coshp

where p = d(Q2,Q'). The following weighted dispersion estimate holds for radial

functions in H2. Denote
_ sinh r /2
wa(r) = ——— .

dsdsY,

r(l14r)
Proposition 3.3. Let e €]0,1[. There exists Cc > 0 such that
. C dsy
~l—¢ itAy2 O < —5/ Q/ o Vit 0 Yo € Ll H2
Wo (T)e ¢( ) |t|3/2 e |¢( )|ﬁé_8(7"l) ’ 7& ’ ¢ rad( )’

where 7 = d(0,8) and r' = d(0,8).
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Remark 3.4. For small time, this weighted estimate is worse than the one in R?
in terms of powers of t: |t|~3/2 instead of |t|~!. Formally, we could get a rate in
|t|~17¢ by integration by parts in the s integral in ([B2), by considering derivatives
of order 1/2 — . We shall not pursue this approach here, and content ourselves
with Proposition

Proof. We first prove

(3.3)

1/2
p
V1
C(sinhp) tp

0 is? /4t
[
o cosh s — cosh p

where C' is independent of p > 0. Note that this estimate is analogous to the
one given in [I8]: for the heat operator, an additional Gaussian decay is available

(replace €%*" /4t with e="/4). The computation below shows that this extra decay
is not necessary in order for B3)) to be true. We have obviously

0 is° /4t 00 S
e Py S N,
o cosh s — cosh p o cosh s — cosh p

Using "trigonometry”, we find:

S

/m /\/QSmhmsmh(s_;e)

2

With the change of variable y = s — p, we estimate:

/ y+p / (y + 2,0) d
Y.
\/smh p + % smh \/smh smh (%)
For the first term, we use the fact that

S

- is non-increasing,
sinh s

to have the estimate:

/ Y+ 2p / / Vy+2p
\/smh smh smh p 1/ smh
\/ smhp / \/ smh % dy + \/_/ /smh g
2

S 'p V1+p.

sinh p

For the second term, we have:
1

0 \/sinh (p+ %) sinh (¥) Vsinhp Jo \/sinh (%)
and [B3) follows. To infer the proposition, we mimic the computations of [2], §5.

From [B2) and B3), we have:
Z 1 o \?
"4 5(@)] 3 |t|3/2/ |¢(Q’)|< : ) VI+pds.

sinh p

Recall that ¢ is radial: with the usual abuse of notations,
d(Y) = ¢(coshr’,w’sinhr’) = ¢(r').
Using hyperbolic coordinates,
= d(Q, Q') = cosh™ (coshrcoshr’ — sinhrsinh'w - w'),
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and we can write:

1 2 1
‘ itAy ¢ ‘N |t|3/2/ | (Q/)|K(T7T/)dﬂl)

where the kernel K is given by:

K(r,r') = / \/f (cosh™" (cosh 7 coshr’ — sinhrsinhr/w - w'))dw’,
Sl

with y
= 1 .
W) = g0y
With z = w - ', we have:
1
d
K(r,r'") = / \/f (cosh™ (cosh 7 coshr’ — zsinh 7 sinh r’))iz.
-1 1— a2

The lemma follows from Holder inequality. For A > 0, we have

. L 1/(2+2X)
K(r,1") < Cy (/ J (cosh™" (coshr coshr’ — zsinhrsinhr)) d””)

-1
With the change of variable

coshy = coshr coshr’ — zsinhrsinh 7/,
this yields

1 r4+r
K Ngoy [ ————
(r;7) A (sinhrsinhr’ /|_

r—r'|

) e 1/(242))
| ————— 1 d
A (sinhrsinhr’ /|TT/ y(1+y) y)

<c ((r +17) —|r — wP)” R

sinh r sinh 7/

A
<o <T’(1 + (1 +7’))1/ e

~ . .
sinh r sinh r’

’

1/(2+2X)
f(y)' ™ sinh ydy)

This completes the proof of the proposition, with 1+A =1-—c. O

We find a weighted dispersive estimate and weighted Strichartz estimates which
are similar to the ones for radial functions in H3. The difference is that we must
replace ws with ﬁé_g. Even though the value € = 0 is excluded, we can consider
d > 3 arbitrarily close to 3 and repeat the argument in (BJJ). On the other hand,
since wo is bounded, we have the Strichartz estimates as in R? for free: this yields
the Corollary B2 with n = 2 and d > 3.

(From Proposition we have the dispersion

Lrlad(H2)’ Vt 7& 0

. 1
itA o
He H (bHLf:d(HZ) /S |t|3/2 H(b|
For small time, [2, Theorem 1.2] yields:
AL 1
He tAyo ¢||LW(H2) < m”gf)HLl(Hz), Vi e [—1,1]\ {0}.

We infer the global dispersive estimate, for 2 < d < 3 (not necessarily an integer):

25 65, ey < gl

L. (H2) Vit 75 0.

We conclude:
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Corollary 3.5. Let d > 2. Then Strichartz estimates hold for d-admissible pairs
and radial functions on H?:
1. For any d-admissible pair (p,q), there exists Cy = Cy(d) such that

1Tl o gz < Callgllze, Vo € Li,q(H?).

2. For any d-admissible pairs (p1,q1) and (p2,q2) and any interval I, there exists
Co.0o = Cqy .42 (d) independent of I such that

/ U(t— s)F(s)ds
IN{s<t}

for every F € LP> (I; Lféd(HQ)).

< C‘haqz HFH
Lr1(I;L91)

L?2(1;L%) 7

4. SCATTERING FOR SMALL DATA IN L2 (H")

The proof of Theorem [Tl is straightforward in view of Section X0l and Corollar-
ies and

Let n > 2 and 0 < 0 < 2/n. Set d = 2/0: Corollaries B2 and B yield the
same Strichartz estimates as in R, provided that we work with radial functions.
Simply notice that the proof of Proposition relies only on functional analysis:
Holder inequality and Strichartz estimates. Theorem [[] follows: the statement is
the analogue of Proposition 23 with d = 2/0.

Remark 4.1. This result shows that there are no long range effects, at least in
a neighborhood of the origin in L2 ,(H"). This can be compared to [9, Proposi-

rad
tion 1.1]. There, the following nonlinear Schréodinger equation is considered:

2
104U + %ARnu = —%u +V(2e,. .., xn)u+ku*u ; zeR" n>1,
where V is any quadratic polynomial (V = 0 if n = 1). It is proved that for
0 < o < 2/n, there is a small data scattering theory in L?, just as in Theorem [T}
This is because the repulsive potential —x? yields an exponential decay in time of
the free solution. Here, this exponential decay in time is replaced by an exponential
decay in space. The proof relies on the same idea though: we have Strichartz

estimates that make it possible to pretend that we work in R? with d > n.

5. WAVE OPERATORS IN H} ,(H")

The argument for the proof of Theorem is similar. First, taking d = n, we
cover the range 2/n < o < 2/(n—2). To cover the range 0 < o < 2/n, we keep the
value d = 2/0: d > n. The proof of Proposition Z uses the same arguments as
the proof of Proposition Z3 plus Sobolev embeddings. Therefore, we simply have
to check that the step where Sobolev embeddings are used can be adapted.

Recall that we work in H", and that we pretend that we work in R?, with
d =2/0 > n. In the proof of Proposition X4, we used the embedding:

Hl(Rd) C L20+2(Rd).
Since we assume o < 2/(n — 2), we have:
Hl(Hn) C L2a+2(Hn).

Therefore, we can argue as in Section Bt we can mimic the approach to prove
Proposition B2 which is based on functional analysis.
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6. MORAWETZ ESTIMATES IN H"

In this section we prove some Morawetz type estimates for general solutions
to the equation ([CI]). Note that in this section the solutions are not necessarily
radial. We start by stating these inequalities. Their proof will be a consequence
of more general geometric set up already used by Hassell, Tao and Wunsch [24]
while studying the same type of estimates for non-trapping asymptotically conic
manifolds. This last paper in turn was based on the interaction Morawetz inequality
introduced by Colliander et al. [I6]. Define the operator H acting on a function f
defined on H"™ x H" as

Hf(Q,Q) = —Agnxu f(Q,Q) = —Aaf(Q,Q) — A f(Q, ),

and the distance function d(§2, Q') = distg» (Q, ). Then we can state the following
theorem

Theorem 6.1. For any compact interval of time I and for any u solution to ([[TI),

- / / H2(d(9, ) ult, Q) Plu(t, @)]? dQ dt < Cllull e ra1)-
H™ x H™
Since
5o (Q) + 0 () ifn=23,
—H?(d(Q,Q)) = !
(@Q.0) = § ol dQX) o
sinh®(d(©, "))

we also have the following corollary:

Corollary 6.2. For any compact interval of time I and for any u solution to ()
we have:

o [fn=23:

(6.1) [ [ e it aat < Cllule .

o Ifn>3:
h(d(Q, Q'
[ St e, )P lute, )P a2 dt < Clulle .
n JHn” smh Q Q/)) ’
Remark 6.3. Note that in the above results, we do not assume that u is radial.
Let M be a general Riemannian manifold with metric g. We denote by < -,- >,

the product on the tangent space given by the metric g. We define the real inner
product for functions on M

(6.2) (u,v)pr = §R/M u(2)0(2z) dVy(2).

We will often use the commutator [A, B] among pseudo-differential operators A and
B defined as [A, B] = AB — BA. We have the following lemma corresponding to
24, Lemma 2.1].

Lemma 6.4. Let a(z) be a real-valued tempered distribution on a manifold M,
acting as a multiplier operator (af)(x) = a(x)f(x) on Schwartz functions. Then

we have the commutator identities, with H = —Ajpy:

(6.3) i[H,a] = —i(Va, V) +iHa = —i(V*a)Vqy + iH,,
and the double commutator identity

(6.4) —[H,[H,a]] = —VgHess(a)*’V,, — (H?a),

where Hess(a)*? is the symmetric tensor
Hess(a)*® = (Vda)*? = g*7¢"°(8,05 + I'?50,a).
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We now assume that U is solution to
(6.5) 10U + ApU = F.
Then it is easy to see that given a real pseudo-differential operator A on M we have
(6.6) O {AUM),UM)m = G[H,AU®),Ut)m +
H—IAF (), U®#)m + (GAUR), F(t)m-
Next, given a real valued tempered distribution a and a function U(t, ) we define
(6.7) Mu(t) = (i[H,alU(t),U(t))pm-

By using (E3) and the definition (@) we recover the familiar form of the first order
momentum

(6.8) M, (t) = C‘/M<va VU (t)),U(t)dV,.

Now, by taking U solution to &) and A = i[H,a] in [EH) and using (G4, one
gets

(6.9) %Ma(t) = —(H,[H,a]U®),U®))m
+(H, a] F@),U(t)m + (=[H,a]U(t), F())m
= —(H?aU(t),U(t)nm — (VsHess(a)*VoU(t), U(t)) ur

+(H, a] F(6), U()m + (= [H, a] U (t), F(t)) -

Lemma 6.5. If M is a Riemannian manifold with a nonpositive sectional curvature
and if a is a distance function defined on M, that is |Va| =1, then for any smooth
function ¢,

(6.10) (Hess(a)*PV o6, V56), = 0

Proof. This is a well-known result in Riemannian geometry. We refer the reader
for example to Theorem 3.6 in [2§]. O

Using (@) and (EI0) after an integration by parts in space variable, we obtain
for all T' > 0 the key inequality:

T
(6.11) Mo(T) = Ma0) > [ ~(H2aU (). U} +
0

T
+/ ([H,a] F(t),U(t)) s + (=[H,a]U(t), F(t)) s dt.
0
We are now ready to prove Theorem Bl

Proof of Theorem [l Following again the argument in [24], we assume now that
M = H" x H", with the usual metric § = ¢ ® g. Assume also that u is a solution to
the equation (). It is easy to show that U(¢,Q, ) := w(¢, Q) u(t, Q') is solution
to the equation
iU (4, Q, Q) + Ag & A U(t,Q,Q) = ([ul*u) (t,Q) u(t, )+
+ (Jul*7u) (¢, Q) u(t, Q)
=:F(t,Q,Q).
We now set H = — (Aq @ Ag/) and a(Q, Q') = distgn (2, Q). It is easy to see that
this function a is a distance function with respect to the manifold (M, g). Also one
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can check that this manifold has a nonpositive sectional curvature. Finally one can
also prove, using ([G3)) and the definition of the real inner product ([E2), that

(6.12) ([H,a] F(t),U(t)) s + (—[H,a]U(t), F(t)) ;s =
(6.13) =(=(Va,VF(@))3.Ut))m + ((Va,VU(t))g, F(t))m =
= 20 i : /M Aqa(Q, ) |ul?7T2(t, Q) |ul(t, ).

Since (§5.7 of [18])
Aqa(9,Q) = (n — 1) cotanh d(£, '),
we infer by (EI]) that
T
(6.14) Mq(T) — Mq(0) >/ —(H?aU(t),U(t))ar dt.
0
Using (@) and the fact that a is a distance function we also have for any t € I =
[0, 7]
(6.15) Mo ()] < Cllullge gy
The proof of the theorem now follows by combining ([EI4) and ([EI5). O

7. ASYMPTOTIC COMPLETENESS IN H'!(H3)

First, we note that the proof recalled in Section EZZ] can be mimicked on H?: the
Morawetz estimate ([Z4]) was adapted to the hyperbolic case, [@Il). This proves
Theorem [[3 for 2/3 < ¢ < 2. The reason why we do not have to assume that u is
radial at this stage is that global in time Strichartz estimates are available on H?,
from [.

To decrease o, we proceed with the same idea as before, and pretend that we
work on R?, for d > 3. Fix d > 3: we first claim that (EII) implies

(1) Il g2 gy Il

Indeed, we noticed in Section 4 that for any d > 3, the pair (dJr 1, lejll))

is 2-admissible. Interpolating between the pairs (4,4) and (00, 2) yields the pair
(d—i— 1, %), hence ([I). Having the analogue of (ZH), we can go on with
the proof presented in Section Z4] thanks to Corollary for radial solutions.
This completes the proof of Theorem for any 0 < o < 2. Note also that if
Corollary B2 holds for solutions that are not necessarily radial, then Theorem
will be true without the symmetry hypothesis.

The reason why we stated Theorem in the case n = 3 only is the following.
In Section B we have proved the analogue of 4 and (ZH) for the solutions to
[CT) (not necessarily radial). To go on with the proof of [34], we would need the
analogue of (1) on hyperbolic space H", n > 4. A paradifferential calculus on H"
would be welcome then, which we do not have at hand.

If the recent proof of Tao, Visan and Zhang [34] cannot be used on H" for n > 4,
one might want to use the original proof of Ginibre and Velo [23] (or [I2]). As we
recalled in Section 24l this proof uses dispersive estimates for the free Schrodinger
group. Unfortunately, the dispersive estimates of the free Schrédinger group on H™
are only local in time as soon as n > 4 [2]. For this reason, even proving the same
scattering results on H" as on R™, n > 4, does not seem obvious at all.
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APPENDIX A. ON THE NOTION OF CRITICALITY

Consider the equation ([ITII). The critical scaling in R™ is

Se == ——.

2 o

At first glance, it is not clear whether the critical indices for ([[Tl) are the same as
in the Euclidean case, since the linear part of the equation is not scale invariant.
Note that in the case of a positive curvature, the geometry changes the notion
of criticality (see e.g. [6, B], [1]), but always in the “same order”: the positive
curvature “creates” more instabilities.
However, it is established in [2] that there is local well-posedness in H*(H"™) for

@@ if s > s,

subcritical in the Euclidean case = subcritical in the hyperbolic case.

This stems from the fact that we have the same local Strichartz inequalities as in
the Euclidean space. Moreover, in the focusing setting, blow-up may occur “as in
the Euclidean case”, thanks to a new virial identity, where the negative curvature
of the hyperbolic space shows up.

On the other hand, some proofs of ill-posedness rely on highly concentrated
initial data and solutions, so that the geometry is not relevant. To prove that the
notion of criticality is the same in the Euclidean and in the hyperbolic case, it
suffices to prove the analogue of the results of [I5]. We resume the semi-classical
approach of these results, as in [, Appendix| and [I0, Appendix B].

We give the proof for a nonlinearity which may be focusing: let k € {—1,+1}.
Assume s < s, and for 0 < A < 1, consider:

(Al) ’Latu + AHnu = ,‘<.‘,|u|2a'u ;o Up—o = )\7%+Sa0 (%) ,

where ag € C§°(R4; C) is such that
suppag C {1 <r < 2}.
Then u(0, -) is bounded in H*(H"), uniformly for A €]0,1]. Since u(0, -) is radially

symmetric, so is u(t, ), and we write u(t,r). Define ¢ by:

n no n t T
— \5—S S t+l-so — \—5ts o
Y(t,r) = A2 "%u (A t,Ar), oru(t,r) =X P (7)\?“50, )\) .

Denote ¢ = A2 1757 Because we assumed s < s., A and € go to zero simultane-
ously. We have:
ie0p° + 2021p° + (n — 1)e* A cotanh(\r)9,9° = k|Y°[279° 5 ¢°(0,7) = ao(r).

The idea is that for very small times, the Laplacian is negligible. Introduce the
approximate solution
ie0ip° = K|O°|*7¢° 5 ©°(0,7) = ag(r).
We have explicitly:
o (t,7) = ag(r)e el

In particular, the support of ¢°(t, ) is the same as that of ag.

Proposition A.1. Fiz k > n/2. Then we can find co,c1,0,C > 0 independent of
e €]0,1] such that ¥° and ¢ satisfy:

H"/’E _ 30€||L°°([01008|1H€\9];H’€) < C€| 1n€|61 .
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Proof. Denote w® = 9 — ¢°. It solves:
ie0yw® + e20%w® + (n — 1)e? X cotanh(\r)9,w® =k (F(¢°) — F(¢°)) — e20%¢°
— (n — 1)e%X cotanh (M) 9, ¢,
with wf,_ = 0, where we have set F'(z) = |2|29 2. Introduce the vector-fields
Hj =w;0,.
They commute with the Laplacian Ag». Moreover, since w is radially symmetric,

H; (07 4 (n— 1)Acotanh(Ar)d, )w® =

)\2
= H; | 8> + (n — 1)Acotanh(\ 8T+7Anl) €
) (22 + (0= DA cotanb(ur)a, + =5 A )
> \?
=92+ (n — ) Acotanh(Ar)0, + ———Agn—1 | H;w® .
(T (n — 1) cotanh(Ar) a2 s 1) W

For k > 0, we apply Hj, o...o Hj, to the equation solved by w®. The usual L?
estimate yields:
1
[wll oo o, ) S2 I (W™ +0%) = F(O) L1 o,01m)
+&)|020° || L1 ((0,15;2%) + €| A cotanh(Ar)3r 0% | 11 (0,115
Since supp ¢°(t,-) C {1 < r <2},
| A cotanh(A7) 9% || L1 (10,4, 1%) S 110-9° [ L1 (0,417 5

and we infer:

1
ol oy S < IF (W + %) = F ) 10,0 + I osgirnsa)
< 1 € =3 € t s\
S IFW® +¢%) = F(O )l po,,m0) + € <_> ds.
9 0 c

Since o is an integer, the fundamental theorem of calculus yields, when k > n/2:

1 (w= () + °(8) = F(&* ()| gn S (I @137 + IOl 1w® ()]

20k
< (IIwg(t)H?fk +(4) ) o (0.

On any time interval where we have, say, ||w®| g+ < 1, we infer:

Co [t )5\ 20k s\ k+2
€ oo . < - - c - ’
1w || oo (10,6); 1% =/, <€> [Jw (S)HdeS—i-CHE/O <€> ds

Gronwall lemma yields:

¢ k42 tq 20k
S T
Ell oo ey < Z —/Z
1wl Loo (0,4 1% N/O €<€> exp (CO/S . <€> dr) ds
t k+2 ¢ ¢ 20k
5/ €<§> exp (C’— <—> ds
o \& e \e
k42 20k
§€t<3> exp (C’E <E> )
€ e \e

For t = cpe|Ine|?, we have:

||w8||L°°([0,coe\ Ine|®);HF) S €2| 11f1€|(k+3)‘9 exXp (C/Ccl)+20k| 1n5|(1+20k)9) .
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Now if we take § = (1 + 20k)™! and ¢y sufficiently small, we have the estimate
of the proposition. A continuity argument completes the proof, for ¢ sufficiently
small. 0

Corollary A.2. Letn > 2, sk € R\ {0} and 0 > 0. For s < % — 1 () is not

locally well-posed in H*(H™): for any § > 0, we can find families (281)0@@ and

(u§2)o<e<a of radially symmetric functions with
ug;(r) € Co°(Ry) 5 Nugallms, lugallme <6, [lugy — ugellas — 0 ase —0,

such that if u§ and u§ denote the solutions to ([Il) with these initial data, there
exist 0 <t — 0, and ¢ > 0 independent of € €)0,1], such that

[Jui () = w5 ()] g = ¢

Remark A.3. We could also prove the norm inflation phenomenon, as called in [T5].
It is rather this result which is proven in [7, Appendix].

Proof. Let ag as above, and u; the solution to ([AJ]). Let
ugy(r) = (1 +6%)ugy (r),
where 0° — 0 as ¢ — 0. Denote
PE(t,r) = A2 Puy (AT )
From Proposition [A]] for k& > n/2,
45 — ‘P§||Loc([o,coe\1na|9];m) —0ase—0.

Note that the constants ¢y and 6 for 12 can be taken uniform with respect to ¢,
since ¢ is bounded. Now we have

I65(8) = @58 z- = [Jaoe™™H1o0l" = (14 %) agei=t 157 ol

HS
N Ha (emg\ao\z _emg(uas)ﬂao\?)u
e—0 0 s
- Haoemﬁlaof (1 _ emﬁ@éeﬂw)\aoﬁ) H
e—0 Hs
With ° = cpe|Ine|?, we find:
: € o 2
() — (%) e ~ H (1 _ ik26%|Ine|”|ao| )H )
I65%) — 25 e ~ [Jao (1 N
If we take 6° = |Ine|~?, then the corollary follows, since 1) and u have the same
H?® norms. ([l

APPENDIX B. ASYMPTOTIC BEHAVIOR OF FREE SOLUTIONS IN L2 (H?)

We stick to the case n = 3, because the Harish-Chandra coefficient is simpler.
In this appendix, all irrelevant “physical” /geometrical constants are denoted by c.

The Fourier transform in the radially symmetric case is defined as:

c

(B.1) FN) = 3 / sin(Ar) f(r) sinh rdr .
0
Plancherel formula reads:

(B.2) /Ooo |£(r)|? sinh2 rdr = c/ooo ’f(x)f AZd\.



20 V. BANICA, R. CARLES, AND G. STAFFILANI

Lemma B.1. For ug € L?(H3), radially symmetric, denote:

emittiG r
Uasym (L, T :ci,—ﬂ\(—) )
asym(t,7) 3/2 sinhr ° \2¢

Then we have: j
HeztAws Uy — uasym(t)HLQ(W) tjoo ’

Proof. First, we show an explicit representation for radial solutions:

2

et rp 2
————tsin () inh? pdp.
13/2 o sinhrsinhp Y to(p) sinh” pdp

To prove this we recall the representation of the free solution for n = 3:
c a2@o)  d(Q, Q)

B.4 t,Q) = i Q') e —— QY

(B4) u(t, ) 3/2° /H () e e, oy

where d(€2, ') is the hyperbolic distance between © and €' (see [2]). From (B,
one gets that for radial initial data, the free solution writes

. .2
671t+127 [e7e]

(B.3) eBuyy(r) = ¢

—it 00
(Z3/2 / - K(t,r, p,w - w')dw'ug(p) sinh® pdp ,
0

eitATF[s

up(coshr, sinhrw) = ¢

with
22 z
Kt,rpw o) =¢e7%

z=cosh™! (cosh r cosh p—sinh r sinh p w-w’) '
Let us consider an isometry T € SO(3) such that 7'(1,0,0) = w. Then a given
W' € R¥*NS? defines a unique pair (o, 6) € (0,7) x R2NS!, related by the formula:

sinh z

W' =T(cosa,sinaf).
Moreover, w - w’' = cosa and dw’ = sin ada df. With this change of variable,
. K(t,rp,w- W )dw = c/Tr K(t,r,p,cosa)sinada.
Next, we changse cos & into x, so ’
. K(t,rp,w-w)dw = c/1 K(t,r,p,x)dz.
-1
Finally, we do a last change of variable,

coshr cosh p — sinh 7 sinh px = coshy,

C r+p - y2
/ K(t,r pw-w)dw' = 7/ e ydy.
2 sinhr sinh p J),._,)

and get

&

By simple integration formula (B3] follows. We infer:

e tAu3 gy (r)—Uasym (£, 1) =

2
—it+ily 0 L2 2t
= CeﬁTtL/o (ezi_t - 1) - sin (%) uo(p) sinh pdp .

sinh r
Therefore:
itAys _ =
‘6 12U Uasym(t)‘ 12
[eS) o0 2 t 2
=5 () ) ot o
00 00 2 1 ?
_ C/ r2 / (6147 _ 1) = sin (rp) ug(p) sinh pdp| dr.
0 0 "
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Use Plancherel formula (B2):

2 o0 . p
= LT |
\ A CREC

Now we conclude with a density argument, thanks to the estimate (for instance)

e 1] < 0]

2
sinh? pdp .

M

it A

Uy — Uasym (t) ‘

O

Remark B.2. This asymptotic behavior is essentially the same as in the Euclidean
case, up to a new oscillation in time, and the weight —t—. This can also be seen
as follows: in the proof, we have used the identity

e'tAus ug(r) = WM D F Myug ,

where F is the Fourier transform, Mq(r) is the multiplication by eiTz/(‘lt), Dy is the
dilation at scale 1/(2t) with L? scaling:

1 T
Dyp(r) = FEyoRd (E) ;
and W is the weight W = e~ sop- In the Euclidean case, we have the same
formula, with the only change W = Id, and the usual asymptotics is:

eitARn - MtthMt . ’\J; Mtth.

The proof of the L? asymptotics is the same as above.

APPENDIX C. A GALILEAN OPERATOR?

In the Euclidean case, a nice object for scattering theory (and also blow-up, see
e.g. [37) is the Galilean operator
||

x| . . )
Jouel(t) = x + 2itV, = 2ite* 37V, (e_ZT ) = eitArn petArn

Recall that for any radial function ¢ on R3, we have:

Ags (@) = %83¢.

r

A similar identity is available for radial functions on H?:

Aus < ¢(r) > S

sinh r sinhr "

Using the Galilean operator on the (half-)line, it is then natural to introduce the
following operator, acting on radial functions on H3:
29t 2 2

(C.1) J(t) = P i O (6_147 sinh r ) = r + 2it0, + 2it cotanhr .

sinh r
Now we have

[J, z@t + AHB] U(t, 7") = 0 N

provided that u is radial. Note that as in the Euclidean case, J is an Heisenberg
observable (see e.g. [31]):

(C.2) J(t) = eltPurpe=itlus

We already saw that in the radial framework, J commutes with the Schrodinger
operator. Proceeding as in [[1, Lemma 6.2], we find:
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Lemma C.1. Let n = 3. For every q € [2,6], there exists ¢, such that

W;_EﬂsH < |t|ct;iq) HfbH;J(q)||J(t)¢||5L(2q), Vit #0, for every radial function ¢,
La

inh 1 1
where we have denoted w3(r) = ST and 5(q) =3 (5 - —) € [0,1].
r q

It is important to understand how J acts on nonlinear terms. Let F be a C!
function such that F(z) = G(|z|?)z (the usual gauge invariance). We compute:

(C.3) J(t)F(u) = 0, F(u)J(t)u — 0z F(u)J(t)u + it cotanh rF' (u).

Forgetting the last term, we would have the same expression as in R", and J would
act on such nonlinearities like a derivative. Unfortunately, this last term cumulates
two features: extra linear growth in time, and singularity as r — 0.

As a matter of fact, the above drawback is also present in the radial Euclidean
case. There, it can be removed by using Jeuc, even in a radial framework (see e.g.
H]). However, the analogue for Jeuq in hyperbolic space (not only in the radial
case) may just not exist. .. Consider the Euclidean case in R®. We have

Ags :8§+28T+%ASZ.
r r

For a radial function u(t,r), we have the commutation relation

[x; 4 2it0;,i0; + Ags]u(t, ) =0,
where (x;+2it0;)u(t, r) = (rw;+2itw;0; )u(t, r). The factor w; is crucial: in general,

[r + 2it0r, 10y + Ags]u(t,r) # 0.
On the other hand,

7%2#&+2%J&+AM}&
The above operator can also be written as

J(t) = r+ 2it0, + 22'; = ?ei%& (eﬂ'z_ﬁr ) .

When acting on gauge invariant nonlinearities, it is not like a derivative:
—

I F(u) = 0. F(u)I (t)u — 0-F(u)T0u + L F(u).

r
The last factor has the same drawback as above. Note that even in the radial case,
one uses Jouel and not J (see e.g. [4). So we may try to extend J to a non-radial
framework. Yet, seeking Jhyper of the form

2it 2 2 !
Jnyper = Twj + 2itw;0, + 2ith(r) = ﬁlr)eZijaT (eﬂﬂ f(r) ) (h = f7) ,

and writing
[Jhyper; z@t + AHJ] U(t, 7") = 0,
yields incompatible conditions.

Using the operator J and Lemma [C] one can prove the following scattering
result though. For T" > 0 possibly large, define:

Yr = {u, Ju € C(] — oo, —T]; L?), with W§/3u7w3/3<]u € L*(] — oo, =T}; L) ;
ull e o0, ~7s12) < 2llucllzz, (193 Pull 20y < 2C6[u-]| L2,
||JU||L00(]_OO,_T;L2) < QHTU,HLz, ||W§/3J’UJHL2(R;L6) g 26V6||7”LL,||L2}7

where Cg is given by Proposition Bl when n = 3.
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Proposition C.2. Letn =3,ty = —oo and 1/4 < o < 1. For every radial function
o =u_ € L2(H?) with ru_ € L*(H3), there exists T = T(o, |u—|| 12, ||[ru_||12) such
that (L) has a unique solution in Yr.

Remark C.3. The condition 1/4 < o < 1 looks rather strange at first glance. It
appears because of the singular term that shows up when J acts on the nonlinearity,
as discussed above. Without this term, we could virtually cover the range 0 < o < 2.
Note however that we can go below o = 1/3, thus showing the absence of (the usual)
long range effects.

Proof. We want to show that the map

O(u)(t) :=U(t)u — z/ U(t — s)|u*u(s)ds

— 00
has a fixed point in Y7 for T sufficiently large. Let (g, p) be an 3-admissible pair to
be chosen later. Proposition Bl yields:

ng/gfb(u)‘ W;Q/p,|u|2‘7u

< Collulzz + Cop

roy
LZL Ly

where we denote from now on: L%LY := L%(] — oo, —T; L*(H?)). Introduce indices
such that:

1 1 20 1
(C.4) ¢ a0 with s €]2, 6]
' 1 1 20 Y
rop ok
Hoélder’s inequality then yields:
’ 20
Hwéﬂ/q |u|2"u / < Hwéd/qu’ W172/su W4/q72+2a(2/571)’ .
Ly L Lb La Lk Ls Le
The last term is finite provided that:
4 2 2
C.5 2— =420 (1=—=)>—-
(©5) PR ( S) 0

In view of (CA), this is equivalent to o > 0.

Now we show that ([C4]) can be achieved for a 3-admissible pair (p, q). Letting
(p,q) = (2,6), we find k = oo and ([CH) is satisfied for any o > 0. Then s €]2, 6]
provided that ¢ < 2. Since these algebraic conditions are open, they still hold if we
take ¢ = 6 — ¢ for £ > 0 sufficiently small, and p such that (p, ¢) is 3-admissible:
20

1_2/‘1/ |u|20u

1-2/s
LE} W u

<C Hwé_wqu

/ ’ N
LE La L2 La LkLs

Note also that now, p > 2, hence k < oo. By interpolation, the first factor of the
right hand side is controlled by:

3(q)

1-2 1-6 2/3

st /qu‘ < ||UHL39£Z) ’W3/ U’ 1216"
T

LY La
(From Lemma [C1l we have, for ¢t < —T

1-2/s 1 1-4(s (s
[ ut)],. < #1905 Il Nl

We check that (C4) implies
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Therefore,

_ 20 _ 2
W57 l| ST (g e + I ullagre) ™

Lk Ls

Then choosing T sufficiently large, we see that for u € Yp,
2/3
o) , < 2Celu-z.
[ 2], ,, < 2Colu-e
The similar estimate for ||®(u)|/e 12 proceeds along the same lines.
To estimate J®(u), we find:

Hw§/3J<I)(u)’

s < Collru-lze + € [l ul

!yt
L%,L ng La

1-2/q;
+C ng /¢ cotanh r|u|2"+1’ ,

LA
with the same admissible pair (p,q) as before, and where (p1,q1) is a possibly

different admissible pair. For the second term of the right hand side, we proceed
as before, to find:

1-2/s ||
W U

Hwé_2/q/|u|2"[]u‘ 3

<C Hwé_wa}u‘

Ly LY LE.La LkLs
We are left with the next term, involving w§_2/q t cotanh r|u|?? 1. Introduce the

condition

1 1 20 1
C.6 - =—+ —+ —
(©6) @ @ s B

When it is satisfied for s1,6; > 1, we have:

20
1-2/4q; 1-2 1-2/s
Hw3 /6 cotanhr|u|2"+1‘ , < ng /qlu‘ wy 2y X
L% La1 Ls1
4 —2420(2/s1—1
X ng/ql /5171 cotanh r
Lo1

For the last term to be finite, a new condition appears, for the integral to converge
near r = 0 (for » — oo, nothing is changed):

(07) 1<6; <3.
For q1, 1 €]2,6[, Lemma [CTl then yields:

1 )204—1 .

1-2/q;
st /ay cotanhr|u|2‘7+1‘ i 5 W (HUHL%"LZ + HJUHL,??LZ

The right hand side multiplied by ¢ is in LP1(] — 0o, —T) as soon as:

1
(C.8) 5(q1) +206(s1)— 1> a

1
So we are left with the following situation: if we can meet (CH), [C) and (C3)
with (p1, ¢1) admissible and ¢, s1 €]2, 6], then choosing T sufficiently large, ® maps
Y7 to itself.

The line of reasoning is the same as above: if we pick ¢ = s1 = 6, then (C0)

and ([C1) imply ¢ < 1, and ([CH) yields o > 1/4. Conversely, if 1/4 < o < 1,

then taking (p1,q1) = (2,6) and s; = 6, 61 given by ([CH) satisfies ([CT), and ([CX)
holds. By continuity, all the conditions required are satisfied if we take g1 = 6 — &1,
with 1 > 0 sufficiently small.

Up to increasing T', ® is a contraction on Y7, and the Proposition[C2follows. O
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We finally notice that an analogue to the pseudo-conformal conservation law [22]
is available:

d 4t? >
& (170Ul + 2 iRz, ) =
(C.9) \

oc+1

/ (2 — 0 — 207 cotanh r) |u|?F2(t, ) sinh? rdr.
0

This evolution law should make it possible to establish some asymptotic complete-
ness results in weighted Sobolev spaces, but we leave out the discussion here.
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