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AN EFFICIENT ALGORITHM FOR

PREDICTIVE CONTROL OF PIECEWISE

AFFINE SYSTEMS WITH MIXED INPUTS

Sylvain Leirens ∗ Jean Buisson ∗

∗ Supélec–IETR, Cesson-Sévigné, France

Abstract: This paper presents a mixed optimization algorithm devoted to predic-
tive control of hybrid systems belonging to the PieceWise Affine (PWA) class with
mixed (i.e. continuous and discrete) inputs. By using the particular structure of
the optimization problem, the number and the dimension of the subproblems to
solve in order to find the optimum are significantly reduced.
This approach is applied to a classical case study in the field of hybrid systems:
the control of water levels of a three tank system.
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1. INTRODUCTION

A great part of the literature concerning advanced

control involves the concept of optimality and
needs suitable optimization methods. To address
the control problems of complex and constrained
industrial processes, predictive control has be-
come a standard, although it requires an opti-
mization procedure which has to be carried out
on line. At each sampling time, an optimal control
sequence (with respect to a given cost function) on
a finished prediction horizon is found, whose first
control only is applied to the system. The whole
procedure is then repeated at the next time step
(receding horizon).

Hybrid systems are dynamic systems involving the
presence of continuous and discrete variables in
the models. Consequently, the optimization meth-
ods used by the predictive control scheme are
confronted to combinatorial aspects. Among the
various paradigms allowing to build hybrid mod-
els, some classes of systems lend themselves par-
ticularly to the development of predictive control
laws, especially in their discrete time formulation.
A commonly used class of hybrid systems is piece-
wise affine systems (PWA) which are defined by

a piecewise affine dynamic over non-overlapping
regions of the state-input space.

The effort of research is mainly devoted to tech-
niques leading to a reduction of the combinatorial
complexity involved in the optimization problem
which is associated with the predictive control
law. The purpose of these techniques consists in
avoiding the enumeration of all the possibilities for
the discrete variables on the prediction horizon,
which generates a (very) great number of subprob-
lems to be solved to find the searched optimum at
each sampling time.

For continuous PWA systems (i.e. no discrete
state nor discrete control inputs), reach set com-
putation based algorithms are proposed, coupled
to a branch & bound strategy in (Bemporad et

al., 2000), and using a state transition graph in
(Peña et al., 2003). In (Stursberg, 2004), nonlin-
ear programming and hybrid system simulation
are embedded into a graph search algorithm. For
switched affine systems (SAS) which define a sub-
class of PWA systems involving mixed control in-
puts, but no partitioning of the continuous state-
input space, a partial enumeration algorithm is
proposed in (Leirens et al., 2005).



The Mixed Logical Dynamical (MLD) formalism,
whose equivalence with PWA systems has been
proved in (Heemels et al., 2001), leads to a model
made up of discrete time linear equations and a
set of linear inequalities. They involve real as well
as binary variables (Bemporad and Morari, 1999).
The implementation of predictive control for hy-
brid systems modeled in a MLD form requires the
solving of mixed linear or quadratic optimization
problems, called MILP/MIQP, which need a sig-
nificant amount of computation. These kinds of
optimization problems are solved by using branch
& bound techniques with relaxation of the binary
variables and linear or quadratic programming,
called LP/QP.

In this paper, the approach suggested in (Leirens
et al., 2005) is extended to PWA systems with
mixed control inputs. It is organized as follows.
PWA systems are presented in section 2. Hybrid
predictive control principles are introduced in sec-
tion 3 and section 4 is devoted to the solving of the
associated mixed optimization problem. Section
5 presents the implementation of the proposed
approach and the results obtained for the control
of water levels of a classical hybrid control case
study: the three tank system. The conclusions are
given in section 6.

2. PWA SYSTEMS

The class of systems, called PWA systems with
mixed inputs (but whose state is continuous), that
are used in this paper is defined by the following
discrete time equations:

x(k + 1) = Aix(k) + Biuc(k) + ai (1)

y(k) = Cix(k) + Diuc(k) + ci (2)

where x ∈ X ⊂ Rnx is the state vector, uc ∈ U ⊂
Rnuc is the continuous control input vector and
y ∈ Y ⊂ Rny system output vector. A partition
χj (j ∈ J ⊂ N) of the continuous state-input
space, independent of the discrete input vector ud

(ud ∈ Ud with e.g., Ud ⊂ Nnud), is defined as
follows :

χj =
{
(x,uc) |Fjx + Gjuc ≤ fj

}
(3)

The subscript i in (1)–(2) denotes the mode i(k) ∈
I ⊂ N with respect to the kth time step and is
defined by a value of the discrete inputs ud(k)
and the membership of a partition χj . A function
ϕ : X×Uc×Ud −→ I is then defined such that :

i(k) = ϕ(x(k),uc(k),ud(k)) (4)

The control inputs u of the system are composed
of the continuous ones (uc) and discrete ones (ud)
with nu = nuc +nud. The whole number of modes
for the system is given by :

p = card(I) = card(J) × card(Ud) (5)

3. PREDICTIVE CONTROL

The principle of predictive control consists in
solving an open loop optimal control problem on a
receding prediction horizon. The loop is closed by
the use of a new measurement of the system state
at every sampling time. The prediction model
(PWA) is time invariant thus the time origin can
be used as the current time step in the equations
without loss of generality. Let UN be the sequence
of controls on the prediction horizon, chosen of
length N :

UN = (uT (0) uT (1) · · · uT (N − 1))T (6)

with u = (uT
c uT

d )T and given the following cost
function :

JN (x(0),UN ) = F (x(N)) +
N−1∑

k=0

L(x(k),u(k))

(7)

In practice, the cost function (or performance
index to be optimized) includes a term based on
the state x compared to a reference and a term
based on the control inputs u. Given :

L(x(k),u(k)) = ‖x(k + 1) − xr‖Qx
+ ‖u(k)‖Qu

(8)

F (x(N)) = ‖x(N) − xr‖Qf
(9)

where xr is the state reference. Using 2-norm, the
cost function is quadratic, i.e. ‖w‖Q , wT Qw.
The weighing matrices are such that Qx ≥ 0,
Qu > 0 (by taking account of constraints on u,
typically actuator constraints, it is sufficient for
the matrix Qu to be semi-positive definite) and
Qf ≥ 0.

At every time step, the following optimization
problem PN has to be solved, where superscript o

means optimality :

PN (x(0)) : Jo
N (x(0)) = min

UN

JN (x(0),UN ) (10)

fulfilling the model constraints (1)–(3). A final
state constraint x(N) = xf can be added, espe-
cially to guarantee the stability of the closed loop
system (Mayne et al., 2000).

A characteristic of the optimization problem
which is formulated above is its mixed nature. The
presence of continuous inputs (uc) and discrete
ones (ud) leads to consider the searched control
sequence UN as a sequence of continuous inputs
denoted UcN and a sequence of discrete inputs
denoted UdN on the prediction horizon N . Then :

Jo
N (x(0)) = min

UdN

(

min
UcN

JN (x(0), (UcN ,UdN ))

)

(11)
subject to the model constraints, for k =
0, 1, · · · , N − 1 :



x(k + 1) = Aix(k) + Biuc(k) + ai (12)

y(k) = Cix(k) + Diuc(k) + ci (13)

Fix(k) + Giuc(k) ≤ fi (14)

with i(k) = ϕ(x(k),uc(k),ud(k)).

Let IN =
(
i(0) i(1) · · · i(N − 1)

)T
∈ IN be a

sequence of modes on the horizon N . It defines a
sequence UdN and N sets of constraints (12)–(14)
for k = 0, 1, · · · N − 1. The problem PN can be
rewritten this way :

Jo
N (x(0)) = min

IN

(

min
UcN

JN (x(0), (UcN , IN ))

)

(15)
For a given sequence of modes IN , the cost :

J∗

N (x(0), IN ) = min
UcN

JN (x(0), (UcN , IN )) (16)

is the optimal cost that is found by solving a con-
tinuous optimization subproblem (the sequence
IN – then UdN – is known) subject to constraints.
This subproblem can easily be reformulated in
a standard problem of quadratic programming
(QP). The superscript ∗ means optimality re-
garding to a sequence of modes: the continuous
control sequence called U∗

cN is said optimal with
respect to IN . However, the constrained optimiza-
tion problem (16) is not necessarily feasible, i.e.

for the given sequence IN , no solution can satisfy
the model constraints (12)–(14) on the horizon.

4. MIXED OPTIMIZATION

The optimization problem associated with the
predictive control of PWA systems is now formu-
lated, this section is then devoted to its solving.

4.1 Exhaustive enumeration

The simplest way to find the searched optimum
consists in enumerating all the possible sequences
of modes on the prediction horizon and then to
solve the QP subproblems associated with the
corresponding sequences. For a given sequence of
modes, two situations may occur: either there is no
solution satisfying the constraints (infeasibility) or
the QP subproblem is feasible. For each feasible
sequence IN (defining a discrete control sequence
UdN ) an optimal continuous control sequence
U∗

cN and a corresponding cost J∗

N (x(0), IN ) can
be obtained. The searched optimum is then given
by the sequence of modes which minimizes (16):

Jo
N (x(k)) = min

IN

(J∗

N (x(k), IN )) (17)

This method which is called exhaustive enumera-
tion is quickly useless when the number of modes
and/or the length of the prediction horizon in-
crease because the problem is NP-hard.

Using a tree shape representation, the depth of
the tree of possibilities grows with the length of
the horizon. For a given depth, the width of the
tree is fixed by the number of possible modes for
the system. Each leaf is a QP subproblem to solve
and one of them is the searched optimum. The
dimension of all the QP subproblems is identical,
i.e. the dimension of the optimization vector is
dim(Uc) = nuc × N .

4.2 Partial enumeration

Exhaustive enumeration consists of completely
covering the tree of possibilities. The optimization
problem associated with the predictive control has
a particular structure: the cost is additive with
positive terms. The key idea of the suggested
partial enumeration algorithm is knowing a sub-
optimum of (11) – (14), evaluate partial costs in
order to prune the tree, i.e. cut branches that
cannot lead to the optimum. It is a kind of branch
& bound algorithm.

For a partial horizon P (P < N), i.e. at a depth
P in the tree, a partial cost is defined as follows:

JP (x(0),UP ) =

P−1∑

k=0

L(x(k),u(k)) (18)

The proposed approach is a recursive algorithm
which is composed of a descent strategy to explore
the tree of possibilities and a criterion of branch
cutting.

Descent strategy: suppose to be P (< N) time
steps in the future, i.e. at a depth P in the tree of
possibilities. The proposed strategy a kind of best

first one :

• compute the optimal costs JP+1 associated
with the feasible subproblems for the possible
choices of mode i;

• begin with the branch which gives the mini-
mal cost on the horizon P +1 to continue the
exploration.

Branch cutting: suppose to have a first sub-
optimum (all the leaves for which the associated
QP subproblem is feasible are suboptima, the
searched optimum is the best one). Prune the tree
by cutting the branches for which:

• the optimal cost on a partial horizon is
greater than the cost of the known subop-
timum;

• the subproblem is infeasible.

To cut a branch means to eliminate all the
branches following it. The known suboptimum is
updated when a leaf is evaluated and whose cost



is lower than the one obtained for the previous
suboptimum.

Given a sequence of N modes IN (the associated
QP subproblem is assumed to be feasible) and a
horizon P with P < N . The following notations
are used :

• I
(N)
P is the sequence of the P first modes

extracted from the sequence IN ;

• U
(N)
cP is the continuous control sequence of

length P extracted from the sequence UcN .

It is recalled that the superscript ∗ means opti-
mality regarding to a given sequence of modes: i.e.
the sequence U∗

cN is optimal regarding to a given
sequence of modes IN . However the extracted

sequence U
∗(N)
cP is not necessarily optimal over the

horizon P .

Proposition: Given a sequence of modes IN , for
all P < N , the optimal cost that is obtained for
the sequence IN is greater than the optimal cost

that is obtained for an extracted sequence I
(N)
P :

∀P < N, J∗

N

(
x(0), IN

)
≥ J∗

P

(
x(0), I

(N)
P

)
(19)

Proof: The cost (16) can be split in two terms,
for all P < N :

J∗

N

(
x(0), IN

)
= JP

(
x(0), (U

∗(N)
cP , I

(N)
P )

)

+
N−1∑

k=P

L
(
x(k), (u∗

c(k), i(k))
)

+ F (x(N))(20)

The cost is additive with respectively positive and
semi-positive definite functions L and F :

J∗

N

(
x(0), IN

)
≥ JP

(
x(0), (U

∗(N)
cP , I

(N)
P )

)
(21)

The cost JP

(
x(0), (U

∗(N)
cP , I

(N)
P )

)
is the cost ob-

tained with an extracted sequence U
∗(N)
cP and is

then suboptimal over the horizon P :

JP

(
x(0), (U

∗(N)
cP , I

(N)
P )

)

︸ ︷︷ ︸

suboptimal

≥ J∗

P

(
x(0), I

(N)
P

)

︸ ︷︷ ︸

optimal

(22)

2

Suppose being at a depth P < N and that the
associated cost JP is greater than a known subop-
timum, with respect to the preceding proposition,
the corresponding branch and all the following
ones can be cut.

The partial enumeration algorithm is a branch &
bound algorithm which leads to the optimal solu-
tion by taking advantage of the particular struc-
ture of the optimization problem associated with
predictive control. Mixed integer programming,
which was developed to solve standard problems,
purely combinatorial or mixed, cannot exploit this
feature. In the framework of predictive control of

MLD systems, the associated optimization prob-
lem is reformulated in such a standard MIQP
problem (Bemporad and Morari, 1999; Mignone,
2002).

The suggested descent strategy is a heuristic

which allows to obtain a first suboptimum that
is hoped of good quality, i.e. not far from the op-
timum. The suboptimal character comes from the
choice of the sequence of modes (best first strategy
at one prediction step) but the suboptimum is
obtained by solving a QP subproblem on the full
horizon N .

In this approach by partial enumeration, the di-
mension of QP subproblems to be solved starts
with nuc at the top of the tree (one step time
prediction) to grow with the horizon until nuc×N

at the bottom of the tree (horizon N).

This algorithm is illustrated on figure 1. The
numbers indicate the way followed out in the tree,
i.e. how the tree has been explored. Bold lines
gives the path to the first suboptimum (best first
strategy). The presence of a cross means the result
of a branch cutting: either the cost is greater
than the one of the known suboptimum or the
subproblem is infeasible. The searched optimum
is marked out by a triangle.

pN sequences of modes

horizon

0

N − 1

Prediction

p modes

2

1

3

48

5

6

79

10

Fig. 1. Partial enumeration

Remarks:

(1) The presence of an equality constraint on the
final state x(N) = xr has to be considered
only for the evaluation of a cost on the
complete horizon (N). This constraint does
not exist for the evaluation of a partial cost
(P < N).

(2) In the case of a purely combinatorial opti-
mization problem, the cost at a node in the
tree of possibilities is obtained by the sum
of the costs associated with the branches
leading to this node (the cost is evaluated
downward). The problem considered here has
a mixed nature. The cost of a branch is not
known a priori since it depends on the con-
tinuous control u∗

c found by solving the QP
subproblem associated with the path in the
tree.



5. APPLICATION EXAMPLE

5.1 Description of the case study

The proposed algorithm is applied to the three
tank system (Lunze, 1998) whose diagram is rep-
resented figure 2. The system is composed of three

V1f V3f V2f

V23l

V23u

V13l

V13u

1 3 2

Q1 Q2

h3

h1

h2hv

Fig. 2. Three tank system

tanks numbered from 1 to 3 with a maximal height
hmax. Tanks 1 and 2 are supplied with water by
two pumps whose respective flows Q1 and Q2 can
vary between 0 and Qmax. Four valves V13l, V23l,
V13u and V23u allow to control flows between the
tanks. It is assumed that they can take only two
states : opened (1) or closed (0). The upper valves
are located at a height hv. The valves V1f , V2f

and V3f define outgoing flows. The levels of water
in the three tanks, which are the variables to be
controlled, are noted h1, h2 and h3 respectively.

We do not give details about the model in this
paper: a complete review of the equations used to
build the prediction model can easily be found,
e.g. in (Mignone, 2002). We focus on the results
obtained for a step change in the water height
references. The state space generated by h1, h2

and h3 is divided in eight partitions. Considering
both positions, open or closed, of the four valves
V13l, V23l, V13u and V23u, the total number of
modes for this case study is 8 × 24 = 128.

Using a sample time T = 10 s, simulations of
20 × T = 200 s have been carried out for various
prediction horizons (2 ≤ N ≤ 6). The first column
of table 1 gives the numbers of QP subproblems
which would have been necessary to solve at each
sample step while proceeding by exhaustive enu-
merations. The three following columns show the
minimum (QPmin), average (QPmoy) and max-
imum (QPmax) numbers of solved subproblems
at each sample step obtained using partial enu-
merations (the number of solved QP may vary
at each sample step during the simulation). The
minimum number of QP can not be less than the
one given by a straight descent in the tree, just
enumerating the p possible modes at each time

N pN QP min QP moy QP max

2 16384 256 420 1024

3 2.1 10
6 384 1390 6528

4 2.7 10
8 512 4815 44928

5 3.4 1010 1664 9045 86912

6 4.4 10
12 2688 15104 139264

Table 1. Performances of the partial
enumeration algorithm

part. enum. (PWA) miqp (MLD)

N QP max time (s) QP max time (s)

2 1024 4.34 589 35.1

3 6528 27.8 6821 591

4 44928 233.3 27609 3583

Table 2. Comparison with miqp–MLD

step while choosing the path with the smallest
partial cost: QPmin≥ p × N .

Comparisons have been made between the results
obtained by using partial enumeration and miqp
algorithms. Although miqp is not recognized as an
efficient MIQP solver (such as commercial ones,
e.g. CPLEX), it is used as a basis to make the
comparison. Both algorithms are Matlab scripts
using quadprog from the optimization toolbox.
The miqp algorithm is based on branch & bound
and relaxation strategies and is associated with
the MLD formalism, quoted in introduction. The
MLD model of the three tank system has been
obtained using the software Hysdel 2.05 (Torrisi et
al., 2002). The results are presented in table 2 for
2 ≤ N ≤ 4 with the maximum numbers of solved
subproblems at each time step and the associated
computation times (not taken into account in the
control loop). These results have been obtained
with Matlab 7.0 running on a 2 GHz clocked PC
computer.
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Fig. 3. Number of solved QP versus simulation
time (N = 2, 3, 4) with partial enumeration

In addition to the number of subproblems solved
to obtain the optimum, the computation time
is also related to the dimension of the subprob-
lems. The MLD formalism requires the addition
of nδ = 3 auxiliary binary variables and nz = 7
auxiliary real variables. The maximum dimension
of a subproblem is then (nuc +nud +nδ +nz)×N .
For the partial enumeration, the maximal dimen-
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Fig. 4. Number of solved QP versus simulation
time (N = 2, 3, 4) with miqp
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Fig. 5. Computation time versus simulation time
(N = 2, 3, 4) with partial enumeration
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Fig. 6. Computation time versus simulation time
(N = 2, 3, 4) with miqp – vertical time scale
factor = 10 compared to figure 5

sion of a subproblem is nuc × N . The interest
of the suggested approach also lies in the small
dimension of the subproblems to solve, which in-
duces small computation times. At the beginning
of the optimization procedure, it is necessary to
solve a significant number of subproblems but of
very small dimensions. To cut branches in the tree
allows to restrict the number of subproblems with
a more significant size to be solved. In this exam-
ple, it should be noticed that the farther from its
reference the state is (actually at the beginning
of the simulation), the bigger the computational
effort required to solve QP subproblems is.

6. CONCLUSIONS

This article presents a kind of branch & bound al-
gorithm to solve the mixed optimization problem
associated with the predictive control of PWA sys-
tems with mixed inputs. Knowing a suboptimum,
the key idea of this algorithm is to evaluate partial
costs (i.e at intermediate or partial horizons) in
order to prune the tree of the possibilities by
cutting the branches which cannot lead to the
searched optimum.
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