
HAL Id: hal-00084297
https://hal.science/hal-00084297

Submitted on 30 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract interpretation of programs as Markov decision
processes

David Monniaux

To cite this version:
David Monniaux. Abstract interpretation of programs as Markov decision processes. Science of
Computer Programming, 2005, 58, pp.179-205. �10.1016/j.scico.2005.02.008�. �hal-00084297�

https://hal.science/hal-00084297
https://hal.archives-ouvertes.fr

ha
l-

00
08

42
97

, v
er

si
on

 1
 -

 3
0

Ju
n

20
07

Abstract interpretation of programs as Markov

decision processes

David Monniaux

June 30, 2007

Abstract

We propose a formal language for the specification of trace proper-
ties of probabilistic, nondeterministic transition systems, encompassing
the properties expressible in Linear Time Logic. Those formulas are
in general undecidable on infinite deterministic transition systems and
thus on infinite Markov decision processes. This language has both
a semantics in terms of sets of traces, as well as another semantics
in terms of measurable functions; we give and prove theorems linking
the two semantics. We then apply abstract interpretation-based tech-
niques to give upper bounds on the worst-case probability of the stud-
ied property. We propose an enhancement of this technique when the
state space is partitioned — for instance along the program points —,
allowing the use of faster iteration methods.

1 Introduction and related works

The study of probabilistic programs is of considerable interest for the vali-
dation of networking protocols, embedded systems, or simply for compiling
optimizations. It is also a difficult matter, due to the undecidability of
properties on infinite-state deterministic programs, as well as the difficulties
arising from probabilities. In this paper, we provide methods for the analysis
of programs represented as infinite-state Markov decision processes.

Markov decision processes are a generalization of Markov chains — that
is, probabilistic systems where the probabilities of transitions are entirely
determined by the last state encountered. They add nondeterministic tran-
sitions to the fully probabilistic transitions of the Markov chain. By “nonde-
terministic transitions”, we mean transitions for which an arbitrary choice
is made, without any statistical property, as opposed to probabilistic transi-
tions. This greatly enhances the generality of the model, since processes for

1

which all probabilities are not known (for instance, because of an unknown
or even hostile environment) can be represented. This extension also allows
easier abstraction of Markov chains, since many states with complex proba-
bilistic transitions can be abstracted into fewer states and nondeterministic
transitions.

The analysis of finite-state Markov decision processes was originally con-
ducted in the fields of operational research and finance mathematics [28].
More recently, they have been studied from the angle of probabilistic com-
puting systems [1–3, 9, 10, 18, 30]. Effective resolution techniques include
linear programming [28, §7.2.7] [6] and newer data structures such as MTB-
DDs (multi-terminal binary decision diagrams) [1]. However, the problem
of large- or infinite-state systems has not been so well studied. The mem-
ory size and efficiency gains of BDDs on nondeterministic systems do not
apply to computations on probabilistic systems; for this reason, techniques
of abstraction and refinement have been recently proposed [9].

In the case of deterministic or nondeterministic systems without a notion
of probability, various analysis techniques have been proposed in the last
twenty years. Since the problem is undecidable, those techniques are either
partially manual (i.e. require the input of invariants or similar), either
approximate (i.e., the analysis takes a pessimistic point of view when it
cannot solve the problem exactly). In this paper, we take the latter approach
and build our analysis methods upon the existing framework of abstract
interpretation [8], a general theory of approximation between semantics. We
have strived to present the studied problems in an order-theoretic fashion,
while some other studies [11] applied advanced probability concepts. The
crux of our paper is merely the demonstration of an abstraction relation
between two semantics.

We have earlier proposed two classes of automatic methods to analyze
such system: some forward [19, 20], some backward [23, 24]. In this pa-
per, we focus on the backward approach and extend it to a larger class of
properties (including those specified by LTL formulas). We also prove that
chaotic iterations strategies [7, §2.9] apply to our case, which allows parallel
implementations.

In section 2, we give an introduction to probabilistic transition systems,
which we extend in section 3 to nondeterministic and probabilistic systems.
In section 4, we give a formal language for the specification of trace prop-
erties, including those formulated using Büchi or Rabin automata. In sec-
tion 5, we explain how to analyze those properties backward and in sec-
tion 6.1 how to apply abstract analyses. Appendices give mathematical
background and necessary lemmas on measure theory, the Lebesgue inte-

2

gral, and lattice theory.

2 Probabilistic transition systems

The natural extension of transition systems to the probabilistic case is prob-
abilistic transition systems, also known as Markov chains or discrete-time
Markov processes.

2.1 Probabilistic transitions

We assume that the set of states is finite or countable so as to avoid tech-
nicalities. The natural extension of the notion of deterministic state is the
notion of probability distribution on the set of states. We take the conven-
tion that a divergent sum of positive numbers, or a divergent integral of a
positive function, is equal to +∞.

Definition 2.1. Let Ω be a finite or countable set of states. A function
f : Ω→ [0, 1] is called a probability distribution if

∑

ω∈Ω f(ω) = 1. We shall
note D(Ω) the set of probabilistic distributions on Ω.

Now that we have the probabilistic counterpart of the notion of state,
we need to have the counterpart of the notion of transition.

Definition 2.2. Let Ω be a finite or countable set of states. Let us consider
a function T : Ω×Ω→ [0, 1] such that for all ω1 ∈ Ω,

∑

ω2∈Ω T (ω1;ω2) = 1.
(Ω, T) is called a probabilistic transition system.

If Ω is finite, the relation can be given by a probabilistic transition matrix.
Let us assimilate Ω to {1, . . . , N}. Then, the transition matrix M is defined
by mi,j = T (i, j) if i→ j, 0 otherwise.

The intuitive notion of a probabilistic transition is that it maps an input
distribution to an output distribution. It is the probabilistic counterpart of
the notion of a successor state.

Definition 2.3. Let T be a transition probability between Ω1 and

Ω2. Let us define
−→
T : D(Ω1) → D(Ω2) as follows:

−→
T (d)(ω2) =

∑

ω1∈Ω1
T (ω1, ω2)d(ω1).

The intuition, using conditional probabilities, is as follows: to each state
ω2 in the arrival state space, we attach the sum of the probabilities of the
transitions ω1 → ω2 for each departure state ω1; the probability of ω1 → ω2

is equal to the product of the probability of starting in ω1 as a departure

3

state and the probability T (ω1, ω2) of jumping from ω1 to ω2 under the
hypothesis of starting in ω1.

Let us now describe the probabilistic counterpart of the notion of pre-
decessor state. Given a transition probability T between Ω1 and Ω2 and a
boolean property π : Ω2 → {0, 1}, the expectation of a state ω1 ∈ Ω1 to
reach π in one step is then

∑

ω2∈Ω2
T (ω1, ω2)π(ω2). We have thus defined a

function Ω1 → [0, 1] mapping each state to the corresponding expectation.
A natural extension of this construction is to consider any function f ∈

P (Ω2) = Ω2 → [0, 1]. We call such functions condition functions.1

Definition 2.4. Let T be a transition probability between Ω1 and

Ω2. Let us define
←−
T : P (Ω2) → P (Ω1) as follows:

←−
T (f)(ω1) =

∑

ω2∈Ω2
T (ω1, ω2)f(ω2).

Those functions are linked by the following adjunction relation: if T is a
transition probability relative to Ω1 and Ω2, noting 〈f, µ〉 =

∑

ω f(ω)µ(ω),
then

∀f ∈ P (Ω2) ∀ µ ∈ D(Ω1) 〈f,
−→
T .µ〉 = 〈

←−
T .f, µ〉. (1)

Lemma 2.5. For all transition probability T ,
←−
T is ω-continuous.

Proof. Let fn be an ascending sequence. (
←−
T .fn)(x) =

∫
fn dTx. The lemma

follows from theorem B.8.

2.2 Probability measures on traces

While it is possible to explain probability distributions and transitions on
states using rather simple mathematical constructions (assuming a finite or
countable state space), it is difficult to do so properly on the non-countable
sets of infinite traces. For this reason, we shall use the general theory of
measures and Lebesgue integration; while it is impossible for reasons of space
to recall the details of this theory in this paper, Appendix B.1 presents the
definitions and results that we shall use.

We shall use probability measures on sets of traces arising from proba-
bilistic transition systems. Let us start with a simple example — consider
sequences of tosses of a fair coin: the coin has probability 0.5 of giving 0
and 0.5 of giving 1. A trace is then an infinite sequence of zeroes and ones.
Let us consider the (regular) set 0n(0|1)∗ of sequences starting by at least

1Please note that while those functions look similar to distributions, they are quite
different in their meaning and are different mathematical objects when treated in the
general, non discrete, case.

4

n zeroes. It is obvious that the probability of falling into that set is 2−n.
The probability of the singleton containing the sequence of only zeroes is 0;
actually, in this case, the probability of any singleton set is 0. We see clearly
how it is not sufficient to know the probability of all elements in a set to
know the probability of an uncountably infinite set.

On the set ΩN of infinite traces (ωn)n∈N of elements of Ω we consider
the product σ-algebra [26, 27, §III.3]. If (Ei,Ai)i∈I are measurable sets,
the product σ-algebra is the σ-algebra such that the projections (πi)i∈I are
measurable. If we consider the σ-algebra A on Ω, then the product σ-algebra
on ΩN is the σ-algebra generated by the cylinders

(∏

i<nAi

)
× ΩN where

i ∈ N and the (Ai) are chosen in A.
When taking expectations (or integrals) of functions from traces to real

numbers, we shall restrict ourselves to measurable functions with respect to
this σ-algebra. This is a technical condition; all “interesting” functions we
shall consider in §4 have this property. Generally speaking, this measura-
bility will follow from our considering:

• measurable primitive functions;

• point-wise limits of monotone countable sequences of measurable func-
tions; such limits are measurable, and furthermore the integral of the
limit of a monotone sequence of functions fn is the limit of the integrals
of the fn (Th. B.8), a result of which we shall make ample usage.

We use the theorem of Ionescu Tulcea (Appendix B.2) to construct the
probability measure µω on the set of traces according to the probability
distribution µ on the initial states and the transition probability T .

The probability of a property P : ΩN → {0, 1} on the traces is then
∫

P dµω.

3 Nondeterministic and probabilistic transition

systems

We shall see how to combine the notions of nondeterministic choice (sets
of possible choices for which we know no probabilistic properties) and prob-
abilistic choice (sets of possible choices for which we know probabilistic
properties), obtaining discrete-time Markov decision processes [28] , which
has been studied more particularly in the field of operational research and
finance mathematics, as well as machine learning.

5

Start

x = 0
(Q1)

x = 1

x = 0
(Q3)

x = 1
(Q4)

0
0,5

1

0,5

0

1

0

1

1

1

Figure 1: A probabilistic-nondeterministic transition system

Let us now consider the case where the system must be able to do both
nondeterministic and probabilistic transitions (example in Fig. 1). The sys-
tem then has the choice between different transition probabilities.

For instance, on Fig. 1, in state Q1, the system has the choice between
two partial transition probabilities: the first goes to Q3 with probability
1, the second goes to Q4 with probability 1. For an easier intuition, one
may think about this choice as if it were made by an adversary willing to
induce certain behaviors. The adversary is supposed to follow a strategy or
policy [28, §2.1.5].

In this paper, we shall assume that the adversary may see the present
and past states of the execution, and may act accordingly, thus yielding
pessimistic bounds on the outcome of the probabilistic system. In essence,
we consider cases where the adversary actively seeks the defeat (or success)
of some trace property. Is that a reasonable model? The adversary models
the nondeterministic aspects of the external environment of the system,
as well as internal factors that are difficult to model precisely, or whose
precise implementation is left unknown (e.g. schedulers). Considering that
schedulers and a physical environment operate in the worst possible way,
rather than according to some statistical properties, generally overestimates
the likeliness of problems. However, it seems sensible that an external human
user should be modeled in the worst possible case; for instance, the user may
actively attack the system in order to obtain certain outcomes.

Let us note that other choices for the power of the adversary can give
very different results. For instance, let us consider a program that chooses a
Boolean variable x nondeterministically, then chooses a Boolean variable y
with uniform probability, then replaces x with the exclusive or (XOR) of x

6

Start

x = 0
(Q1)

x = 1

x = 0
(Q3)

x = 1
(Q4)

0
0,5

1

0,5

0

0

1

1

(a) Upper transitions

Start

x = 0
(Q1)

x = 1

x = 0
(Q3)

x = 1
(Q4)

0
0,5

1

0,5

1

1

1

1

(b) Lower transitions

Figure 2: Two purely probabilistic transition systems that define,
when composed together nondeterministically, the same probabilistic-
nondeterministic transition system as in Fig. 1.

Start

x = 0

x = 1

x = 0

x = 1

0

1

00.5

1

0.5

0

0.5

10.5

1

1

Figure 3: Another probabilistic-nondeterministic transition system. Note
the difference with Fig. 1.

7

and y (Fig. 3). Clearly, if the nondeterministic chooser is allowed to “look at
the future” and predict the outcome of the random generator, it can always
arrange for z to be true. If it can only look at the past and the present, or
only the present, it cannot and z is uniformly distributed.

Let us suppose that our system is defined by a transition probability T
from Ω × Y to Ω, where Y is the domain of nondeterministic choices. For
instance, for the system given in Fig. 1, Y is {0, 1} (choice between the upper
and lower arrows, as seen in Fig. 2). The operation of the adversary for the
transition between states n and n+1 is modeled using an unknown transition
probability Un from Ωn to Y . The whole transition that is executed by
the system is then the composition Tn = T ◦

[
Id
Un

]
, which is a transition

probability between Ωn and Ω. By this notation, we mean that, using the
notation of Def. 2.2,

Tn(x0, . . . , xn−1;xn) = T (xn−1, Un(x0, . . . , xn−1);xn). (2)

Ionescu Tulcea’s theorem (Appendix B.2) then constructs from the (Tn) a
transition probability G(T, (Un)n∈N) from Ω (the initial state space) to ΩN.

Let us take a measurable function f : ΩN → [0, 1]. t0 :: ~t will note
the infinite trace starting in the state t0 and following with the infinite
sequence ~t. To this function we attach its expectation ST (f, (Un)n∈N) under
the adversary (Un)n∈N. It is defined as follows:

ST (f, (Un)n∈N) = λt0.
〈
λ~t.f(t0 :: ~t), G(T, (Un)n∈N)(t0)

〉
(3)

(S short for ST if there is no ambiguity about T) and R(f) the set of all
functions S(f, (Un)n∈N) when (Un)n∈N is a sequence of transition probabili-
ties, Un being a transition probability from Ωn to Y . λ is here a functional
notation.

Let ET
+ or, if there is no confusion possible, E+(f) = supR(f) be

the worst-case semantics and E−(f) = inf R(f) be the best-case semantics
(those designations assume that f indicates some kind of failure condition).
Intuitively, if f is the characteristic function of a set of “faulty” traces, E+

expresses a “worst case” analysis, modeling an adversary willing to make
the system err and E− a “best case” analysis, modeling an adversary willing
to prevent the system from erring. E+(f) is often called the value of the
Markov decision process with respect to the reward function f (even though
we use a slightly different framework as the one given in [28]).

For instance, if we call P the property “the trace ends up with choices
of x and y such that x XOR y = 1”, then for all states σ in Fig. 1, then
E+(P)(σ) = 1 (it’s always possible for the adversary to force going to a state

8

such that x XOR y = 1), except, of course, state Q3 (where both choices of
x and y have been made and x XOR y = 0).

Lemma 3.1. E+(1) = 1 and E+(0) = 0. E+ is monotone and upper-
continuous.

4 The properties to analyze

We consider a property to analyze on the traces. To each initial state we
attach its expectation, that is, the integral of the property to analyze over
the traces starting from this state (or the set of integrals, if considering
nondeterminism). The properties to analyze are expressed as measurable
functions from the set of (possible) traces of execution; we call these func-
tions trace valuators. We shall actually consider a class of trace valuators
defined syntactically by certain formulas.

4.1 Expectation Functions

Let I = [0, 1] or [0,+∞], depending on the kind of properties to analyze.
Let Ω be a finite or countable set of states — we impose this cardinality
constraint so as to avoid theoretical complexities. P(Ω) is the set of subsets
of Ω. Let Ω→ I be the set of functions from Ω to I, the expectation functions
of our system; this set, ordered by ≤ point-wise, is a complete lattice.2

4.2 Trace Valuators

Let ΩN → I be the set of measurable functions from ΩN to I, ordered point-
wise. We shall call such functions “valuators”.

4.2.1 Boolean Trace Valuators

We take I = [0, 1] or even I = {0, 1}.
We shall consider formulas written in the following language:

formula ::= name
| constant
| formula1 +set formula2 where set ⊆ Ω
| constant +set formula

2Some of the complexities introduced by uncountably infinite state spaces Ω is that the
set of measurable functions from Ω to I is not a complete lattice, but only an ω-complete
lattice.

9

| lfp(name 7→ formula)
| gfp(name 7→ formula)
| shift(formula)
| let name = formula1 in formula2

Let shift : ΩN → ΩN: (shift.~t)k = tk+1 be the function that chops off the
first element of an infinite trace.

Let envt be the set of environments of valuators, mapping each name to
a valuator, ordered point-wise.

JformulaKt : envt → (ΩN → I) is defined inductively as follows:

JnameKt .env = env(name) (4)

JconstantKt .env = λ~t.constant (5)

Jf1 +S f2Kt .env = λ~t. χS(t0).(Jf1Kt .env(~t))+

χSC (t0).(Jf2Kt .env(~t))

(6)

Jlfp(name 7→ f)Kt .env = lfp(λφ.JfKt .env[name 7→ φ]) (7)

Jgfp(name 7→ f)Kt .env = gfp(λφ.JfKt .env[name 7→ φ]) (8)

Jshift(f)Kt .env = (JfKt .env) ◦ shift (9)

Jlet name = f1 in f2Kt .env = Jf2Kt .env[name 7→ Jf1Kt .env] (10)

χS is the characteristic function of S and SC the complement of S. t0 ∈ Ω
is the first state of the sequence of states ~t ∈ ΩN.

Lemma 4.1. For all formula f , JfKt is monotone. For all formula f without
lfp or gfp, JfKt is continuous. (Def. A.1)

Proof. Obvious by induction on the structure of f .

4.2.2 Some particularly interesting Boolean valuators

We shall consider in this section four very important classes of properties,
all of which can be shown to be measurable.

• Let A be a set of states. The reachability property associated with
A defines the set of traces that pass through A at some point. It
corresponds to the formula:

lfp(f 7→ 1 +A shiftf) (11)

10

Jlfp(f 7→ 1 +A shiftf)Kt is defined as the least fixpoint of Φ, where
Φ(W) is the set of traces t such that t0 ∈ A, or shiftt ∈ W . Φ is
clearly continuous, therefore lfp Φ =

⋃∞
n=0 Φn(∅). Φn(∅) is the set of

traces t such that ∃k < n tk ∈ A.

• Let A be a set of states. The liveness property associated with A
defines the set of traces that always remain in A. It corresponds to
the formula:

gfp(f 7→ shiftf +A 0) (12)

This is the dual of the preceding definition: Jf 7→ shiftf +A 0Kt is
⋂∞

n=0 Ψn(ΩN), where Ψn(ΩN) is the set of traces t such that ∀k <
n tk ∈ A.

• Let A be a (measurable) set of states. The Büchi acceptance prop-
erty associated with A defines the set of traces that pass through A
infinitely often; it is written as:

gfp(C 7→ lfp(R 7→ shift(C) +A shift(R))) (13)

The co-Büchi property is just the negation of this formula.

Let us recall that a Büchi automaton [32, chapter 4, part I] on an
alphabet A is given by a state space Σ, an initial state σ0, a set F ⊆ Σ
of final states and a transition relation T ⊆ Σ × A × Σ. An infinite
input sequence t0, t1, . . . is accepted by the automaton if there exists
a sequence σ0, σ1, . . . of states such that for all i, (σi, t0, σi+1) ∈ T and
there exists an infinity of i such that ti ∈ F .

If a trace property is defined using a deterministic Büchi automaton A,
then this property may be defined for a Markov decision process S as
the Büchi acceptance B of the set Ω×F over the synchronous product
of S and A, where F is the set of final states of A. By synchronous
product, we mean that the Büchi automaton is made to read the state
of S as an input sequence.

Note, however, that this does not extend to nondeterministic Büchi
automata; that is, in the case of nondeterministic Büchi automata A,
E+(B), as defined above, is not the probability in the worst case of
generating a trace accepted by A. Because of this discrepancy, and
the fact that deterministic Büchi automata are strictly less powerful
than nondeterministic ones [32, chapter 4, §I.4], we shall be forced to
consider deterministic Rabin automata (see next point).

11

We shall now briefly see the reasons for this discrepancy. E+(B) is
the upper bound, over the strategies of the adversary and the nonde-
terministic Büchi automaton A, of the probability of passing through
Ω×F infinitely often; while the desirable property is the upper bound
over the strategies of the adversary of the probability of finding a
strategy for the Büchi automaton to accept the trace. If we fix the
adversary A, the property is written as:

sup
S strategy of the Büchi automaton

P
(
~t 7→ A accepts ~t using strategy S

)
,

(14)
while the latter property is:

P

(

~t 7→
∃S strategy of the Büchi automaton

A accepts ~t using strategy S

)

(15)

In the latter case, the Büchi automaton can choose its strategy de-
pending on the knowledge of the full trace ~t; this would correspond to
a model where the adversary “looks at the future” (see §3). However,
in the former case, the Büchi automaton is restricted to strategies
where only the past history of the computation is known.

• Given a sequence ∅ ⊆ U2k ⊆ · · · ⊆ U0 = Ω, the Rabin acceptance prop-
erty associated with (Un) is the set of traces defined by the following
temporal property [11, sect. 5]:

R =

k−1∨

i=0

(�♦U2i ∧ ¬�♦U2i+1) (16)

It corresponds to the following formula:

gfp(x2k−1 7→ lfp(x2k−2 7→ · · · gfp(x1 7→ lfp(x0 7→

((· · · (x2k−1 +U2k−1
x2k−2) · · ·) +U1

x0) +U0
0) (17)

Deterministic Rabin automata are equivalent to Muller automata,
from McNaughton’s theorem [32, Th 4.4], which are equivalent to
nondeterministic Büchi automata and ω-regular languages (op. cit.).
In §4.3.1, we shall see a way to use them to represent linear time
properties.

12

4.2.3 Summation valuator

A related family of trace valuators are the summing valuators. The sum-
mation valuator associated with a (measurable) function f : Ω 7→ [0,+∞] is
the function

JΣAKt :

∣
∣
∣
∣

ΩN → [0,+∞]
(xn)n∈N 7→

∑∞
k=0 f(xk)

(18)

Essentially, a summation valuator assigns to each state a “prize” and sums
the prizes along a trace.

Obviously, this function can be formulated as a least fixpoint:

JΣfKt = lfp(φ→ f + φ ◦ shift) (19)

This construct has two obvious applications:

• counting the average number of times the program goes through a
certain set of states A; here, f is the characteristic function of A;

• counting the average time spent in the process; here f maps each
state to the amount of time spent in that state (0 for states meaning
“termination”).

For instance, to evaluate the average number of time that a program goes
through a loop whose head label is marked with l ∈ L, where L is the set of
labels and M is the set of possible memory environments, one applies the
summation valuator associated with the characteristic function of {l} ×M .

4.3 Temporal logics

Temporal logics [4, chapter 3] are expressive means of specifying properties
of transition systems.

4.3.1 Linear time logic (LTL) and ω-regular conditions

A formula F in LTL defines an ω-regular set of traces JF Kt, that is, a set
of traces recognizable by a (nondeterministic) Büchi automaton B [4, §3.2],
or, equivalently, by a deterministic Rabin automaton R [31, §4].

Let us consider a (nondeterministic) probabilistic transition system T ,
and the according definition of ET

+. Let us consider the synchronous product
T ×R, and C the associated Rabin acceptance condition. ET

+(JF Kt) is then

equal to ES×R
+ (JCKt) [11, §5].

13

If B is deterministic, we can similarly consider the synchronous product
T × B, and C the associated Büchi condition. ET

+(JF Kt) is then equal to

ES×B
+ (JCKt) [11, §4].3

4.3.2 Branching-time logic: pCTL and pCTL*

The branching-time logics CTL and CTL* [4, §3.2] have had much success
in the analysis of nondeterministic (albeit non probabilistic) systems. It
was therefore quite natural to extend this notion to probabilistic systems.
Proposed extensions to the probabilistic case include pCTL [12] and pCTL*.
We shall see here briefly how we deal with some pCTL* formulas.

CTL* formulas define sets of states as the starting states of sets of traces
defined by LTL path formulas (in which state formulas are CTL* state
formulas).

The operation that makes a CTL* state formula out of a LTL path
formula is the taking of the initial states: if JfKs denotes the semantics of f
as a state formula and JfKp its semantics as a path formula, then

JfKs = {x0 ∈ Ω | ∃x1, . . . 〈x0, x1, . . .〉 ∈ JfKp}. (20)

In the case of probabilistic systems, we do not have sets of starting states
but expectation functions; such expectation functions are then compared to
a threshold value, which gives sets of states. State formulas noted as f⊲⊳α

are thus obtained, where f is a trace valuator and ⊲⊳ is ≤, <, =, > or ≥.
The semantics of this construct is as follow:

Jf⊲⊳αK = {x0 ∈ Ω | ∀(Un)n∈NS(JfKt , (Un)n∈N)(x0) ⊲⊳ α} (21)

In the case of < and ≤, giving an upper bound on those sets is easy
provided we have an upper bound JfK♯

e+ of E+(JtKt) (see §5):

∀x0 JfK♯
e+ (x0) ⊲⊳ α =⇒ x0 /∈ Jf⊲⊳αK . (22)

We think that the intuitive meaning of LTL formulas is clearer than
that of non-trivial pCTL* formulas. However, it is an added benefit of our
method that it can analyse programs with respect to certain pCTL* formulas
(those for which state formulas may be analysed by obtaining upper bounds
of E+(P) where P is a trace formula).

3Note that this does not hold for nondeterministic Büchi automata, since the automa-
ton is allowed to take its nondeterministic choices with the knowledge of the full sequence
of states, not only the past and present states.

14

Program:

/* A */

if (x < 0.5) /* true */ x += uniform();

else /* false */ x -= uniform();

/* B */

post condition (x>=0.9 && x<= 1.1);

/* C */

uniform() uniform in [0,1].
Property: reachability of C.
Program points:

• A, B, C

• beginning of both branches of the test
true and false

Backward computation:

1 2test

1 2

1 2

1 2

false

true

A

B
1

0.2

0.2

0.2

Figure 4: An example of backward upper semantics: the state space is Π×R

where Π is the set of program points, and the single variable x is chosen in
R.

5 Backwards Worst Case Analysis

In section 4.2, we gave the syntax and semantics of a logic describing sets
of traces, or, more generally, measurable functions over the traces. Given
a formula f , one may want to compute its worst-case probability E+(JfKt),
or at least get an upper bound for it. Unfortunately, the definitions of both
JfKt and E+ do not yield effective means to do so.

In §5.1 we shall attach to each formula f another semantics JfKe+, which
we shall show how to abstract in §6. We shall see the abstraction relationship
between E+(JfKt) and JfKe+ in §5.2.

5.1 Backwards Worst Case Semantics on Expectation Func-

tions

A well-known solution to the problem of the optimal value of a Markov
decision process is value iteration [28, §7.2.4]. This method is mainly of
theoretical interest for the analysis of finite state Markov decision processes,
since there is little control as to its rate of convergence and much better
algorithms are available [28, §7.2.4]. On the other hand, since it is actu-
ally a kind of generalization to Markov decision processes of the backwards

15

reachability analysis for nondeterministic systems, we can apply abstract in-
terpretation techniques so as to provide an effective mean to compute upper
bounds on the probability of the properties to analyze.

We shall now define another semantics JP Ke+, which will assign to each
initial state a worst-case probability, or an upper bound thereof, of start-
ing a trace fulfilling the property P . Since this semantics starts from the
final states of the computation and then walks back the transitions, we call
it a backwards semantics. In section 7, we shall discuss this choice of a
backward semantics, whereas several already proposed semantics for prob-
abilistic programs were given in a forward fashion. Let us still note that
forward and backward probabilistic denotational semantics for programs
are equivalent [23].

We shall use the program on Fig. 4 as a simple running example. The
most complex part of the semantics of that program in terms of a Markov
decision process is the semantics of x += uniform(); (and similarly for -=).
This operation may be divided into three steps:

• compute a random number y according to uniform() (dµuniform is
the probability measure of this generator);

• compute x = x + y;;

• discard y.

The latter two steps are compounded into: compute the linear transforma-
tion (x, y) 7→ x. The compound transition of this operation T is somewhat
complex. However, we shall only be interested in its associated backward

operator
←−
T , which we compute compositionally [23]:

←−
T (f) =

(
(R× R→ R) → (R→ R)
g 7→

(
x 7→

∫
g(x, y) dµuniform

)

)

◦

(
(R→ R) → (R× R→ R)
h 7→ ((x, y) 7→ h(x, y))

)

(23)

Let enve be the set of environments of expectation functions (an environ-
ment of expectation functions maps each name to a expectation function),
ordered point-wise.

16

JformulaKe+ : (Ω→ I)→ (Ω→ I) is defined inductively as follows:

JnameKe+ .env = env(name) (24)

JconstantKe+ .env = λx.constant (25)

Jf1 +S f2Ke+ .env = χS .(Jf1Ke+ env) + χSC .(Jf2Ke+ env) (26)

Jlfp(name 7→ f)Ke+ .env = lfp(λφ.JfKe+ .env[name 7→ φ]) (27)

Jgfp(name 7→ f)Ke+ .env = gfp(λφ.JfKe+ .env[name 7→ φ]) (28)

Jshift(f)Ke+ .env = sup
T∈T

(
←−
T (JfKe+ .env)) (29)

Jlet name = f1 in f2Ke+ .env = Jf2Ke+ .env[name 7→ Jf1Ke+ .env] (30)

This semantics is thus some form of µ-calculus, except that “lfp” replaces
the µ binder and “gfp” ν; but since we also use µ to note measures, it would
have been confusing to also use it in the syntax of the formulas.

Let us see what this computation yields on the program in Fig. 4 and the
trace property lfp(f 7→ 1 +C f). The state space is Ω = Π × R where Π =
{A,B,C, true, false} is the set of program points and R is the set of all possible
memory configurations (which we reduce to a single real variable x; for the
sake of simplicity, we choose here to use real numbers instead of machine-
representable values). On the right of the figure, we have represented various
functions fi for i ∈ Π, each representing a part of the final invariant. For
the sake of simplicity of notation, we shall note fi both a function R→ [0, 1]
and its extension in Π × R → [0, 1] defined as follows: fi(i, x) = fi(x) and
fi(j, x) = 0 for j 6= i.

For instance, ftrue is obtained as the function x 7→
∫
fb(x +

y) dµuniform(y). The iterations of the least fixpoint are as follows: u0 = 0,
u1 = fC, u2 = u1 +fB, u3 = u2 +ftrue +ffalse, u4 = u3 +fA, and the fixpoint
is reached.

As for the summation valuator,

JΣfKe+ = lfp

(

φ 7→ f + sup
T∈T

(
←−
T .φ)

)

(31)

Lemma 5.1. Let f be a formula, JfKe+ is monotone.

Lemma 5.2. Let f be a formula not containing gfp. JfKe+ is ω-upper-
continuous.

Proof. By structural induction on f . Let envn be an ascending sequence of
environments, whose limit is env∞. The cases for name, constant and “let”
are trivial.

17

• Let t0 ∈ S.
⊔

n∈N
(Jf1 +S f2Ke+ .envn)(t0)
︸ ︷︷ ︸

(Jf1K
e+

.env)(t0)

= (Jf1Ke+ .env∞)(t0) =

(Jf1 +S f2Ke+ .env∞)(t0). Similarly for t0 /∈ S.

• The shift case:

Jshift(f)Ke+ .env∞ =
⊔

T∈T

←−
T (JfKe+ .env∞))

=
⊔

T∈T

←−
T (
⊔

n JfKe+ .envn) =
⊔

T∈T

⊔

n

←−
T .(JfKe+ .envn)

=
⊔

n

⊔

T∈T

←−
T .(JfKe+ .envn) =

⊔

n Jshift(f)Ke+ .envn

• The lfp case follows by applying lemma A.7 to the induction hypoth-
esis.

5.2 The Abstraction Relation Between the Semantics

In §4.2 we described a semantics (J·Kt) mapping formulas to measurable
functions defined on the infinite traces; in §3 we defined E+ mapping such
functions to expectation functions on the initial states, depending on the
(nondeterministic) probabilistic transition system to be studied. In §5.1,
we directly mapped the formulas to expectation functions using another
semantics (J·Ke+). What is the relation between those two ways to associate
an expectation function to each formula?

We shall see that JfKe+ is an abstraction of JfKt with respect to the
abstraction map E+, and that it is actually optimal when f does not contain
greatest fixpoints.

Before stating the main results, we shall first go through a few technical
lemmas.

Lemma 5.3. For all f , t0 and U1,

sup(Un)n≥2

∫
λ〈t1, . . .〉.f(〈t1, . . .〉) d[G(T, (Un)n∈N).t0]

= sup(Un)n≥2 Un does not depend on t0∫

λ〈t1, . . .〉.f(〈t1, . . .〉) d[G(T, (Un)n∈N).t0]

Proof. Let a and b be respectively the left-hand and right-hand sides of
the equality to be proven. a ≥ b is obvious since b is an upper bound on a
smaller set than a. Let us now prove b ≥ a. Let us take t0 ∈ X and (Un)n≥2.

18

Let us now consider (Ũn)n≥2 defined by Ũn(~t′;W) = Un.(t0, t
′
1, . . . , t

′
n−1;W).

Ũn(t′0, . . . ;W) does not depend on t′0. Furthermore,

∫

λ〈t1, . . .〉.f(〈t1, . . .〉) d[G(T, (Un)n∈N).t0]

=

∫

λ〈t1, . . .〉.f(〈t1, . . .〉) d[G(T, (Ũn)n∈N).t0].

Thus a(t0) ≤ b(t0).

Lemma 5.4. For all t0 inX,

E+(λt.χS(t0).V1(t) + χSC (t0).V2(t)).t0

= χS(t0).(E+(V1).t0) + χSC (t0).(E+(V2).t0). (32)

Proof. Let t0 ∈ X.
Let us suppose that t0 ∈ S. Then E+(λt.χS(t0).V1(t)+χSC (t0).V2(t)).t0

= E+(V1).t0 = χS(t0).(E+(V1).t0) + χSC (t0).(E+(V2).t0). Similar proof for
t0 /∈ S.

Lemma 5.5. For any trace valuator f , for any g1 and g2 in R(f), for any
A ⊆ Ω, the function g3 defined by g3(~t) = g1(~t) if t0 ∈ A, g3(~t) = g2(~t)
otherwise, belongs to R(f).

Proof. Let g1 = S(f, (U1
n)n∈N) and g2 = S(f, (U2

n)n∈N). Let us define
(U3

n)n∈N as follows: U3(~t,W) = U1(~t,W) if t0 ∈ A, U2(~t,W) otherwise. Let
g3 = S(f, (U3

n)n∈N). Obviously, if t0 ∈ A, then g3(t0) = g1(t0), otherwise
g3(t0) = g2(t0).

The next theorem gives a link between JfKe+ and JfKe+ when f does
not contain greatest fixpoints; namely, E+(JfKe+) = JfKe+ if f has no free
variables. In the context of Fig. 4, this means that each of our functions
fi (i ∈ Π) maps each x to the maximal probability that it starts a trace
leading to C.

Theorem 5.6. Let f be a formula not containing gfp. Let env be an envi-
ronment of valuators. Noting E+(env) the point-wise application of E+ to
env,

JfKe+ .(E+(env)) = E+(JfKt .env) (33)

Proof. Proof by induction on the structure of f .

19

• The cases for “let”, name and constant are trivial.

• For f1 +S f2: Let t0 ∈ X.

Jf1 +S f2Ke+ .(E+(env)).t0
= χS(t0).(Jf1Ke+ .E+(env).t0) + χSC (t0).(Jf2Ke+ .E+(env).t0)
= χS(t0).(E+(Jf1Kt .env).t0) + χSC (t0).(E+(Jf2Kt .env).t0)

(induction)
= E+(λt.χS(t0).(Jf1Kt envt) + χSC (t0).(Jf2Kt envt)).t0

(lemma 5.4)
= E+(Jf1 +S f2Kt).t0.

• For shift: Let us first fix U1. Let us note T1 = T ◦
[

Id
U1

]
and consider

←−
T1.E+ (JfKt). From lemma 2.5,

←−
T1 is a monotonic, ω-continuous, op-

erator;
from lemma 5.5, R(JfKt) is directed;
from lemma A.5,

⊔

f∈R(JfK
t
.env)

(←−
T1f

)

=
←−
T1




⊔

f∈R(JfK
t
.env)

f



 .

It follows that (using the λ-notation for functions),

←−
T1.E+(JfKt).t0

= sup(Un)n≥2

Un not depending on t0

∫∫

λ〈t2, . . .〉.(JfKt .env)(〈t1, . . .〉)

d[G(T, (Un)n≥2).t1]T1(t0,dt1)

= sup (Un)n≥2

Un not depending on t0

∫

λ〈t2, . . .〉.(JfKt .env)(〈t1, . . .〉)

d[G(T, (Un)n≥1).t0]

Let us apply lemma 5.3 to that last expression. We obtain

←−
T1.E+(JfKt).t0 =

sup
(Un)n≥2

∫

λ〈t2, . . .〉.(JfKt .env)(〈t1, . . .〉) d[G(T, (Un)n≥1).t0] (34)

20

Let t0 ∈ X. Let us now consider all U1’s.

E+(Jshift(f)Kt .env).t0
= sup(Un)n≥1

∫
λ〈t1, . . .〉.(JfKt .env) ◦ shift(〈t0, t1, . . .〉)

d[G(T, (Un)n≥1).t0]
= supU1

sup(Un)n≥2

∫
λ〈t1, . . .〉.(JfKt .env)(〈t1, . . .〉)

d[G(T, (Un)n≥1).t0]

=
(

supU1

←−−−−−−−(
T ◦

[
Id
U1

])
.E+(JfKt)

)

.t0 (using Equ. 34)

= Jshift(f)Ke+ .E+(env)

• Jlfp(name 7→ f)Ke+ .env = lfp(λφ.JfKe+ .env[name 7→ φ]).
From lemma 5.2, λφ.JfKe+ .env[name 7→ φ] is ω-upper-continuous.

Also, Jlfp(name 7→ f)Kt .env = lfp(λφ.JfKt .env[name 7→ φ]).
From lemma 4.1, λφ.JfKt .env[name 7→ φ] is ω-upper-continuous.

From the induction hypothesis,
E+ ◦ (λφ.JfKt .env[name 7→ φ]) = (λφ.JfKe+ .E+(env)[name 7→ φ])).

From lemma 3.1, E+ is ω-upper-continuous. The conclusion then fol-
lows from lemma A.8.

The following theorem guarantees the soundness of the abstract analysis
for all formulas.

Theorem 5.7. Let f be a formula. Let env be an environment of valuators.
Let us suppose that H ≥ E+(env) pointwise. Then

JfKe+ .(H) ≥ E+(JfKt .env). (35)

The proof is similar as that of Th. 5.6.
Also similarly we can guarantee the soundness of the analysis of summa-

tions:

Theorem 5.8. The semantics of the summing operator satisfies:

E+(JΣfKt) = JΣfKe+ . (36)

6 Abstract Analysis

We shall see here more precisely how to apply abstract interpretation to
that backwards semantics.

21

g(x, y)

0.5
0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

y

4

2

0

-2

-4x
4

2
0

-2
-4

step function

Figure 5: An abstract domain: step functions (linear combinations of char-
acteristic functions of elements of another set, here the set of products of
intervals. [23]

22

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

y

4
3

2
1

0
-1

-2
-3

-4
x

43210-1-2-3-4

gaussian

Figure 6: An abstract domain: normal (Gaussian) distribution densities. [24]

23

6.1 General case

We compute safe approximations of JfKe+ by abstract interpretation. We

introduce an abstract semantics JfK♯
e+ which is an upper approximation of

f :
∀env ∀env♯ env♯ ≥ env =⇒ JfK♯

e+ .env♯ ≥ JfKe+ .env. (37)

The computations for JfK♯
e+ will be done symbolically in an abstract domain

such as the ones described in [23,24] (Fig. 5 and 6).

• We shall assume that we have an abstract operation for “shift”. That
is, we have a monotone operation pre♯ such that

∀f, ∀T ∈ T , pre♯.f ♯ ≥ T ∗.f ♯. (38)

This operation will be supplied by the abstract domain that we use.
Then

∀env, ∀env♯, env♯ ≥ env =⇒

Jshift(f)K♯
e+ .env♯ ≥ Jshift(f)Ke+ .env. (39)

provided that

∀env, ∀env♯, env♯ ≥ env =⇒ JfK♯
e+ .env♯ ≥ JfKe+ .env.

• We shall approximate least fixpoints using a widening operator [8,
§4.3]. A widening operator ▽ is a kind of abstraction of the least
upper bound that enforces convergence:

– f▽g ≥ sup(f, g) (pointwise);

– For any ascending sequence (vn)n∈N, the sequence (un)n∈N de-
fined inductively by un+1 = un▽vn is to be ultimately stationary.

Then the limit L♯ of the sequence defined by u0 = 0 and un+1 =
un▽f ♯(un), where f ♯ is an upper approximation of f , is an upper
approximation to the least fixpoint of f . More precise upper approxi-
mations of the least fixpoint of f can then be reached by iterating f ♯

over L♯ using a so-called narrowing operators [8, §4.3].

• We shall approximate greatest fixpoints using a limited iteration ap-
proach: if f ♯ is an upper approximation of f , then for any n ∈ N,
f ♯n(⊤) ≥ gfp f .

24

6.2 Partitioning in programs

In the case of programs, the state space is generally P ×M , where P is the
(finite) set of program points and M the set of possible memory configu-
rations (as in Fig. 4). More generally, P may be a kind of partitioning of
the program. Non-probabilistic analysis generally operates on abstractions
of P(P ×M) ≃ P ×M → {0, 1} ≃ P → P(M). Given an abstraction of
P(M) by a lattice L♯, one obtains a pointwise abstraction of P → P(M) by
P → L♯. Elements of P → L♯ are just vectors of |P | elements of L♯.

For instance, in the case of the program in Fig. 4, one would partition
according to Π, and may, for instance, use a domain of piecewise polynomial
functions for an exact abstraction, or a domain of piecewise linear function
for an approximate abstraction.

This approach can be directly extended to our measurable functions: we
shall abstract P ×M → I (where I = [0, 1] or I = [0,+∞]) by P → L♯ if
L♯ is an abstract domain for M → I.

The first problem is to get an abstraction of the operation used in the
“shift” construct:

F :

∣
∣
∣
∣
∣
∣

(P ×M → I)→ (P ×M → I)
h 7→ (l,m) 7→ supy∈Y∑

(l′,m′)∈P×M T ((l,m), y; (l′,m′)) .h(l′,m′)
(40)

Let us take the following form for the program instructions: at program
point l, the executed instruction represented by T is the sequence:

1. a nondeterministic choice y is taken in the set Yl;

2. a random choice r is taken in set Rl according to distribution Rp;

3. the memory state is combined deterministically with the two choices to
form the new memory state using a function Fl : (M × Y)×Rl →M ;

4. depending on the memory state m, the program takes a deterministic
jump to program point J(l,m).

Let us note τl(l
′) = {m | J(l,m) = l′} (the set of memory values m that

lead to program point l′ from program point l; τl(l
′) is then essentially

the condition for a conditional jump). Then we can rewrite the transition
equation as follows

(F.h)(l) = choice∗Yl
◦ random∗

Rl
◦ (Fl)

∗
p

(
∑

l′∈P

φ∗τll
′

(
h(l′, •)

)

)

(41)

25

using the following building blocks:

choice∗Yl
(h) = m 7→ sup

y∈Yl

h(m, y) (42)

random∗
Rl

(h) = m 7→

∫

h(m, r) dµRl
(r) (43)

(Fl)
∗
p(h) = h ◦ Fl (44)

φ∗A(h) = h.χA (45)

The reasons for those notations are explained in earlier works on the linear
adjoint of Kozen’s denotational semantics for probabilistic programs [23].

We shall abstract F as the composition of abstractions for:

• choice∗Yl
, nondeterministic choice;

• random∗
Rl

, probabilistic choice;

• Fl
∗
p, deterministic run (arithmetic operations and the like);

• φ∗A, test.

Since F is a composition of ω-upper-continuous functions (Def. A.1,
Lemma 2.5), it is also ω-upper-continuous. Therefore he least fixpoint of
F is obtained as the limit of Fn(0) (Lemma A.7). This is the point-wise
limit of a sequence of functions from Ω to I. The expression of the iterates
using a partition with respect to P is as follows:

f
(n+1)
1 = F1(f

(n)
1 , . . . , f

(n)
|P |) (46)

...
... (47)

f
(n+1)
|P | = F|P |(f

(n)
1 , . . . , f

(n)
|P |) (48)

(49)

In terms of implementation, this means that we update in parallel the |P |
elements of the vector representing the iterate. As noted by Cousot [7, §2.9],
this parallel update may be replaced by chaotic iterations or asynchronous
iterations. Chaotic iterations allow us to compute the iterations by taking
into account the recently updated elements. All these iteration strategies
lead to the same limit (the least fixpoint of F).

26

Let us consider for instance the following strategy:

f
(n+1)
1 = F1(f

(n)
1 , . . . , f

(n)
|P |)

f
(n+1)
2 = F2(f

(n+1)
1 , . . . , f

(n)
|P |)

...
...

f
(n+1)
|P | = F|P |(f

(n+1)
1 , . . . , f

(n)
|P |)

(50)

This strategy is itself a monotone operator whose least fixpoint is to be de-
termined. It has an obvious abstract counterpart leading to an approximate
fixpoint in the usual way (§6.1).

7 Conclusions and Discussion

We showed how to apply abstract interpretation techniques to check various
temporal properties of (nondeterministic) probabilistic programs, considered
as Markov decision processes (small-step semantics).

The most natural point of view on those processes is that the nondeter-
ministic decisions are taken as the program proceeds, taking into account
the current state as well as the previous ones. This how Markov decision
processes are usually studied [28] and this is the approach we took here.

It can be argued that this model is excessively pessimistic. Indeed, if
nondeterminism is used to model the environment of an embedded system,
then it is excessive to assume that the behavior of this environment depends
on the history of the internal state of the system; only the part of this history
observable from the environment should be taken into account. This leads
to the study of partially observable Markov decision processes (POMDP);
however, their effective analysis is much more complex than that of fully
observable processes [17].

Cleaveland’s work [5] focuses on the model where the nondeterministic
choices are taken after the probabilistic ones. This simplifies the theory
to some extent, since taking the product of the analyzed process with an
nondeterministic “observation” process, such as a nondeterministic Büchi
automaton, is then easy. We have already proposed a Monte-Carlo method
for such semantics [21].

The backwards analysis method we described is a generalization of the
value iteration method used in operational research to compute the value
of Markov decision processes. Our reachability analysis is related to the
study of positive bounded models [28, §7.2], where the reward 1 is granted
the first time the process runs through the set of states to consider. The

27

liveness analysis is related to the study of negative models [28, §7.3], where
the reward −1 is granted the first time the process leaves the set of states
to consider.

In dealing with non-probabilistic programs, flow-sensitive analyses are
generally defined in a forward fashion. Similarly, early definitions of the
semantics of probabilistic programs were described as extensions of conven-
tional denotational semantics [13, 14]. The concrete domain is then the set
of probability distributions. However, such semantics restrict programs to
be probabilistically deterministic, i.e. the distribution of the next state is
known given the current state of the program (Markov-chain semantics);
there is no provision for nondeterministic choice in the sense of arbitrary
choice with no known statistical data. Forward semantics were later ex-
tended to nondeterministic choice using convex sets of probability distribu-
tions [25]. We proposed program analysis methods based on sets of proba-
bility distributions [19]. However, one significant problem that arises is the
complexity of representing sets (even if only convex) of probability distri-
butions (themselves complex objects) over the state space X. In contrast,
working in a backward fashion just needs representing functions from X to
[0, 1].

Naive representations of sets of distributions may yield very imprecise
results. For instance, it can be very imprecise to represent a set of distribu-
tions µ on a finite or countable state space X with a function f : X → [0, 1]
as {µ | ∀x ∈ X, µ({x}) ≤ f(x) in the presence of nondeterministic choices.
For instance, in the program

if (nondeterministic_choice) {
/* A */

} else {
/* B */

}
/* C */

f(A) = f(B), but then the rules for program meet points [19, §2.2] yield
f(C) = 2, which is of course a correct upper bound for the maximal prob-
ability of reaching C, but is still very imprecise. Worse, since abstraction
is somewhat equivalent to introducing supplemental nondeterminism, ab-
straction may lead to overestimates, depending on its precision [19, §5.2].
For these reasons, we preferred a backward analysis. However, we also pre-
sented a forward analysis based on the same logic for trace sets [22, §8.4].
How to combine forward and backwards analyses satisfactorily is still an
open problem.

28

Formal languages similar to the one we consider have been introduced
by other authors, such as quantitative game µ-calculus [11]. The differences
between our approach and this game calculus approach are threefold:

• We give a semantics in terms of traces, then prove its link with a
semantics in terms of expectation functions; quantitative µ-calculus
only gives the interpretation as expectation functions.

• While we prove a generic link between the semantics as an inequality
valid for any formula (or an equation for some class), de Alfaro proves
an equality for some specific formulas (reachability, liveness, determin-
istic Büchi and Rabin trace properties). We conjecture that we can
extend the equality cases of this link.

• De Alfaro considers random two-player games while we consider ran-
dom single-player games. We mentioned briefly (§5.2) the differences
between Markov decision processes and two-player games. Such prob-
lems can model questions such as the choice of an optimal strategy
by the program so as to minimize the probability of a problem for all
possible environments.

A possible extension of these properties is discounted models [28, Ch. 6].
In these, the importance of the future decreases exponentially; for instance,
λ-discounted reachability would count passing through A for the first time
at step n as λn instead of 1 (of course, 0 < λ < 1). The theoretical study
of those models is considerably easier than that of non-discounted models,
since the fixpoints to study are the fixed points of contraction mappings in
Banach spaces. While the extension of the techniques exposed in this paper
to discounted models is easy (it suffices to add a multiplication by λ in the
semantics of the “shift” operation), the practical interest of such models in
the checking of computer programs remains to be seen.

Another possible extension is the computation of averages not only on
the space of the program, but also on the time: computing the average value
of a certain function as long as the program is running. Since this property
is the quotient of two summing properties, there is no obvious method to
evaluate it iteratively.

Another possible direction is the study of continuous time probabilistic
systems. As usual with continuous-time systems, some kind of reduction to
discrete time processes is to be done [15,16].

29

References

[1] Christel Baier, Edmund M. Clarke, Vasiliki Hartonas-Garmhausen, and
Marta Kwiatkowska. Symbolic model checking for probabilistic pro-
cesses. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, ed-
itors, Automata, Languages and Programming (ICALP ’97), volume
1256 of LNCS, pages 430–440. Springer, 1997.

[2] A. Bianco and L. de Alfaro. Model checking of probabilistic and nonde-
terministic systems. In FST TCS 95: Foundations of Software Technol-
ogy and Theoretical Computer Science, volume 1026 of Lecture Notes
in Computer Science, pages 499–513. Springer-Verlag, 1995.

[3] C.Baier, M.Kwiatkowska, and G.Norman. Computing probability
bounds for linear time formulas over concurrent probabilistic systems.
Electronic Notes in Theoretical Computer Science, 21, 1999.

[4] Edmund M. Clarke, Jr, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[5] Rance Cleaveland, Scott A. Smolka, and Amy E. Zwarico. Testing pre-
orders for probabilistic processes. In Werner Kuich, editor, Automata,
Languages and Programming, 19th International Colloquium, volume
623 of Lecture Notes in Computer Science, pages 708–719, Vienna, Aus-
tria, 13–17 July 1992. Springer-Verlag.

[6] C. Courcoubetis and M. Yannakakis. Markov decision processes and
regular events. In Proc. ICALP’90, volume 443 of LNCS, pages 336–
349. Springer, 1990.

[7] Patrick Cousot. Méthodes itératives de construction et d’approximation
de points fixes d’opérateurs monotones sur un treillis, analyse sémanti-
que de programmes. Thèse d’état ès sciences mathématiques, Université
scientifique et médicale de Grenoble, Grenoble, France, 21 mars 1978.

[8] Patrick Cousot and Radhia Cousot. Abstract interpretation and appli-
cation to logic programs. J. Logic Prog., 2-3(13):103–179, 1992.

[9] Pedro d’Argenio, Bertrand Jeannet, Henrik Jensen, and Kim Guld-
strand Larsen. Reduction and refinement strategies for probabilistic
analysis. In Holger Hermanns and Roberto Segala, editors, Process
Algebra and Probabilistic Methods : Performance Modeling and Verifi-
cation, volume 2399 of LNCS, pages 57–76. Springer, July 25–26 2002.

30

[10] Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD the-
sis, Stanford University, Department of Computer Science, June 1998.
CS-TR-98-1601.

[11] Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-
regular games. In STOC’01, 33rd Annual ACM Symposium on Theory
of Computing, pages 675–683. ACM, 2001.

[12] Hans Hansson and Bengt Jonsson. A logic for reasoning about time
and reability. Technical Report R90-13, Swedish Institute of Computer
Science, December 1990.

[13] D. Kozen. Semantics of probabilistic programs. In 20th Annual Sympo-
sium on Foundations of Computer Science, pages 101–114, Long Beach,
Ca., USA, October 1979. IEEE Computer Society Press.

[14] D. Kozen. Semantics of probabilistic programs. Journal of Computer
and System Sciences, 22(3):328–350, 1981.

[15] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy
Sproston. Verifying quantitative properties of continuous probabilistic
timed automata. Technical Report CSR-00-6, University of Birming-
ham, School of Computer Science, March 2000.

[16] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy
Sproston. Verifying quantitative properties of continuous probabilistic
timed automata. In C. Palamidessi, editor, CONCUR 2000 - Concur-
rency Theory 11th International Conference, number 1877 in LNCS,
pages 123–137. Springer, 2000.

[17] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling.
Efficient dynamic-programming updates in partially observable markov
decision processes. Technical Report CS-95-19, Brown University, 1995.

[18] A. McIver. Reasoning about efficiency within a probabilistic µ-calculus.
In Proc. of PROBMIV, pages 45–58, 1998. Technical Report CSR-98-4,
University of Birmingham, School of Computer Science.

[19] David Monniaux. Abstract interpretation of probabilistic semantics.
In Seventh International Static Analysis Symposium (SAS’00), number
1824 in Lecture Notes in Computer Science, pages 322–339. Springer
Verlag, 2000. Extended version on the author’s web site.

31

[20] David Monniaux. An abstract analysis of the probabilistic termination
of programs. In 8th International Static Analysis Symposium (SAS’01),
number 2126 in Lecture Notes in Computer Science, pages 111–126.
Springer Verlag, 2001.

[21] David Monniaux. An abstract Monte-Carlo method for the analysis
of probabilistic programs (extended abstract). In 28th Symposium on
Principles of Programming Languages (POPL ’01), pages 93–101. As-
sociation for Computer Machinery, 2001.

[22] David Monniaux. Analyse de programmes probabilistes par in-
terprétation abstraite. Thèse de doctorat, Université Paris IX Dauphine,
2001. Résumé étendu en français. Contents in English.

[23] David Monniaux. Backwards abstract interpretation of probabilistic
programs. In European Symposium on Programming Languages and
Systems (ESOP ’01), number 2028 in Lecture Notes in Computer Sci-
ence, pages 367–382. Springer Verlag, 2001.

[24] David Monniaux. Abstraction of expectation functions using gaussian
distributions. In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and
Supratik Mukhopadhyay, editors, Verification, Model Checking, and
Abstract Interpretation: VMCAI ’03, number 2575 in Lecture Notes
in Computer Science, pages 161–173. Springer Verlag, 2003.

[25] Carroll Morgan, Annabelle McIver, Karen Seidel, and J. W. Sanders.
Probabilistic predicate transformers. Technical Report TR-4-95, Oxford
University, February 1995.

[26] Jacques Neveu. Mathematical Foundations of the Calculus of Probabil-
ities. Holden-Day, 1965.

[27] Jacques Neveu. Bases mathématiques du calcul des probabilités. Masson
et Cie, Éditeurs, Paris, 1970. Préface de R. Fortet. Deuxième édition,
revue et corrigée.

[28] Martin L. Puterman. Markov decision processes: discrete stochastic
dynamic programming. Wiley series in probability and mathematical
statistics. John Wiley & Sons, 1994.

[29] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1966.

32

[30] Roberto Segala. Modeling and Verification of Randomized Distributed
Real-Time Systems. PhD thesis, Massachusetts Institute of Technology,
1995. Technical report MIT/LCS/TR-676.

[31] W. Thomas. Automata on infinite objects. In van Leeuwen [32], pages
135–191.

[32] J. van Leeuwen, editor. Handbook of Theoretical Computer Science,
vol. B. Elsevier, 1990.

A Theory of ordered sets

Definition A.1. Let (X,⊑X) and (Y,⊑Y) be two sets. f : X → Y is a
monotone operator if for all a, b ∈ X, a ⊑X b =⇒ f(a) ⊑Y f(b).

f is a upper-continuous if for all ascending sequence (xi)i∈I of ele-
ments of X such that the least upper bound

⊔

i∈I xi is defined, then
f
(⊔

i∈I xi

)
=
⊔

i∈I f(xi) (respectively for lower-continuous, descending se-
quences, and greatest lower bounds instead of least upper bounds). f is
continuous if it is both upper- and lower- continuous.

The same, restricted to countable sequences, defines ω-upper-continuous,
ω-lower-continuous and ω-continuous.

Lemma A.2. For any monotone operator φ : X → Y and subset K of X,
φ(⊔K) ⊒

⊔

f∈K φ(f).

Proof. For any f ∈ K, f ⊑ ⊔K and thus φ(f) ⊑ φ(⊔K). The result
follows.

Definition A.3. An ordered set (L,⊑) is call directed if for all x and y in
L there exists z such that both x ⊑ z and y ⊑ z.

Lemma A.4. Let X be a finite or countable set of states. Let K be a directed
(Def. A.3) subset of X → I. Then there exists an ascending sequence of
elements of K that converges point-wise to ⊔K, the point-wise upper-bound
of K.

Proof. We shall assimilate X to either the finite set {0, . . . , N − 1} or N (in
which case N =∞), depending on its cardinality. Let F = ⊔K.

Let us construct such a sequence (fn)n∈N∗ of elements of K that con-
verges point-wise to F . Let n ∈ N. Let us construct by recurrence an
ascending sequence (gk)1≤k≤min(n,N−1) of elements of K:

33

n = 1 There exists a g1 ∈ K such that g1(0) ≥ F (0) − 1/n if F (0) < ∞ or
g1(0) ≥ n if F (0) = +∞.

n > 1 There exists a g ∈ K such that g(k) ≥ F (k) − 1/n if F (k) < ∞
or g(k) ≥ n if F (0) = +∞; since g and gk−1 belong to K and K is
directed, we can therefore take gk ∈ K such that gk ≥ g and gk ≥ gk−1.

Let fn be gn.
Let us now construct by recurrence an ascending sequence (f̃n)n∈N∗ of

elements of K:

n = 1 Let f̃1 = f1.

n > 1 There exists a f̃n ∈ K such that ñn ≥ fn and f̃n ≥ fn−1.

Let us show that (f̃n)n∈N∗ converges point-wise to F . Let x ∈ X.

• Case when F (x) < ∞. If n ≥ x, then fn(x) ≥ F (x) − 1/n. Thus
F (x)− 1/n ≤ f̃n(x) ≤ F (x) and limn→∞f̃n(x) = F (x).

• Case when F (x) = ∞. If n ≥ x, then fn(x) ≥ n, thus limn→∞

f̃n(x) = F (x).

Lemma A.5. Let Y be an ordered set. Let φ : (X → I) → Y be a mono-
tonic, ω-upper-continuous function. Let K be a directed subset of X → I.
Then φ(⊔K) =

⊔

f∈K φ(f).

Proof. From lemma A.2, φ(⊔K) ⊒
⊔

f∈K φ(f).
K is directed. From lemma A.4, there exists an ascending sequence fn

such that ⊔nfn = F . Since φ is ω-upper-continuous,
⊔

n φ(fn) = φ(⊔K).
But

⊔

n φ(fn) ⊑
⊔

f∈K φ(f) since the fn belong to K. Therefore φ(⊔K) ⊑
⊔

f∈K φ(f).

Lemma A.6. The least upper bound of a set of ω-upper-continous functions
is ω-upper-continous.

Lemma A.7. Let T1 and T2 be two complete lattices. Let ψ : T1 × T2 → T1

be an ω-upper-continuous operator. Then y 7→ lfp(x 7→ ψ(x, y)) is an ω-
upper-continuous operator.

Proof. y 7→ lfp(x 7→ ψ(x, y)) is ω-upper-continuous and thus lfp(x 7→
ψ(x, y)) =

⊔

n (y 7→ lfp(x 7→ ψ(x, y)))n (⊥). The result then follows from
lemma A.6.

34

Lemma A.8. Let T1 and T2 be two complete lattices. Let α : T1 → T2 be
an ω-upper-continuous operator such that α(⊥) = ⊥. Let ψ1 : T1 → T1 and
ψ2 : T2 → T2 be two ω-upper-continuous operators such that ψ2 ◦α = α ◦ψ1.
Then α(lfpψ1) = lfpψ2.

Proof. α(lfpψ1) = α(
⊔

n ψ
n
1 (⊥)) =

⊔

n α ◦ ψ
n
1 (⊥) =

⊔

n ψ
n
2 (α(⊥)
︸ ︷︷ ︸

⊥

) = lfpψ2.

B Measure theory and integrals

B.1 Measure theory

We express probabilities using measures [29, §1.18]. Measures express the
intuitive idea of a “repartition of weight” on the domain; probabilities are a
particular case of measures. A measure on a space Ω assigns a “weight” to
subsets of Ω. A probability measure is a measure of total weight 1.

Before entering the mathematical definitions, let us see a few familiar
examples:

• In the case where Ω is finite or countable, defining a positive measure
is just defining a function f : Ω → R+ (the weight of A ⊆ Ω is
then

∑

ω∈A f(a)); it is a a probability measure if
∑

ω∈Ω f(ω) = 1. A
measure on a finite space is said to be equidistributed if ∀ω f(ω) = 1

|Ω| .

• In the case of the real field R, the Lebesgue measure µ is so that
the measure of a segment [a, b] is its length. The Lebesgue measure
on [0, 1] formalizes that familiar notion of a real “equidistributed in
[0, 1]”. The Lebesgue measure can be defined on R

n, and the measure
of an object is its area (for R

2) or volume (for R
3).

• The unit point mass (or Dirac measure) at x is the measure δx defined
by: δx(A) = 1 if x ∈ A, δx(A) = 0 otherwise.

Let us see now the formal definitions:

Definition B.1. A σ-algebra is a set of subsets of a set X that contains ∅
and is stable by countable union and complementation (and thus contains
X and is stable by countable intersection).

In the case of the Lebesgue measure, we shall consider a suitable σ-
algebra, such as the Borel or Lebesgue ones [29]. It is sufficient to say that
most sets that one can construct are Lebesgue-measurable.

35

Definition B.2. A set X with a σ-algebra σX defined on it is called a mea-
surable space and the elements of the σ-algebra are the measurable subsets.

We shall often mention measurable spaces by their name, omitting the
σ-algebra, if no confusion is possible.

Definition B.3. If X and Y are measurable spaces, f : X → Y is a
measurable function if for all W measurable in Y , f−1(W) is measurable in
X.

Definition B.4. A positive measure is a function µ defined on a σ-algebra
σX whose range is in [0,∞] and which is countably additive. µ is countably
additive if, taking (An)n∈N a disjoint collection of elements of σX , then

µ

(
∞⋃

n=0

An

)

=
∞∑

n=0

µ(An). (51)

To avoid trivialities, we assume µ(A) < ∞ for at least one A. The total
weight of a measure µ, noted |µ|, is µ(X). µ is said to be concentrated on
A ⊆ X if for all B, µ(B) = µ(B ∩ A). We shall note M+(X) the positive
measures on X.

Definition B.5. A σ-finite measure on X is a measure µ such that there
exists a countable family of measurable sets (An)n∈N such that ∀n µ(An) <
∞ and

⋃

nAn = X. We note by M+(X) the σ-finite measures on X.

Definition B.6. A probability measure is a positive measure of total weight
1; a sub-probability measure has total weight less or equal to 1. We shall
note M≤1(X) the sub-probability measures on X.

Definition B.7. Given two sub-probability measures µ and µ′ (or more
generally, two σ-finite measures) on X and X ′ respectively, we note µ⊗ µ′

the product measure [29, definition 7.7], defined on the product σ-algebra
σX × σX′ . The characterizing property of this product measure is that
µ⊗ µ′(A×A′) = µ(A).µ′(A′) for all measurable sets A and A′.

These definitions constitute the basis of the theory of Lebesgue integra-
tion [29, ch. 1, 2], one of the most essential results of which is:

Theorem B.8 (Lebesgue’s monotone convergence theorem). Let
(X,µ) be a measured space. Let fn be an ascending sequence of functions,
whose point-wise limit is f . Then the sequence

∫
fn dµ is also ascending and

limn→∞

∫
fn dµ =

∫
f dµ.

36

B.2 Construction of measures on infinite sequences with

transition probabilities

The intuitive meaning of this theorem [26,27, proposition V-I-1] is as follows:
if (Et)t∈N is a sequence of measurable spaces and the (P 0,...,t

t+1)t∈N is a sequence
of transition probabilities, respectively from E0 × Et to Et+1, then we can
construct a transition probability P from E0 to E1 ×E2× · · · such that for
each x0 ∈ E0, P (x0, ·) is the probability distribution on traces starting from
x0 and following the transition probabilities (Et)t∈N.

In an even more intuitive fashion: “knowing the starting probability
measure, and the transition probabilities to the next states, we can construct
the corresponding probability measure on infinite traces”.

Theorem B.9 (Ionescu Tulcea). Let (Et,Ft)t∈N be an infinite sequence
of measurable spaces and, for any t ∈ N, let P 0,...,t

t+1 be a transition probabil-

ity relative to the spaces
(∏t

s=0Es,
⊗t

s=0Fs

)
and (Et+1,Ft+1). Then there

exists for any x0 ∈ E0 a unique probability Px0
on

(Ω,A) =
∏

t

(Et,Ft)

whose value for all measurable Cartesian product
∏

t Ft is given by:

Px0

[
∏

t

Ft

]

= χA0
(x0)

∫

x1∈F1

P 0
1 (x0; dx1)

∫

x2∈F2

P 0,1
2 (x0, x1; dx2)

· · ·

∫

xT∈FT

P 0,...,T−1
T (x0, . . . , xT−1; dxT) (52)

as long as T is sufficiently great such that Ft = Et if t > T (the second
member is then independent of the chosen T). For any positive random
variable Y on (Ω,A) only depending on the coordinates up to T , we have:

∫

Ω
Y (ω′)Px0

(dω′) =

∫

F1

P 0
1 (x0; dx1)

∫

F2

P 0,1
2 (x0, x1; dx2)

·

∫

xT∈FT

Y (x0, . . . , xT)P 0,...,T−1
T (x0, . . . , xT−1; dxT) (53)

Furthermore, for any positive random variable Y on (Ω,A),

x0 7→

∫

Y (ω′)Px0
(dω′) (54)

is a positive random variable on (E0,F0).

37

	Introduction and related works
	Probabilistic transition systems
	Probabilistic transitions
	Probability measures on traces

	Nondeterministic and probabilistic transition systems
	The properties to analyze
	Expectation Functions
	Trace Valuators
	Boolean Trace Valuators
	Some particularly interesting Boolean valuators
	Summation valuator

	Temporal logics
	Linear time logic (LTL) and -regular conditions
	Branching-time logic: pCTL and pCTL*

	Backwards Worst Case Analysis
	Backwards Worst Case Semantics on Expectation Functions
	The Abstraction Relation Between the Semantics

	Abstract Analysis
	General case
	Partitioning in programs

	Conclusions and Discussion
	Theory of ordered sets
	Measure theory and integrals
	Measure theory
	Construction of measures on infinite sequences with transition probabilities

