
HAL Id: hal-00084291
https://hal.science/hal-00084291v1

Submitted on 7 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional analysis of floating-point linear numerical
filters

David Monniaux

To cite this version:
David Monniaux. Compositional analysis of floating-point linear numerical filters. 2005, pp.199,
�10.1007/11513988_21�. �hal-00084291�

https://hal.science/hal-00084291v1
https://hal.archives-ouvertes.fr

cc
sd

-0
00

84
29

1,
 v

er
si

on
 1

 -
 7

 J
ul

 2
00

6

Compositional analysis of floating-point linear

numerical filters

David Monniaux

CNRS / Laboratoire d’informatique de l’École normale supérieure
David.Monniaux@ens.fr

Abstract. Digital linear filters are used in a variety of applications
(sound treatment, control/command, etc.), implemented in software, in
hardware, or a combination thereof. For safety-critical applications, it is
necessary to bound all variables and outputs of all filters.
We give a compositional, effective abstraction for digital linear filters
expressed as block diagrams, yielding sound, precise bounds for fixed-
point or floating-point implementations of the filters.

1 Introduction

Discrete-time digital filters are used in fields as diverse as sound processing,
avionic and automotive applications. In many of these applications, episodic
arithmetic overflow, often handled through saturated arithmetics, is tolerable —
but in safety-critical applications, it may lead to dramatic failures (e.g. disaster
of the maiden flight of the Ariane 5 rocket). Our experience with the Astrée static
analyzer [3] is that precise analysis of the numerical behavior of such filters is
necessary for proving the safety of control-command systems using them.

We provide a method for efficiently computing bounds on all variables and
outputs of any digital causal linear filter with finite buffer memory (the most
common kind of digital filter). These bounds are sound with respect to fixed-
or floating-point arithmetics, and may be used to statically check for arithmetic
overflow, or to dimension fixed-point registers, inside the filter, or in computa-
tions using its results.

In many cases, filters are specified as diagrams in stream languages such
as Simulink, SAO, Scade/Lustre, which are later compiled into lower-level lan-
guages. Our method targets such specifications, modularly and compositionally:
the analysis results of sub-filters are used when analyzing a complex filter.

Our analysis results are valid for whatever range of the inputs. They can thus
be used to simplify the analysis of a more complex, nonlinear filter comprising a
linear sub-filter: the linear sub-filter can be replaced by its sound approximation.

In §3, we shall explain our mathematical model for the filters. In §4 we give
a compositional semantics for ideal filters working on real numbers. In §5 we
explain how to extract bound from this semantics. In §7, we recall some basic
properties of floating-point computation. In §8 we enrich our semantics to deal
with floating-point inaccuracies and other nonlinear behaviors. In §9, we consider
numerical methods and implementation issues.

delay

delay

+

+

compositional blocks

feedback input

delay

delay

+

+

feedback sub−filter

normal
input

×β1

×β2

×α0

×α2

×α1

Fig. 1. Decomposition of the TF2 filter Sn = α0En + α1En−1 + α2En−2 +
β1Sn−1 + β2Sn−2 into elementary blocks. The compositional blocks are chained
by serial composition. Inside each compositional on the left, elementary gates
are composed in parallel. On the right hand side, a feedback loop is used.

2 Introduction to linear filters and Z-transforms

Let us consider the following piece of C code, which we will use as a running
example (called “TF2”):

Y = A0*I + A1*Ibuf[1] + A2*Ibuf[2];

O = Y + B1*Obuf[1] + B2*Obuf[2];

Ibuf[2]=Ibuf[1]; Ibuf[1]=I;

Obuf[2]=Obuf[1]; Obuf[1]=O;

All variables are assumed to be real numbers (we shall explain in later sec-
tions how to deal with fixed- and floating-point values with full generality and
soundness). The program takes I as an input and outputs O; A0 etc. are constant
coefficients. This piece of code is wrapped inside a (reactive) loop; the time is
the number of iterations of that loop. Equivalently, this filter can be represented
by the block diagram in Fig. 1.

Let us note a0 etc. the values of the constants and in (resp. yn, on) the value
of I (resp. Y, O) at time n. Then, assuming ok = 0 for k < 0, we can develop the
recurrence: on = yn + b1.on−1 + b2.on−2 = yn + b1.(yn−1 + b1.on−2 + b2.on−3) +
b2.(yn−2 + b1.on−3 + b2.on−4) = yn + b1.yn−1 + (b2 + b2

1b0).yn−2 + . . . where . . .
depends solely on yk with k < n − 2. More generally: there exist coefficients c0,
c1. . . such that for all n, on =

∑
k=0 ckyn−k. These coefficients solely depend on

the bk; we shall see later some general formulas for computing them.
But, itself, yn = a0.in + a1.in−1 + a2.in−2. It follows that there exist coef-

ficients c′n (depending on the ak and the bk) such that on =
∑

k=0 c′kin−k. We
again find a similar shape of formula, known as a convolution product. The c′k
sequence is called a convolution kernel, mapping i to o.

Let us now suppose that we know a bound MI on the input: for all n,
|in| ≤ MI ; we wish to derive a bound MO on the output. By the triangle in-
equality, |On| ≤

∑
k=0 |c

′
k|.MI . The quantity

∑
k=0 |c

′
k| is called the l1-norm of

the convolution kernel c′.
What our method does is as follows: from the description of a complex linear

filter, it compositionally computes compact, finite representations of convolution
kernels mapping the inputs to the outputs of the sub-blocks of the filter, and
accurately computes the norms of these kernels (or rather, a close upper bound
thereof). As a result, one can obtain bounds on any variable in the system from
a bound on the input.

3 Linear filters: formalism and behavior

In this section, we give a rough outline of the class of filters that we analyze and
how their basic properties allow them to be analyzed.

3.1 Linear filters

We deal with numerical filters that take as inputs and output some (unbounded)
discrete streams of floating-point numbers, with causality; that is, the output of
the filter at time t depends on the past and present inputs (times 0 to t), but not
on the future inputs. 1 In practice, they are implemented with state variables (in
the TF2 example, the Ibuf[] and Obuf[] arrays), and the output at time t is a
function of the input at time t and the internal state (resulting from time t− 1),
which is then updated. In software, this is typically one piece of a synchronous
reactive loop:

while(true) { ...

(state, output) = filter(state, input);

... }

We are particular interested in filters of the following form (or compounds
thereof): if (sk) and (ek) are respectively the input and output streams of the
filter, there exist real coefficients α0, α1, . . . αn and β1, . . . βm such that for all
time t, st (the output at time t) is defined as: st =

∑n
k=0 αket−k +

∑m
k=1 βkst−k.

In TF2, n = m = 2.
Consider the reaction (sk) of the system to a unit impulse (e0 = 1 and

∀k > 0 ek = 0). If the β are all null, the filter has necessarily finite impulse
response (FIR): ∃N ∀k ≥ N, sk = 0. Otherwise, it may have infinite impulse
response (IIR): sk decays exponentially if the filter is stable; a badly designed
IIR filter may be unstable, and the response then amplifies with time.

It is possible to design filters that should be stable, assuming the use of real
numbers in computation, but that exhibit gross numerical distortions due to the
use of floating-point numbers in the implementation.

1 There exist non-causal numerical filtering schemes; such as Matlab’s filtfilt func-
tion. However, they require buffering the data and thus cannot be used in real time.

3.2 Formal power series and rational functions

The output streams of a linear filter, as an element of RN, are linear functions
of the inputs and the initial values of the state variables.

Neglecting the floating-point errors and assuming that state variables are
initialized to 0, the output O is the convolution product, denoted C ⋆ I of the
input I by some convolution kernel C: there exists a sequence (qn)n∈N of reals
such that for any n, on =

∑n
k=0 ckin−k. The filter is FIR if this convolution

kernel is null except for the first few values, and IIR otherwise.
Consider two sequences of real numbers A : (ak)k∈N and B : (bk)k∈N. We

can equivalently note them as some “infinite polynomials”
∑i

k=0 nftyakzk and
∑i

k=0 nftybkzk; such “infinite polynomials”, just another notation for sequences
of reals, are known as formal power series. This “Z-transform” notation is justi-
fied as follows: the sum C = A + B of two sequences is defined by cn = an + bn,
which is the same as the coefficient n of the sum of two polynomials

∑
k akzk

and
∑

bkzk; the convolution product C = A ⋆ B of two sequences is defined by
cn =

∑
k akbn−k, the same as the coefficient n of the product of two polynomials∑

k akzk and
∑

bkzk.
Consider now some “ordinary” (finite) polynomials in one variable P (z) and

Q(z); we define, as usual, the rational function P/Q. We shall be particularly
interested in the set Rz of such rational functions where the 0-degree coeffi-
cient of Q is 1 (note that, up to equivalence by multiplication of the numerator
and the denominator by the same quantity, this is the same as requesting that
the 0-degree coefficient of Q is non-zero). Any sum or product of such fractions
is also of the same form. For fraction in Rz, we can compute its Taylor ex-
pansion around 0 to any arbitrary order: P (z)/Q(z) = c0 + c1z + c2z

2 + . . . +
cnzn + o(zn). By doing so to any arbitrary n, we define another formal power
series

∑∞
k=0 ck. We shall identify such rational fraction with the power series

that it defines.
We shall see more formally in §4 that the Z-transform of the convolution

kernel(s) of any finite-memory, causal linear filter is a rational function

α0 + α1z + · · · + αnzn

1 − β1z − · · · − βmzm
(1)

The above fraction is the Z-transform for a filter implementing sn =
∑n

k=0 αk.en−k+∑m
k=0 β.sn−k, and thus any ideal causal finite-memory linear filter with 1 input

and 1 output is equivalent to such a filter.2

3.3 Bounding the response

Let I : (ik)n∈N be a sequence of real or complex numbers. We call l∞-norm
of I, if finite, and denote by ‖I‖∞ the quantity supk∈N |ik|. Because of the

2 Though all designs with the same Z-transform compute the same on real numbers,
they may differ when implemented in fixed- or floating- point arithmetics. Precision
and implementation constraints determine the choice of the design.

isomorphism between sequences and formal power series, we shall likewise note
‖

∑
k ikzk‖∞ = supk |ik|. For a sequence (or formal series) A, we denote by ‖A‖1

the quantity
∑∞

k=0 |ak|, called its l1-norm, if finite.
We then have the following crucial and well-known results: [7, §11.3]:

Lemma 1. For any I, ‖I ⋆ C‖∞ ≤ ‖I‖∞.‖C‖1. Furthermore, ‖C‖1 = ∞, for
any M > 0 there exists a sequence IM such that ‖IM ⋆ C‖∞ > M .

In terms of filters:

– If ‖C‖1 is finite, we can easily bound the output of the filter. Our system will
thus compute (or, rather, over-approximate very closely) C for any filter.

– If ‖C‖1 = ∞, then the filter is unstable: it is possible to obtain outputs of
arbitrary size by feeding appropriate sequences into the filter.

If C is the power series expansion of a rational fraction P/Q (which will be
the case for all the filters we consider, see below), then we have the following
stability condition:

Lemma 2. ‖P/Q‖1 is finite if and only if for all z ∈ C such that Q(z) = 0,
then |z| > 1.

Unsurprisingly, our algorithms will involve some approximation of the com-
plex roots of polynomials.

4 Compositional semantics: real field

In this section, we give a compositional abstract semantics of compound filters
on the real numbers, exact with respect to input/output behavior.

4.1 Formalism

A filter or filter element has

– ni inputs I1, . . . , Ini
(collectively, vector I), each of which is a stream of real

numbers;
– nr reset state values r1, . . . , rnr

(collectively, vector R), which are the initial
values of the state of the internal state variables of the filter;

– no output streams O1, . . . , Ono
(collectively, vector O).

In TF2, ni = no = 1, and nr = 4.
If M is a matrix (resp. vector) of rational functions, or series, let Nx(M)

denote the coordinate-wise application of the norm ‖·‖x to each rational function,
or series, thereby providing a vector (resp. matrix) of nonnegative reals. We note
mi,j the element in M at line i and column j.

When computed upon the real field, a filter F is characterized by:

– a matrix T F ∈ Mno,ni
(Rz) such that ti,j characterizes the linear re-

sponse of output stream i with respect to input stream j;

TF2TF2+
E S

delay (2)
feedback

N2N1

×− k

Fig. 2. A compound filter consisting of two second order filters and a feedback
loop.

– a matrix DF ∈ Mno,nr
(Rz) such that di,j characterizes the (decaying)

linear response of output stream i with respect to reset value j.

We note F (I, R) the vector of output streams of filter F over the reals, on the
vector of input streams I and the vector of reset values R. F (I, R) = T F .I +
DF .R, and thus N∞(F (I, R)) ≤ N1(T

F).N∞(I)+N1(D
F .R), which bounds the

output according to the input.

When the number of inputs and outputs is one, and initial values are assumed
to be zero, the characterization of the filter is much simpler — all matrices and
vectors are scalars (reals, formal power series or rational functions), and DF is
null.

For most gates (addition, reorganization of wires, multiplication by a scalar,
generation of a constant...), the interpretation in terms of linear application
over power series, or a matrix of rational functions, is straightforward. The only
difficulty is the feedback construct: given a circuit C with ni inputs and no < ni

outputs, feed back the outputs into some of the inputs through a unit delay;
it can be shown that such systems have a unique solution, obtained by linear
algebra over rational functions.

4.2 Examples

The TF2 filter of Fig. 1 is expressed by S = α0.E+α1.delay2(E)+α2.delay2(E)+
β1.delay1(S) + β2.delay2(S). This yields an equation S = (α0 + α1z + α2z

2)E +
(β1z + β2z

2)S. This equation is easily solved into S = (α0 + α1z + α2z
2)(1 −

β1z − β2z
2)−1.E.

In Fig. 2, we first analyze the two internal second order IIR filters separately

and obtain Q1 = α0+α1z+α2z2

1−β1z−β2z2 and Q2 = a0+a1z+a2z2

1−b1z−b2z2 . We then analyze the
feedback loop and obtain for the whole filter a rational function with a 6th degree
dominator: S = Q1.Q2

1+kz2.Q1.Q2

.E where Q1 and Q2 are the transfer function of the

TF2 filters (form (α0 + α1z + α2z
2)(1 − β1z − β2z

2)−1), which we computed
earlier.

4.3 Practical computations

To avoid problems during matrix inversion, we perform all our computations
over the ring Qz of rational functions over the rational numbers. In §8.2 we
explain how to use controlled approximation to reduce the size of the rationals
and thus ensure good computation speed even with complex filters.

An alternative, at least for the filters on real numbers, is to perform all com-
putations in Q(α1, . . . , αn)z: all the coefficients of the rational functions are
themselves rational functions whose variables represent the various constant co-
efficients inside the filter. This makes it possible to perform one computation
with one particular shape of filter (i.e. class of equivalence of filters up to dif-
ference of coefficients), then use the results for concrete filters, replacing the
variables by the values of the coefficients.

5 Bounding the l∞ and l1-norms of rational functions

In §3.3 and 4.1, we used l1-norms of expansions of rational functions to bound
the gain of filters. In this section, we explain how to over-approximate these.

Let P (z)/Q(z) ∈ Rz be a rational function representing a power series by
its development (un)n∈N around 0. We wish to bound ‖u‖1, which we shall note
‖P/Q‖1. As we said before, most of the mass of the development of P/Q lies in its
initial terms, whereas the “tail” of the series is negligible (but must be accounted
for for reasons of soundness). We thus split P/Q into an initial development

of N terms and a tail, and use ‖P/Q‖1 = ‖P/Q‖<N
1 + ‖P/Q‖≥N

1 . ‖P/Q‖<N
1

is computed by computing explicitly the N first terms of the development of
P/Q. We shall see in Sect. 9.2 the difficulties involved in performing such a
computation soundly using interval arithmetics.

Let dQ be the degree of Q. The development D of P/Q yields an equation
P (z) = D(z).Q(z)+R(z).zN . We have P (z)/Q(z) = D(z)+R(z)/Q(z).zN , thus

‖P/Q‖≥N
1 = ‖R/Q‖1 ≤ ‖R‖1.‖1/Q‖1.

There exist a variety of methods for bounding ‖1/Q‖1 using the zeroes of
Q(z). One uses the following lemma:

Lemma 3. If P (z)/Q(z) is a rational function such that Q(0) 6= 0 and Q is
monic (leading coefficient equal to 1), with roots (counted with their multiplicity)
ξ1, . . . , ξn, then ‖P/Q‖1 ≤ ‖P‖1.(|ξ1| − 1)−1 . . . (|ξn| − 1)−1.

‖R‖∞ is bounded by explicit computation of R using interval arithmetics; as
we shall see (§9.2), we compute D until the sign of the terms is unknown — that
is, when the norm of the developed signal is on the same order of magnitude as
the numerical error on it, which happens, experimentally, when the terms are
very small in absolute values. Therefore, ‖R‖∞ is small, and thus the roughness
of the approximation used for ‖1/Q‖1 does not matter much in practice.

The same method way be used for bounding the l∞-norm: explicit compu-
tation of the norm over a finite development, and bounding of the (negligible)
tail, if necessary by ‖R‖∞ ≤ ‖R‖1.

6 Complex nonlinear iterated filter

We now consider a nonlinear, iterated filter due to Roozbehani et al. [11][§5].
We first analyze separately filter1() (2nd-order linear filter) and filter2()

(2nd-order affine filter). So as to simplify matters, we do not give the transfer
functions using matrices, matrices inverses etc. but as the solution of a system
of linear equations over polynomials in z. We obtain that system very simply
from the program: whenever we see an assignment x := e, we turn it into an
equation x = e (we assume without loss of generalities that variables are only
assigned once in a single iteration step), where e is the original expression where
a variable v that has not yet been assigned in the current iteration is replaced
by iv + z.v, iv standing for the initialization value of v.

void filter1 () {
static float E[2], S[2];
if (INIT1) {
S[0] = X; P = X;
E[0] = X; E[1]=0; S[1]=0;

} else {
P =0.5*X-0.7*E[0] +0.4*E[1] p = 0.5e − 0.7(ie0

+ z.e0)
+1.5*S[0]-S[1]*0.7; +0.4(ie1

+ z.e1) + 1.5(is0
+ z.s0) − 0.7(is1

+ z.s1)
E[1] = E[0]; e1 = ie0

+ z.e0

E[0] = X; e0 = e
S[1] = S[0]; s1 = is1

+ z.e1

S[0] = P; s0 = p
X=P/6+S[1]/5; x = p/6 + s1/5

}
}

We call e the input value for X. We solve the system and obtain x = Q.e +
Qie0

.ie0
+ Qie1

.ie1
+ Qis0

.is0
+ Qis1

.is1
. The common denominator of the Q

fractions is 10− 15z + 7z2, which has complex conjugate roots z such that |z| ≃
1.2. ie1

= is1
= 0 and ie0

= is0
= ι (the last value for input e such that INIT1

is true), thus ‖x‖∞ ≤ ‖Q‖1.‖e‖∞ + ‖Qie0
+ Qis0

‖∞.‖ι‖. With a precondition
‖e‖∞ ≤ 400, this yields ‖x‖∞ < 339. If we take the coarser inequality ‖x‖∞ ≤
‖Q‖1.‖e‖∞ + (‖Qie0

‖∞ + ‖Qis0
‖∞).‖ι‖ we get ‖x‖∞ < 528. Roozbehani et al.

find a bound ≃ 531.

void filter2 () {
static float E2[2], S2[2];
if (INIT2) {
S2[0] =0.5*X; P = X;
E2[0] = 0.8*X; E2[1]=0; S2[1]=0;

} else {
P =0.3*X-E2[0]*0.2+E2[1]*1.4 p = 0.3e − 0.2(ie0

+ z.e0)
+S2[0]*0.5-S2[1]*1.7; +1.4(ie1

+ z.e1) + 0.5(is0
+ z.s0) + 1.7(is1

+ z.s1)
E2[1] = 0.5*E2[0]; e1 = 0.5(ie0

+ z.e0)
E2[0] = 2*X; e0 = 2e

S2[1] = S2[0]+10; s1 = is0
+ z.s0 + τ

S2[0] = P/2+S2[1]/3; s0 = p/2 + s1/3
X=P/8+S2[1]/10; x = p/8 + s1/10

}
}

We proceed similarily (with the introduction of τ = 10/(1 − z) and obtain
x = Q.e+Qie0

.ie0
+Qie1

.ie1
+Qis0

.is0
+Qis1

.is1
+Qc. The common denominator

of the Q is 60+35z+51z2, with complex conjugate roots z such that |z| ≃ 1.08.
Then ‖x‖∞ ≤ ‖Q‖1.‖e‖∞ + ‖0.8Qie0

+ 0.5Qis0
‖∞.‖ι‖ + ‖Qc‖∞. This yields

‖x‖∞ ≤ 1105.
The two linear filters are combined into an iterated nonlinear filter. filter1()

(resp. filter2()) is run with a pre-condition of X ∈ [−400, 400] (resp. [−800, 800]).
We replace the call to the filter by its postcondition X ∈ [−339, 339] (resp.
X ∈ [−1105, 1105]).

The program then can be abstracted into:
while (TRUE) {
X = 0.98 * X + 85;

maybe choose X in [−1155, 1055]; }
We obtain X ∈ [−1155, 4250.02] by running
Astrée with a large number of narrowing iter-
ations, whereas Astrée cannot analyze the orig-
inal program precisely and cannot bound X. In
this case, the exact solution [−1155, 4250] (x =
0.98x + 85 has for unique solution x = 4250)
could have been computed algebraically, but in
more complex filters this would not have been
the case. Roozbehani et al. have a bound of
4560.
Note that the non-abstracted program con-
verges to a value ≃ 205, with X ∈ [0, 209]. How-

void main () {
X = 0;

INIT1 = TRUE; INIT2=TRUE;

while (TRUE) {
X = 0.98 * X + 85;

if (abs(X)<= 400) {
filter1 ();

X=X+100;

INIT1=FALSE;

} else

if (abs(X)<=800) {
filter2();

X=X-50;

INIT2=FALSE;

}
}}

ever, this very simple program illustrates our methodology for compositional
analysis: finding the optimal solution is possible here because the program is
simple, but would not be possible in practice if we had added more nonlinear
behavior and nondeterministic inputs, as in real-life reactive code; whereas by
analyzing precisely each linear filter and plugging the results back into a generic
analyzer, we get reasonable results.

7 Precision properties of fixed- or floating-point

operations

Most types of numerical arithmetics, including the widely used IEEE-754 floating-
point arithmetic, implemented in hardware in all current microcomputers, define
the result of elementary operations as follows: if f is the ideal operation (addi-
tion, subtraction, multiplication, division etc.) over the real numbers and f̃ is

the corresponding floating-point operation, then f̃ = r ◦ f where r is a roundoff
function, depending on the current rounding mode.

In this description, we leave out the possible generation of special values such
as infinities (+∞ and −∞) and not-a-number (NaN). We assume as a precon-
dition to the numerical filters that we analyze that they are not fed infinities or
NaNs.

Our framework provides constructive methods for bounding any floating-
point quantity x inside the filters as ‖x‖∞ ≤ c0 +

∑n
k=1 ck.‖ek‖∞ where the ek

are the input streams of the system; it is quite easy to check that the system does
not overflow (‖x‖ < M); one can even easily provide some very wide sufficient
conditions on the input (‖ek‖∞ ≤ (M − c0)/(

∑n
k=1 ck)). We will not include

such conditions in our description, for the sake of simplicity.

For any arithmetic operation, the discrepancy between the ideal result x and
the floating-point result x̃ is bounded, in absolute value, by max(εrel|x|, εabs)
where εabs is the absolute error (the least positive floating-point number)3 and
εrel is the relative error incurred. εabs and εrel depend on the floating-point type
used and possible rounding modes. We actually take the coarser inequality |x−x̃|
≤ εrel|x| + εabs. See [1] for more details on floating-point numbers and [9] for
more about the affine bound on the error.

In the case of fixed-point arithmetics, we have εrel = 0 and εabs = δ (δ
is the smallest positive fixed-point number) if the rounding mode is unknown
(round to +∞, −∞ etc.) and δ/2 is it is the rounding mode is known to be
round-to-nearest.

8 Compositional semantics: fixed- and floating-point

8.1 Constraint on the errors

We now enrich our compositional abstract semantics to reflect numerical errors.
Our enriched semantics characterizes a fixed- or floating-point filter F̃ by the
exact semantics of the associated filter F over the real numbers and a bound on
the discrepancy ∆(I) = F̃ (I)−F (I) between the ideal and floating-point filters.

Assuming for the sake of simplicity a single input and a single output and
no initialization conditions, we obtain an affine, almost linear constraint on
‖∆(I)‖∞: ‖∆(I)‖∞ ≤ εF

rel‖I‖∞ + εF
abs. In short: since the filter is linear, the

magnitude of the error is (almost) linear. We generalize this idea to the case of
multiple inputs and outputs. The abstract semantics characterizing ∆ is given by
matrices εF

rel,T ∈ Mno,ni
(R+) and εF

rel,D ∈ Mno,nr
(R+) and a vector εF

abs ∈ R
no

+

such that ‖F (I, R) − F̃ (I, R)‖∞ ≤ εF
rel,T .N∞(I) + εF

rel,D.N∞(R) + εabs. where

F̃ (I, R) is the output on the stream computed upon the floating-point numbers

3 The absolute error results from the underflow condition: a number close to 0 is
rounded to 0. Contrary to overflow (which generates infinities, or is configured to
issue an exception), underflow is generally a benign condition. However, it precludes
merely relying on relative error bounds if one wants to be sound.

on input streams I and initial values I. As before, the matrices for a complex
filter may be computed compositionally from the matrices for the sub-filters.

Let us for instance consider the instruction t = (x + y) + z where all vari-
ables are from the same fixed- or floating-point type (say, IEEE double preci-
sion). We shall note ⊕ (resp. ⊗) the machine operation corresponding to the
ideal + (resp ×) on reals. Then x ⊕ y = x + y + ε1, with ε1 ≤ εrel.|x + y| + εabs

≤ εrel.|x| + εrel.|y| + εabs. Also, (x ⊕ y) ⊕ z = (x ⊕ y) + z + ε2, with ε2 ≤
εrel.|(x⊕ y)+ z|+ εabs ≤ εrel.|x+ y + z + ε1|+ εabs ≤ εrel.(1 + εrel).|x|+ εrel.(1+
εrel).|y| + εrel.|z|+ εabs.(1 + εrel). Then (x ⊕ y)⊕ z = x + y + z + (ε1 + ε2) with
|ε1 + ε2| ≤ εrel.(2 + εrel).|x| + εrel.(2 + εrel).|y| + εrel.|z|+ εabs.(2 + εrel).

8.2 Trading accuracy for speed; nonlinear elements

We have split the behavior of the filter into the sum of the convolution of the
input signal by the power development of a rational function, representing the
exact behavior, and some error term. If we compute the rational functions exactly
over Qz, then the rational coefficients might grow expensively large. We can
actually take shorter approximations of these coefficients and absorb the error
that we introduce into the error term.

An ideal filter of Z-transform P/Q with no initialization condition, P (z) =
∑k

k=0 αkzk and Q(z) =
∑k

k=0 βkzk is equivalent to a filter as described in §3.1.
Such a filter may be soundly approximated by a non-ideal feedback filter F ♯ with

T F ♯

I = P ♯, T F ♯

O = Q♯, εrel,I = ‖P ♯ − P‖1, εrel,O = ‖Q♯ − Q‖1, εabs = 0.
More generally: a filter F (Z-transform P/Q) may be approximated by a

filter F ♯ (P ♯/Q♯) with transfer function T F ♯

= T G, εF ♯

rel,T = εF
rel,T + εG

rel,T ,

εF ♯

rel,D = εF
rel,D + εG

rel,D, εF ♯

abs = εF
abs where G is the feedback filter whose internal

filter H is given by T H
I = P ♯, T H

O = Q♯, εH
rel,I = ‖P ♯ − P‖1, εH

rel,I = ‖Q♯ − Q‖1,

εH
abs = 0. In this way, a nonlinear sub-filter can be approximated by a linear part

and a nonlinear part, the latter being constrained by εrel and εabs.

9 Numerical considerations and implementation

We have so far given many mathematical formulas that are exact in the real field.
In this section, we explain how to obtain sound abstractions for these formulas
using floating-point arithmetics.

We implemented the algorithms described here. As an example, the serial
composition of the filter in Fig. 1 and another TF2 filter, all with realistic co-
efficients, is analyzed in about 0.04 s on a recent PC; the analyzer finds that
‖S‖ ≤ g‖E‖ with g ≃ 2, with εrel ≃ 10−12 and εabs ≃ 10−305.

For filters implemented over the real numbers, the computation of the rational
fractions representing the convolution kernels can be performed using arbitrary
precision arithmetics; no loss of precision is entailed. When computing the formal
development and its sum, one can use floating-point numbers in round-to-+∞
and round-to-−∞ modes and obtain lower and upper bounds, thus also deriving

a bound on the computation error; similar bounds may be obtained for the
estimate of the norm of the tail. We applied the method to filters extracted from
industrial codes; in all cases, the error bounds were small. In practice, outside
of artificial cases, floating-point arithmetics does not add significantly to the
bounds.

9.1 Interval arithmetics

IEEE floating-point arithmetics [1] and good extended precision libraries such
as MPFR4 provide functions computing upward rounded (or rounded-to-+∞)
and downward rounded (or rounded-to-−∞) results: that is, if f(x1, . . . , xn) is
the exact operation on real numbers and f̃− and f̃+ are the associated floating-
point downward and upward operations, then f(x1, . . . , xn) is guaranteed to be
in the interval [f̃−(x1, . . . , xn), f̃+(x1, . . . , xn)], which will guarantee the sound-
ness of our approach. Furthermore, for many operations, f̃−(x1, . . . , xn) and
f̃+(x1, . . . , xn) are guaranteed to be optimal; that is, no better bounds can be
provided within the desired floating-point format; this will guarantee local opti-
mality of certain of our elementary operations.

9.2 Computation of developments

When bounding the norm ‖P/Q‖1 of a series quotient of two polynomials, we
split the series into its N initial terms of development, which we compute explic-
itly, and a tail whose norm we bound. The first idea is to compute the N first
terms of the series by quotienting the series, as explained in Sect. 3.2 or, equiv-
alently, by running the filter for N iterations on the Dirac input 1, 0, 0, In
order to provide a sound result, one would work using interval arithmetics over
floating-point numbers. However, as already noted by Feret, after some number
of iterations the sign of the terms becomes unknown and then the magnitude
of the terms increase fast; it is therefore indicated to compute the development
until the first term of unknown sign is reached, and assign N accordingly (one
may still also enforce a maximal number of iterations Nmax). In order to be able
to develop the quotient further with good precision, one can use a library of
extended-precision floating-point computations.

9.3 Bounding the roots

In order to bound ‖P/Q‖1, we have to get lower bounds of the absolute values of
the roots of Q. For this, we want to obtain discs D(xj , ρj) such that |xj−ξj | ≤ ρj

where the ξj are the roots of Q counted with their multiplicities.
Our polynomial coefficients turned into floating-point intervals [lk, hk]; it is

expected that the hk − lk are small. This suggests to us a two-step method for
obtaining the desired bounds:

4 http://www.mpfr.org

http://www.mpfr.org

1. Use an efficient and, in practice, very accurate algorithm to obtain approxi-
mations xj to the roots of

∑n
k=1

lk+hk

2 zk (the “midpoint polynomial”). We
used gsl poly complex solve of the GNU Scientific Library [5], which is
based on an eigenvalue decomposition of the companion matrix.

2. From those approximations, obtain bounds on the radius of the error commit-
ted. There exist a variety of bounding methods [12] which take a polynomial
and approximate roots as an input and output error radii; these methods
may be performed using interval arithmetics. We implemented the simplest
and roughest one [12, Th. 3.1]: ξj is in a closed disc of center xj − ρj and
radius |ρj | where ρj = (nP (xj))/(2pn

∏
k 6=j xj − xk).

10 Related works and applications

In the field of digital signal processing, some sizable literature has been devoted
to the study of the effects of fixed-point and floating-point errors on numerical
filters. While the fact that the l1-norm of the convolution kernel is what mat-
ters for judging overflow, it is argued that this norm is “overly pessimistic” [7,
§11.3] [6, eq 13], not to mention the difficulties in estimating it. In practice, filter
designers have preferred criteria that indicate no saturation for most “common-
place” inputs, excluding pathological inputs. As a consequence, most studies
model the errors as random sources of known distribution, independent of each
other and with no temporal correlation [2,10]. This allows estimating the energy
spectrum (l2-norm) of the typical numeric noise; however, this does not work for
our purpose, which is to provide sound bounds valid in all circumstances.

J. Feret has proposed an abstract domain for analyzing programs comprising
digital linear filters [4]. He provides effective bounds for first and second degree
filters. In comparison, we consider more complex filter networks, in a composi-
tional fashion; but we analyze specifications, and not C code (which is usually
compiled from those specifications, with considerable loss of structure). Another
difference is that we do not perform abstract iterations. Feret’s method currently
considers only second-order filters (i.e. TF2), though it may be possible to adapt
it to higher-order filters. On second-order filters, the bounds computed by Feret’s
method and the method in this paper are very close (since both are based on a
development of the convolution kernel, though they use different methods of tail
estimation).

Lamb et al. [8] have proposed effective methods, based on linear algebra,
for computing equivalent filters for DSP optimization. They do not compute
bounds, nor do they study floating-point errors.

Roozbehani et al. [11] find program invariants by Lagrangian relaxation and
semidefinite programming, with quadratic invariants. In order to make prob-
lems tractable, they too apply a blockwise abstraction. The class of programs
that they may analyze directly is potentially larger, but the results are less pre-
cise than our method on some linear filters. They do not handle floating-point
imprecisions (though this can perhaps be added to their framework).

One possible application of our method would be to integrate it as a pre-
analysis pass of a tool such as Astrée [3]. Astrée computes bounds on all floating-
point variables inside the analyzed program, in order to prove the absence of er-
rors such as overflow. In order to do so, it needs to compute reasonably accurate
bounds on the behavior of linear filters. A typical fly-by-wire controller contains
dozens of TF2 filters, some of which may be integrated into more complex feed-
back loops; in some cases, separate analysis of the filters may yield too coarse
bounds.

11 Conclusions and future works

We have proposed effective methods for providing sound bounds on the outcome
of complex linear filters from their flow-diagram specifications, as found in many
applications. Computation times are modest; furthermore, the nature of the
results of the analysis may be used for modular analyses — the analysis results
of a sub-filter can be stored and never be recomputed until the sub-filter changes.

In the future, we plan to provide abstract domains suitable for the analysis of
source code as written in an imperative language such as C, in order to extract
the filter specification and arithmetic errors from the source.

References

1. IEEE Standard for Binary Floating-Point Arithmetic. IEEE 754.
2. Bruce W. Bomar et al. Roundoff noise analysis of state-space digital filters imple-

mented on floating-point digital signal processors. IEEE Trans. on Circuits and

Systems II, 44(11):952–955, 1997.
3. P. Cousot et al. The ASTRÉE analyzer. In ESOP, number 3444 in LNCS, pages

21–30, 2005.
4. Jérôme Feret. Static analysis of digital filters. In ESOP ’04, number 2986 in

Lecture Notes in Computer Science. Springer-Verlag, 2004.
5. Free Software Foundation. GSL — GNU scientific library, 2004.
6. Leland B. Jackson. On the interaction of roundoff noise and dynamic range in

digital filters. The Bell System Technical J., 49(2):159–184, February 1970.
7. Leland B. Jackson. Digital Filters and Signal Processing. Kluwer, 1989.
8. Andrew A. Lamb, William Thies, and Saman Amarasinghe. Linear analysis and

optimization of stream programs. In PLDI ’03, pages 12–25. ACM, 2003.
9. A. Miné. Relational abstract domains for the detection of floating-point run-time

errors. In ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, 2004.
10. Bhaskar D. Rao. Floating point arithmetic and digital filters. IEEE Trans. on

Signal Processing, 40(1):85–95, January 1992.
11. M. Roozbehani, E. Feron, and A. Megretski. Modeling, optimization and com-

putation for software verification. In HSCC, number 3414 in Lecture Notes in
Computer Science, page 606. Springer Verlag, 2005.

12. Siegfried M. Rump. Ten methods to bound multiple roots of polynomials. J. of

Computational and Applied Math., 156(2):403–432, 2003.

	Compositional analysis of floating-point linear numerical filters

