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Abstract— Reconfiguration is an essential part of Soft- arithmetic operators to define a reconfigurable Butterfly.
Ware Radio (SWR) technology. Thanks to this technique, In section 4, we present the global structure of FNT.

systems are designed for change in operating mode with Finally, the conclusions are outlined in section V.
the aim to carry out several types of computations. In

this SWR context, the Fast Fourier Transform (FFT)

operator was defined as a common operator for many
classical telecommunications operations [1]. In this paper
we propose a new architecture for this operator that makes

[I. THE FNT FORRS CODES OVERGF(F})

The Number Theoretic Transform (NTT) has been
it a device intended to perform two different transforms. introduced as a generali;ation of th? Discrgte Fourigr
The first one is the Fast Fourier Transform (FFT) used for Transform (DFT) over reS|dge class rlngs of integers in
the classical operations in the complex field. The second©rder to implement fast cyclic convolutions and correla-
one is the Fermat Number Transform (FNT) in the Galois tions without round-off errors and with better EﬁiCiency

Field (GF) for channel coding and decoding. than the FFT [4][5]. Interesting applications of the NTT
lies in fast coding, decoding, long integer multiplica-
|. INTRODUCTION tion, cryptography, digital filtering, image processing and

Software Radio, appeared in 1990 [2][3], is an eVengi_econvolution. tFor the transform length equal &,
growing technology that receives enormous recogniti§{1eré £+ = 2% + 1 is the Fermat number, the NTT
and generating widespread interest in the telecommui$i-called the Fermat Number Transform (FNT) which
cation industry. Over the last few years, analog rade"eS‘?”tS some advantages. It is _qwte obvious, that FNT
systems have been replaced by digital radio systel‘ﬁssu'table_’ fqr VL'SI implementations. The structure of
for radio applications. In addition to this, programmabli® FNT is identical to that of the DFT for power of
hardware modules are increasingly being used in digit4f® lengths. Then the same algorithms can be used
radio systems at different functional levels. SWR tecfr the classical radix-2 FFT and the radix-2 FNT. The
nology aims to take advantages of these programmaBdy one difference is the substitution of the complex
hardware modules to build an open-architecture bag@§ltiplication in the Fourier transform by a modufq
on radio system softwares. SWR technology facilitaté%al multlpllca_ttl_o_n in the case of the FNT. The following
implementation of some of the functional modules ifives the definitions of FFT and FNT.

a radio system such as modulation/demodulation, cod!n C, the Discrete Fourier Transform of
ing/decoding in software. In this optics, we will preser = (Vo,V1, ..., Vn—1), & vector of real or complex
a new architecture for the FFT whose Butterfly is rélUmbers, is a vectoV = (Vo, Vi, ..., Vn_1), given by
configurable so as to perform two kinds of transforms N1

over two dn‘fere’nt fields. The first one is the complex V, = Z eIty k=0,.,N—1 @
field (C) on which the FFT carry out some functions P

as OFDM modulation, frequential Egalisation... . The

second one is the GF where the FFT will be reconfiguretherej = /—1. The Fourier kernetzp(—j27/N) is an
as an FNT to carry out the coding and two main steps Nt/ root of unity in the fieldC. In the finite field GFg),
the decoding process for Reed-Solomon (RS) codes. Treelementy of orderN is anNth root of unity. Drawing
paper is organized as follows: Section 2 describes the the analogy betweeswp(—j27/N) and o, we have
FNT and their applications. Section 3 investigates sortiee following definitions:



Letv = (v, vi,...,Vn_1) be a vector over Gigj, and elements. Then, one need to define a modylofnulti-
let o be an element of GEJ of orderN. The vectorv plier, adder and subtracter.
and its Discrete Fourier Transform are related by :

1 N-1
Vj = avv; <~ V; = N Z OéiZJVj,
7=0

i=0

2)
forj=0,...,N—1, whereN is interpreted as an integer
of the field. Further details can be found in [6].

Our work is focused on the application of the FNT
to the channel coding-decoding. Indeed, the application
of the Discrete Fourier Transform in the complex field
occurs throughout the subject of signal processing. The podular Multiplication in GFE})
same transform technique can play an important role n S :
in the study and processing of GF(q) valued signalg The modulo2™ + 1 multiplication is widely used in

Fig. 1. The complex Butterfly

q a prime number, that is, of codewords. By using tH le computation of convolutions and in Residue Number

Fermat transforms, the principles of coding theory can sotlelms glRNS) aritrmlgtic.bSevgral al\rllcﬁitec;[ure_shof a
described in a setting that is much closer to the metho@% uod(2 +h1) mg_gp(;ei aze_ honl a; aglolrlt m
of signal processing. In frequency-domain, cyclic cod& ] and on the modified Low-High algorithm [11] was
can be defined as codes whose codewords have cer ﬁcr}bed in [12][13]. Indeed, there_ are tV.VO categques of
specified spectral components equal to zero [6]. In [r?\ gorithms for the modul@™+1 multiplication. The first

we have presented the advantages of the applicat e consists to perform the multiplication and after the
rrection [12]. The second one consists in the reduction

of such a transform to RS codes constructed over t _
o%partlal products [10][14]. In [12, Table 2] the author

GHK(F;). In this paper we will describe in details theh 4 th : f the diff hi
practical realization of the FFT operator defineddrand as compared the per ormances o the |_ere_nt archi-
Ctures of Modular multiplier implemented in Virtex-II

which can be reconfigured to become the FNT operaltg

with arithmetic carried out modulo Fermat numbers. Th@d Virtex-E. For Virtex Il devices, the f¢1)*(n+1)"

reconfiguration consists in reconfiguring each Butterf ultiplier allows a significant gain in terms Of slices
d a reduced delay compared to the modified Low-

of the FFT structure. In the next section we will preserit. ) : , ,
the Butterfly itself as a function which is constituted b¥H/_'gh algorlthm and_ Zl|mmfrman'rlls al_go_nthm [14]. For
several reconfigurable arithmetic operators. Irtex-£ dewce_s, this ‘ff+1) (n+l) multiplier offers_the_
best compromises area-delay in case of non-pipelined
architecture. On the other hand and for the pipelined
Virtex-E devices, the operator based on Zimmermann’'s
In the SWR concept, an new area of research calld@orithm offers the best compromises area-delay. As
"Parametrization" has been defined [8][9]. This tectpreviously mentioned, our works lie in the development
nique consists to identify common resources, i.e Coraf @ modular multiplication by exploiting the already
mon Operator (CO) or Common Function (CF) betweegxisting resources. Then, our proposed multiplier (Figure
all the standards involved in the reconfiguration and # is based on the architecture presented in [12, Figure
the standards themselves. Then, the trick is to explgita] with some simplifications. In fact, for = 2* the
the same resources to execute two or more applicatioBgposed multiplier works .1 = {0,a € Zan1 |
In this context, the main goal of this work is to exploigcd(a,2" + 1) = 1} and the one of two operands of
the resources already present in the FFT structure to galtiplication is the element’, i = {0, 1...., f-1 — 1},
the FNT one. With this purpose, the arithmetic operatom%z-l. Then the product that equal — 1 and that
i.e multiplier, adder and subtracter realizing operatiomsquires (+1)-bit never occurs. From that simplifications
over C should be redefined to realize a mod#g(oper- come. In Figure 2, the white elements indicate the
ations. Then the reconfiguration of the Butterfly (Figurelements not used in the case of operation over GF. As it
1) consists to reconfigure the aforementioned arithmeigcnoticed in this figure, there is a reconfiguration of the

[ll. RECONFIGURABLEBUTTERFLY



connections inter-operators. The dotted lines connectiongz’ + ¢’ + 1) mod (2" + 1) =
represent the additional connections in this operatin .
mgde over GF. P ] {55/ +y' mod 2" if o' 4y > 2"

A basic modulo 2" + 1) multiplication algorithm (@' +y' +1) mod 2" if 2’ +y' <27
consists in computingg=xy, and dividing this product _ (2 + ¥/ + Cour) mod 2"

by 2™ + 1:
2n—1 Since the operators performing the complex addition
xy mod (2" +1) =p mod(2" + 1) = Z pi2° processes the numbers in normal representation, the best
i=0 way to perform a modular addition is to keep the same

Since the division is a hard task, it will be interesting tg"chitecture to get the reconfigurability at lower costs.

use an algorithm to perform the modular reduction. Weet US now study the modul@" + 1) addition of two

definec;, andey the lower and higher words respectively"UMPers in normal representations. In [13] the author
of the productp as follows: described some algorithms that return the desired results

increased by one. Nevertheless this property facilitates

n-1 n—1 ' the design of the circuit. The modul@” + 1) addition
cL =Y pi2 and cy = pnti2 is defined by:
=0 =0

(r+y+1) mod 2"+ 1) =

2" if x=2"andy =2" 3)
(x+y) mod 2" +Coyr if 0 <2 +y <27t

In [13] a direct implementation of equation (3)
is presented. The circuit is shown in Figure 3-a.
To improve the implementation, the author suggests
an alternative architecture suppressing the multiplexer
Figure 3-b. The modul¢2™+1) addition is expressed as:

(x+y+1) mod (2" + 1)
= (z+y) mod 2"+5,412"+ Sp11 V Sy,

To perform an addition that returns directly the
desired result, we propose an alternative adder shown
Fig. 2. The modula2” + 1) multiplier in Figure 4. We defines!, s> the sums at the first and
second adders respectively with the+2)-bit integer

1 _ 1 1 _ n
The modulo(2" + 1) operator depicted in Figure 2 is® [Snt15p--50] = = +y. The modulo(2" + 1)
carried out by : addition can be expressed as:

xy mod (2™ +1)=

(x+y) mod (2" + 1)=

{(CL+CH+?mOZ§n Ift§L+.CH+1<2 (2 + ) mod 27 if0<zty<2m

(er +cm +1) mo othenwise (@ +y) mod 2" + 27 —1 if 2" <z +y < 27+

B. Modular Addition in GF{}) on if (x =2" and y=0)
Most of algorithms describing the addition modulo or (x=0 andy = 2"

(2™ + 1) are performed in the diminished-one number (4)

system, where a numberis represented by’ = x —1 in other words:
and the number O is not used or treated as a special o
case [13][14][15]. This implies: (x +y) mod (2" + 1) = s2sy + 522"



X .

. _ eForz+y=2"(.e.x=0andy =2" orx = 2"
+1 bit

v v l 1““ bits andy = 0), we have:

= T +
§ sh=1,s ,=0and(s, Vs,  =1),
=
én n bits ¥ n bits 82 —9on 9N _ 1= on+1 _ 1,
S In this cases? = 1 and the multiplexer selects
v n+1 bits 2" as result. This is the only case wheig= 1.
vy
-+ _|_ e For2" < x4y < 2", we have:

1+ bits l““ bits
st =02 4 slam+ L+ s,

(x+y+1)mod (2" +1)
n+1 bits or
+y+Dmod (2" +1 2" mod (2" +1) = (=1 +2" +1) mod (2" + 1)
(xty+1)mod (2" +1) = (=1) mod (2™ + 1),
(a) (b)

The second adder of Figure 4 returns an addition

Fig. 3. The two architectures of the mg¢g” + 1) Adder [13] mod 2", then(—1) mod 2" = 2" — 1.
Consequently,

M4 —l<sf=a+y+2" 1< 2"t pom
2n+1§82<3*2n_1,

what give s2 = 0. Then our algorithm return

n

(x+y+2"—1) mod 2".

e Finally, for0 < z + y < 2™, we have:

1 12
Sp41 =8, =58, =0,

and (z + y) mod 2" =z +y.

i n+l bits
(x+y)mod (2" +1)

As known, the arithmetic subtracter is usually based
on the arithmetic adder structure. For the modulo
(2™ 4+ 1) subtracter, we propose an operator shown
in Figure 5. The subtraction modul@™ + 1) can be

expressed as follows:
Now, let us demonstrate the correctness of equation

(4). First of all, let us considex andy two elements of (2 — y) mod (2" + 1)=
GF(F;), 0 < x,y <2" Then,

Fig. 4. The proposed mo@"™ + 1) Adder

. 2m if (x =2" andy = 0)
0<az+y<2mt _ .
(r+7+1+s,) mod 2™ otherwise
We have to distinguish the four following cases to (5)
establish the correctness of our algorithm: A proof of the correctness of this algorithm is provided
in Annex A. Once the different elements of the Butterfly
eForz+4y=2"" (i.e.z =y =2"), are defined, one can implement them to obtain the
we haves' = 2" (ie. s}, 1, s = 0 for reconfigurable Butterfly. Figure 6 depicts the resulting

i =0,...,n). Consequently? =0+ 2" — 1, s2 =0, hardware operator. The switch from an operating mode
and our algorithm returng™ — 1. to another requires a change of the Fourier kernel and the
reconfiguration of connection inter-operators. Assuming



that the Butterfly is configured to operate ov8rand operator whose Butterfly forms the highest level opera-
one wants to perform a calculation ovértF'(F;). To tor. Figure 7 depicts the global reconfigurable operator.
do this, the Butterfly should download the primitiveéDver C it is called FFT and over GHK{) is called
elementa’, activate the different logic gate (AND,ORFNT. This architecture has been validated by software.
and the multiplexers) and reconfigure the connectignsimple test of calculation of FFT and IFFT, showed
inter-operators as shown in Figure 6. In the next sectiaghge validity of this structure.

the global architecture of the FNT is presented.

i n+1 bits
(x-y)mod (2™ +1)

Fig. 7. The architecture of the FNT operator

Fig. 5. The proposed mo@™ + 1) Subtracter

V. CONCLUSIONS

A new arithmetic modular operators has been defined
to build a reconfigurable Butterfly. Once the reconfig-
urable Butterfly has been identified, the FFT common
operator is obtained. This operator is dedicated to be a
reconfigurable operator that operates ofketo perform
the Fourier transform (i.e. OFDM modulation,...) and
over GF{};) to perform RS channel coding and two
main steps of the decoding process in computing the
Fermat transform. As a current work, the objective is
to implementing this operator with FPGAs to test its
reconfigurability and the performances in term of slices
and delay.

A PROOF OF THENEW MODULO (2" + 1)
SUBTRACTER ALGORITHM

Let us demonstrate that the algorithm defined by
Fig. 6. The architecture of the Butterfly over G} Equation (5) Cam_es Outa: o y) mod (2n + 1) when

0 <z, y < 2" First of all, let us note that, y are
(n+1)-bit length with0 < z + y < 27+,

IV. THE FNT ARCHITECTURE We have:2" —1 <y < 27+t — 1,

In the previous sections, we have presented the recHh@t gIves,
figu_ration ata rat_her low Ieyel. The Butterfly constituteén —l41<z-—y=z4y+1<2"+2" 141
a high parameterized function level. The fact to have this
parameterized function allows to design a reconfigurable M <ax+7y+1<3x2"



We have to distinguish the three following cases to
establish the correctness of our algorithm:

eif a>y—=a+75+1>2" 5,.1=1, 5,=0
and the algorithm returns +73 + 1

eif e<y=—2+7+1<2" 5,,1=0, s,=1
and the algorithm returns + 3+ 1 + 1

oif (x=2"andy=0) = spt1= sp=1
and the algorithm return®™.
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