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Abstract— The ”SoftWare Radio (SWR)” concept has become
a topic of widespread interest for reconfigurable mobile ar-
chitecture design. It is seen as the next evolutionary step in
the mobile communications. In this context of SWR, a way
to decrease the runtime of the software reconfiguration and to
optimize the sharing between the software and the hardware of
the execution platform called ”parametrization” was introduced.
This technique is based on two approaches, the first one is called
the Common Function approach, the second one is called the
Common Operator approach. Being interested on the second
parametrization technique, we propose in this paper a recon-
figurable FFT (Fast Fourier Transform) operator. This operator
can be reconfigured to switch from an operator dedicated to
compute the FFT in the complex field (i.e for OFDM modulation
or frequential equalization) to an operator which computes the
FFT in the Galois Field in order to perform Reed-Solomon (RS)
encoding and two steps of the decoding process.

I. INTRODUCTION

The ”SoftWare Radio” concept was first introduced in the
literature around 1990 thanks to the pioneering works of J.
Mitola [1] and W. Tuttlebee [2]. SWR basically refers to
an ensemble of techniques which permits the reconfiguration
of a communication system without the need to change any
hardware system element. This reconfiguration implies the op-
timization of the hardware-software resources in the terminal
architecture design. So as to help this optimization, a new area
of research called ”parametrization” has appeared, whose goal
is to identify common resources, i.e Common Operator (CO)
or Common Function (CF) between all the standards involved
in the reconfiguration and in the standards themselves. In
[3], the CO approach is presented and [3] constitutes the
first paper in which the parametrization is defined. In [4]
the same authors, proposed the FFT as a common operator
and show how it can make a basic function in many classical
telecommunications operations, turning the algorithms into the
frequency domain [5]. Until now, this operator was never
used in the channel decoding function. In this paper we will
show that the FFT regarded as a reconfigurable common
operator could be used in some operations for RS encoding and
decoding to reduce the run-time execution and the complexity
of RS decoders. The paper is organized as follows: section II
presents a brief summary of the state-of-the-art involving RS
decoders architecture in the frequency and time domains. In
section III we will identify the specific RS code defined over
the Galois Field GF(Fn), where Fn is the Fermat number. The
encoding and two steps of the decoding process of this code

can be performed with the FFT reconfigured in such way to
be considered as the Fermat Number Transform. In section
IV we present the reconfigurable FFT operator and the new
frequency architecture for RS encoder-decoder to be defined.
Finally, the conclusions are outlined in section V.

II. GENERAL PRINCIPLES OF FREQUENTIAL REED

SOLOMON CODES

Reed-Solomon codes are considered as ones of the most
powerful algebraic codes and have found many applications
in telecommunications in the last years. These codes which
occupy a prominent place in the theory and practice of
error correction have a certain optimality property and a
well-understood distance structure. The following is a list
of many applications that use the RS codes: ADSL, VDSL,
HDSL, SDSL, CDplayers, DVD, DVB-T, DTV, ATSC, Mobile
systems geo-synchronous satellite communications links, CD-
ROMs, Wireless communications, Deep-space probe missions,
Interplanetary reconnaissance,... . In the following subsections,
after having defined the Fourier transform over a finite field,
we will briefly describe the encoding and decoding in the
frequency and time domains for RS codes.

A. The Fourier Transform

Galois Field GF(q) is a finite set composed of q elements
allowing an algebraic, methodical treatment of error correcting
codes. Each GF has a primitive element α meaning that any
other element of GF can be expressed as a power of α.

In the complex field (C), the Discrete Fourier Transform of
v = (v0, v1, ..., vN−1), a vector of real or complex numbers,
is a vector V = (V0, V1, ..., VN−1), given by

Vk =
N−1∑

i=0

e−j 2πik
N vi k = 0, ..., N − 1 (1)

where j =
√−1. The Fourier kernel exp(−j2π/N) is an Nth

root of unity in the field C. In the finite field GF(q), an
element α of order N is an Nth root of unity. Drawing on the
analogy between exp(−j2π/N) and α, we have the following
definitions:

Let v = (v0, v1, ..., vN−1) be a vector over GF(q), and let
α be an element of GF(q) of order N. The vector v and its
Discrete Fourier Transform are related by :



Vj =
N−1∑

i=0

αijvi ⇐⇒ vi =
1
N

N−1∑

j=0

α−ijVj , (2)

for j = 0, ..., N − 1, where N is interpreted as an integer of
the field. Further details can be found in [6].

B. RS encoding based on the Fourier transform

Applications of the Discrete Fourier Transform in the com-
plex field occur throughout the subject of signal processing.
Fourier transforms also exist in the Galois Field GF(q) and
can play an important role in the study and processing of
GF(q) valued signals, that is, of codewords. By using the
Fourier transform, the ideas of coding theory can be described
in a setting that is much closer to the methods of signal
processing. In frequency-domain, cyclic codes can be defined
as codes whose codewords have certain specified spectral
components equal to zero [6]. Thus, one can define a RS
code of block length N over GF(q), with N a divisor of q-
1, and minimum distance d as follows. Given a set of spectral
indices, B = {j0, j0 + 1, ..., j0 + d − 2}, whose elements
are called check frequencies, the RS code is the set of words
over GF(q) whose spectrum is zero in components indexed by
j0, j0 +1, ..., j0 +d−2. One can choose any j0 for a RS code.
Then the generator polynomial is given by

g(x) = (x − αj0)(x − αj0+1)...(x − αj0+d−2).

One may encode in the natural way using a generator poly-
nomial. We call this encoder a time-domain encoder. Alter-
natively, one may choose to encode the RS code directly in
the transform domain by using the data symbols to specify
spectral components. We call this a frequency-domain encoder.
Encoding is as follows. Some set of d-1 cyclically consecutive
frequencies, indexed by j = j0, j0 +1, ..., j0 +d−2, is chosen
as the set of spectral components constrained to zero. The
N-d+1 unconstrained components of the spectrum are filled
with data symbols GF(q). The inverse Fourier transform then
produces a nonsystematic codeword.

C. RS decoding based on the Fourier Transform

Usually, there are two principal ways to decode a given
RS code. The first one, stated in the language of spectral
estimation, consists of a Fourier transform (syndrome com-
putation), followed by a spectral analysis (Berlekamp-Massey
algorithm), followed by an inverse Fourier transform (Chien
search). The second consists to push the Berlekamp-Massey
algorithm into the time-domain to work directly on the raw
data word as received without the usual syndrome calculation
or power-sum-symmetric functions [7].

In [8] two architectures for universal time-domain RS de-
coders are given. The first universal decoder has a very simple
structure and takes N2 clocks to decode one codeword, where
N is the blocklength of the code. The decoding time does not
depend on the number of errors or erasures in the received
word. The second universal decoder has a more complex
structure but is faster. It takes 2tN clock intervals to decode one

codeword, where t is the code correction power. On the other
hand, the frequency-domain vectors of length t are replaced by
time-domain vectors of length N; then these decoders which
have N2 and Nt complexity become decoders in the frequency
domain with Nt and t2 complexity respectively. The time-
domain decoder is structurally simple but the penalty is a
longer running time. In [9] a versatile Reed-Solomon decoder
has been developed based on the time-domain decoding algo-
rithm. The decoding time of this decoder is N(N+1)T where
T represents the clock cycle that is determined by the longest
delay path. In [10] a pipeline frequency-domain RS decoder is
developed in an ATM network context. The decoding process
of this pipeline decoder requires 2N+10t+3 clock cycles where
the decoding stages could be gathered in three phases as shown
in Figure 1.
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Fig. 1. The three phases of RS decoding process

Phase 1 and 3 have the longer execution time and have a
similar time duration. We did not take into account the duration
of erasure computation because it can be regarded as part of
the Berlekamp-Massey (initialization). In the next section we
will explain that the clock cycles of both phases ”1” and ”3”
can be decreased by using the FFT operator in the case of RS
codes defined over GF (Fn).

III. RS CODES OVER GF (Fn)
The frequency-domain decoders described previously are

based on the Fourier transform over GF (q) where q = 2n

and 2 is the primitive element of order N, where N = 2n − 1
represents the codeword length. The first disadvantage of the
transform over GF (2n) is that its length is an odd number,
so that the most efficient FFT algorithm cannot be used to
yield a fast transform decoder. The second disadvantage is
that the arithmetic required to perform these transforms over
GF (2n) still requires a substantial number of multiplications
in GF (2n).

Rader [11] proposed transforms over rings of integers
modulo both Mersenne and Fermat numbers that can be
used to compute error-free convolutions of real integer
sequences. Agarwal and Burrus [12] extended Rader’s Fermat
number-theoretic transform by using the generator α =

√
2

for the transform rather than α = 2. In this case the usual FFT
algorithm can be used to calculate transforms with as many
as 2n+2 points of integer data. Justesen [13] proposed that
transforms over the finite field GF (Fn), where Fn = 22n

+1,
of integers modulo a Fermat prime can be used to define RS
codes and to improve the decoding efficiency of these codes.
It is known that

√
2 ∈ GF (Fn) for n=2,3,4 [14] is an element

of order 2n+2 in GF (Fn). Consequently, a number-theoretic
transform decoder for RS that uses

√
2 as a root of unity can



handle as many as 2n+2 symbols for n=2,3,4. In order to treat
longer RS codes and to make use of fast Fourier transform, it
is necessary to find roots of unity in GF (Fn) of higher order
[13]. In particular, let us consider roots of order 2n+4.
Since 22n ≡ −1 mod Fn, 2(Fn−1)/8 ≡ 22n.22n−3−n ≡
(−1)2

2n−3−n ≡ 1 mod Fn for all n ≥ 3. As a consequence
8
√

2 is an element of GF (Fn). Since ( 8
√

2)2
n+3≡ −1 mod

Fn, α= 8
√

2 is an element of order 2n+4 in GF (Fn). Thus the
FFT over GF (Fn) can be defined to compute the transform
of a sequence of as many as N=2n+4 points of integer data.
Similarly, one can demonstrate that α= 16

√
2 is an element

of order 2n+5 for n=3 what allows to obtain a maximum
length transform and then define Reed-Solomon code with
blocklength equal to Fn-1=256. In [14] a decoding algorithm
for RS code using FFT over GF (Fn) is given. The described
algorithm is the direct approach adopting the recursive
extension to evaluate the error magnitudes. We will show
now how the FFT can be used to encode in the frequency
domain and involved in two stages of the decoding process
which uses the Forney algorithm to evaluate error magnitudes
(algorithm shown in Fig. 1).

1) Frequency-domain encoding over GF (Fn): As we men-
tioned in section II, encoding in frequency-domain consists to
set at zero a specified block of spectral components and to
fill the unconstrained components of the spectrum with data
symbols. Then, to obtain a code word, the inverse Fourier
transform can use a fast transform composed of log(Fn − 1)
stages.

2) Frequency-domain decoding over GF (Fn): The
decoding of RS codes constructed over GF (Fn) using a FFT
and the algorithm described in Fig. 1, is composed of three
main phases including the following steps :

Phase 1 :
� Compute the FFT over GF (Fn) of the received code N-

tuple ri,

Sk =
N−1∑

i=0

αikri (3)

where the components Sj0 ...Sj0+2t represent the syndromes
and α is an element of order N.

Phase 2 :
(a) Use Berlekamp-Massey algorithm [6] to determine the

error-locator polynomial Λi from the known Sj .
(b) Compute the error evaluator polynomial Γ(x) from the

defining equation

Γ(x) = Λ(x)S(x)mod(x2t+1)

and the derivative of Λ(x)

Λ
′
(x) = Λ1 + 2Λ2x + ... + tΛtx

t−1.

Phase 3:
(a) Compute the FFT of vector (Λ0,Λ1, ...Λt, 0, ...0) to

perform Chien search. The spectral components which are

equal to zero indicate the roots of Λ(x). Indeed, ”Chien search”
consists to test the sum 1+ Λ1α

l+ Λ2α
2l+ ... +Λtα

tl; if this
sum is zero, then αl is a root of Λ(x). In addition, the lth
spectral component of FFT(Λ(x))=

∑N−1
i=0 Λiα

il is nothing
else than the value of Λ(x) at αl. If this spectral component
is equal to zero then αl is a root of Λ(x) and the received
symbol rn−l is erroneous.

(b) Apply the Forney algorithm, related to the following
equations :

ci = ri + α−iΓ(α−i)

Λ′ (α−i)
if Λ(α−i) = 0

ci = ri if Λ(α−i) �= 0

This is a way to demonstrate that the FFT operator can per-
form efficiently the syndrome computation and Chien search
decreasing their time-computation from N to log(N) clock
cycles as we will see in the next section.

IV. NEW FREQUENCY ARCHITECTURE

In the previous section, we have identified that the FFT
can be used in the RS encoding and decoding processes over
GF (Fn). We will now present the operator structure and the
advantages it can present.

The ”Butterfly” operation specifically adapted to the FFT
algorithm over C can be applied too over GF (Fn) where the
primitive element α replaces the Fourier kernel exp(−j2π/N)
(Fig.2).
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Fig. 2. The FFT Butterfly over C and GF (Fn)

If α = m
√

2 ∈ GF (Fn) is an element of order 2n+log(m)+1,
the FFT algorithm over GF (Fn) has l = n + log(m) + 1 =
log(N) stages of computation, where N is the vector length.
Consequently, the steps of ”N cycles” of syndrome computa-
tion in phase 1 and the execution of Chien search in phase
3 are reduced to ”log(N) cycles” steps. In order to perform
transforms over GF (Fn), one needs to find an element of
order N. To achieve this, an IBM assembler language program
was used to compute the solution of x

N
2 ≡-1 mod Fn[13].

In Figure 3 we give an example of a diagram for the N=16-
point radix-2 decimation in time FFT over GF (F2 = 17).

This ”Butterfly-structure” which represents l=4 stages of
computation, is based on the following characteristics of (3):

a) αk+N = αk, since αN = 1
b) αk+ N

2 = −αk.
It should be pointed out that a word length of 2n +1 bits is

required to represent a number in GF (Fn) and the arithmetic
operations such as addition, subtraction, multiplication and
division are operations modulo Fn.

As previously mentioned, the main goal of our study is to
identify the FFT as a reconfigurable operator. In the context
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Fig. 3. The diagram of 16-point radix-2 decimation in time over GF (Fn)

of parametrization, the FFT operator can be reconfigured
to switch from an operator dedicated to compute the Fast
Fourier Transform in the field of complex numbers to an
operator that will perform the two most long-time stages for
the RS decoding. In this context we will define the new FFT
operator as shown in Figure 4. One can consider two operating
modes: the first one is the Fast Fourier Transform computation
over C; then the Fourier kernel exp(−j2π/N) is downloaded
and the block ”Mod Fn” is switched to an idle mode. The
second one is the Fast Fourier Transform computation over
GF (Fn); in this operating mode, the primitive element αn is
downloaded and the block ”mod Fn” is switched on to perform
the division modulo Fn for the output of the ”FFT” block .
Figure 5 represents the global frequency-domain architecture

Mode_select

FFT
In

nnk
NW

Out

Mod Fn

Fig. 4. The reconfigurable FFT operator

of encoder/decoder for Reed-Solomon codes. The decoding
algorithm presented in this Figure is an improvement of the
one presented in Figure 1 with some changes. Now, The RS
code is constructed over GF (Fn) rather than GF (2n). One
notes that this specific code is recommended for Spacecraft
communication [15] where the RS(256,224) over GF(257) is
used. In this case the FFT can operate efficiently in both
encoding and decoding processes. Then, the encoder uses
the data symbols in the frequency domain and the decoder
does not compute an inverse Fourier transform. The corrected
spectrum gives the data symbols directly (see Figure 5).

V. CONCLUSION

In this paper we have proposed a reconfigurable operator
for frequential computations applied both to RS encoding and
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Fig. 5. The frequency-domain encoder/decoder for RS codes over GF (Fn)

decoding in GF (Fn) and to the complex numbers field trans-
forms. This operator dedicated to operate over GF (Fn) de-
creases the complexity of syndrome computation and ”Chien
serach” to log(N) cycles, compared to N cycles for RS codes
constructed over GF (2n). Then we have shown that the struc-
ture of this operator is the same over GF (Fn) and C fields
and is reconfigurable, depending on the downloaded kernel
of the performed FFT mode. As a consequence, this operator
can be considered as ”Common” in a parametrization context
where classical frequential operation (i.e OFDM or frequential
equalization) and RS channel decoding are involved in a
reconfigurable scenario. Future work should focus first on the
practical realization of this reconfigurable operator and second
on its lower level of reconfigurability.
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