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Abstract

Dynamic reconfiguration of FPGAs enables systems
to adapt to changing demands. This paper concentrates
on how to take into account specificities of partially
reconfigurable components during the high level Ade-
quation Algorithm Architecture process. We present a
method which generates automatically the design for
both partially and fixed parts of FPGAs. The run-
time reconfiguration manager which monitors dynamic
reconfigurations, uses prefetching technic to minimize
reconfiguration latency of runtime reconfiguration. We
demonstrate the benefits of this approach through the
design of a dynamic reconfigurable MC-CDMA trans-
mitter implemented on a Xilinx Virtex2.

1. Introduction

The recent and next generations wireless systems
are being designed to provide a wide variety of multi-
media services and seamlessly switch between different
wireless standards. Multiple physical layers algorithms
must be implemented, such as for example coding, de-
coder, equalizer, ...The need for Software Defined Ra-
dio (SDR) [4] is motivated by the wide range of con-
figuration parameters and flexibility and leads to the
concept of reconfigurability. Harvard-based architec-
tures (DSPs) are reconfigurable at system-level and use
a temporal scheme implementation of operations but
suffers from its power efficiency for repetitive and high
throughput computations. Reconfigurable devices, in-
cluding FPGAs, can fill the gap between hardwired
and software technology. Recently runtime reconfigu-

ration (RTR) of FPGA parts has led to the concept of
virtual hardware. By changing dynamically the func-
tionality performed by the FPGA over the time, we can
address SDR constraints and obtain a scalable system.
However reconfiguration latency is a major drawback
of runtime reconfiguration on commercial devices and
must be considered during HW/SW partitioning pro-
cess. The objective is to obtain a near optimal schedul-
ing of tasks in time over an heterogeneous architec-
ture [5].

In this paper, we briefly introduce the different re-
configuration levels and describe the impact of runtime
reconfigurable component utilization on algorithm-
architecture adequation in the second section. Next
the way of modeling a partially runtime reconfigurable
part of a FPGA with SynDEx is exposed. We discuss
on how to generate an automatic management of run-
time reconfiguration over the time with SynDEx [6].
A case study based on a runtime reconfigurable MC-
CDMA transmitter is presented in last section followed
by the conclusion.

2. Reconfiguration Levels

In the case of mobile communications, three main
constraints have to be combined : high performance,
low power consumption and flexibility. Grain of com-
putation, reconfiguration schemes are open research
topics. Three levels of reconfiguration can be consid-
ered :

In the System Level Reconfiguration case, the ap-
plication is very often supported by an heterogeneous
architecture (DSPs, FPGAs). The functionalities are
distributed onto these components according to their



performances. Either, it is difficult to address a specific
function of the application.

With Functional Level Reconfiguration, most of the
reconfigurable architectures are based on FPGAs which
support partial dynamic runtime configuration and al-
low flexible hardware. A runtime reconfiguration man-
ager will control, monitor and execute the dynamic re-
configuration.

In the Logic and RTL level Reconfiguration case,
the majority of the FPGAs are fine grain since they
can be configured at the bit level. Neither, this level
is architecture’s manufacturer dependant and do not
allow the designer to adopt an open methodology.

Considering the SDR constraints, the functional re-
configuration level seems to be the best level for our
partial and dynamically reconfiguration of systems.

3. Design flow for dynamic reconfigura-
tion : AAA approach

Some partitioning methodologies based on various
approaches are reported in the literature [2]. They
are characterized by the granularity level of the par-
titioning, metrics, target hardware, support of runtime
reconfiguration, flow automation and on-line / off-line
scheduling policies. Choice of candidates for a dynamic
hardware implementation can be guided by some met-
rics: execution time, memory constraints, power effi-
ciency, reconfiguration time, configuration prefetching
capabilities and area constraints.

Among theses methods we have chosen the AAA ap-
proach with its tool SynDEx. AAA methodology aims
at finding the best matching between an algorithm and
an architecture while satisfying time constraints. The
reader is referered to the previous paper [1] which de-
scribes all the steps of the methodology and extensions
to FPGAs modelization.

Application algorithm is represented by a data flow
graph to exhibit the potential parallelism between op-
erations. An operation is executed as soon as its input
are available, and is infinitely repeated.

Architecture is also modeled by a graph where the
vertices are operators (e.g processors, DSP, FPGA) or
media and edges are connections between them. Op-
erators have no internal parallelism computation avail-
able but the architecture exhibits the potential paral-
lelism.

Adequation consists in performing the mapping and
scheduling of the operations and data transfers onto the
operators and the communication media. It is carried
out by a heuristic which takes into account durations
of computations and inter-component communications.

The result is a synchronized executive represented by
a macro-code for each vertices of the architecture.

4. Run time reconfiguration considera-
tions for adequacy

To reduce the difficulty in managing such dynamic
reconfigurable application and to provide reliable im-
plementation, following issues must be adressed : au-
tomatic or manual partitioning of an application, spec-
ification of the dynamic constraints, automatic gener-
ation of the C or VHDL core controler.

Considering these features in SynDEx, runtime re-
configurable parts of an component must be considered
as vertices in the architecture graph. As shown in the
example of Figure 1, runtime reconfigurable parts of a
FPGA (D1 and D2) and fixed parts (F1) can be repre-
sented as hardware operators of the architecture. (D1
and D2) will integrate both dynamic modules and the
control to manage the reconfiguration. An internal me-
dia (IL) allows data exchanges between those parts.
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Figure 1. Model of runtime reconfigurable
parts of a FPGA with SynDEx

By identifying dynamic parts of the application at
a high level, we make dynamic specification flexible
and independent of the application coding style. A
constraints file will contain the definition of each dy-
namic module and the associated constraints (loading,
unloading, sharing area, dynamic relations, exclusion).

5. Automatic design generation : Gen-
eral FPGA synthesis scheme

Once mapping and scheduling of the algorithm are
performed, macro-code is automatically generated
and each one must be translated. The translation
generates the VHDL code, both for the static and
dynamic parts of a FPGA. The final FPGA design is
based on several dedicated processes to control:



- communication sequencings,
- computation sequencings,
- operator behaviour,
- activation of reading and writing phases of
buffers,

In order to perform reconfiguration of the dynamic
part we have chosen to divide this process into two sub-
parts: a configuration manager and a protocol config-
uration builder. A configuration manager is in charge
of the configuration bitstream which must be loaded
on the reconfigurable part by sending configuration re-
quests. Configuration requests are sent to the protocol
configuration builder which is in charge to construct
a valid reconfiguration stream in agreement with the
used protocol mode (e.g selectmap). Figure 2 shows
different solutions of architectures to reconfigure par-
tially a FPGA.
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Figure 2. Different ways to reconfigure dy-
namic parts of a FPGA

Labels M and P show where functionalities ’Config-
uration manager’ and ’Protocol configuration builder’
respectively are implemented. Locations of these func-
tionalities have a direct impact on the reconfiguration
latency. Case a) shows standalone self reconfigurations
where the fixed part of the FPGA reconfigures the dy-
namic area. Case b) shows the used of a processor
to perform the reconfiguration. In this case the FPGA
sends reconfiguration requests to the processor through
hardware interruptions.

The outputs of SynDex tool are both a VHDL enti-
ties and process corresponding to dynamic and static
modules for final implementation. We synthesize the
VHDL code of the static part and of each dynamic part
separately in order to obtain separate netlists. The Xil-
inx Modular back-end flow is used to place and route
each module and to generate the associated bitstream,
resulting in a typical floorplan. Concerning the place
and route constraints, reconfigurable modules have the
following properties : the height of the module is al-
ways the full height of the device and its width ranges
a minimal of four slices. The communications between
static and dynamic parts use a special bus macro. This
bus is a fixed routing bridge between two sides and

is pre-routed. The current implementation of the bus
macro uses eight 3-state buffers, their position exactly
straddles the dividing line between designs. All these
constrains are fixed in a constraints file, used during
the placement and routing. By using SynDEx tool and
Xilinx Modular Design flow, we define a top-down and
validated methodology, depicted by Figure 3, address-
ing the complete design flow.
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Figure 3. Complete Design Flow : SynDEx
tool and Modular Design

6. Implementation example

Our top-down design flow has been tested on a
complete application which is a transmitter system
for future wireless networks for 4G air interface [3].
This transmitter is based on MC-CDMA modulation
scheme. SynDex algorithm graph, depicted by Fig-
ure ??, shows the basic numeric computation blocks of
this transmitter. Block modulation performs either a
QPSK or QAM-16 modulation. This adaptive modu-
lation is selected by the conditional entry Select which
defines the modulation of each OFDM symbol accord-
ing to the signal to noise ratio. All other blocks are
implemented in the static part of the FPGA.

We implement this transmitter over a prototyp-
ing board from Sundance technology. This board is
composed of one DSP C6201 and one FPGA Xilinx
Xc2v2000.

Figure 4 shows the resulting design of the reconfig-
urable transmitter. The FPGA is divided in two parts.
The first one is static and implements non reconfig-
urable logic, the second one takes 8% of the FPGA
and is dedicated to the dynamic operator. As mod-
ulation functionality is runtime reconfigurable, design



generated by SynDEx for this block is represented by
operator Op Dyn.
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Figure 4. Reconfigurable MC-CDMA transmit-
ter architecture

The DSP can select modulation performed by the
dynamic part by sending this value to module Inter-
face IN OUT. This value is send to block modulation
through communication link LIO. Interface IN OUT
module receives DSP data from SHB bus. Receiv-
ing process can be locked-up during partial reconfig-
urations thanks to signal In Reconf. If Select register
value is changed, block modulation sends a reconfigura-
tion request to the protocol builder component which
is next in charge to address external memory and drive
ICAP. The reconfiguration time needed to reconfigure
Op Dyn takes about 4ms.

As shown in Table 1, FPGA resources utilization
needed to implement QPSK and QAM-16 modulations
are more important with a dynamic reconfiguration
scheme. This overhead is due to the generic VHDL
structure generation, based on the macro code descrip-
tion, which is more adapted for medium-complex data
path control. However this gap is decreasing with
the number of different reconfigurations needed and
the ability of runtime reconfiguration to provide vir-
tual hardware. The flexibility given by this methodol-
ogy and the automatic VHDL generation can overcome
hardware resource overhead.

7 Conclusion

We have described a methodology flow to man-
age automatically partially reconfigurable parts of a
FPGA. It fully exploits advantages given by partially
reconfigurable components. The AAA methodology
and associated tool SynDEx have been used to perform
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Table 1. Fix-Dynamic modulation implemen-
tation comparison

mapping and code generation for fixed and dynamic
parts of FPGA. Either, SynDEx’s heuristic needs addi-
tional developments to optimize time reconfiguration.
Furthermore, complex design and architecture can sup-
port more than one dynamic part. This design flow has
the main advantage to target as well as software com-
ponents as hardware components to implement com-
plex applications from a high level functional descrip-
tion. This methodology can easily be used to introduce
dynamic reconfiguration over already developed fixed
design as well as for IP block integration.
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