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The S shape of a granular pile in a rotating drum
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The shape of a granular pile in a rotating drum is investigated. Using Discrete Elements Method
(DEM) simulations we show that the “S shape” obtained for high rotation speed can be accounted
for by the friction on the end plates. A theoretical model which accounts for the effect of the end
plates is presented and the equation of the shape of the free surface is derived. The model reveals
a dimensionless number which quantifies the influence of the end plates on the shape of the pile.
Finally, the scaling laws of the system are discussed and numerical results support our conclusions.

PACS numbers: 45.70.Ht,45.70.Qj,47.27.N-,83.50.-v

Among all the geometries used to study granular flows,
the rotating drum might be the most complex [1, 2,
3]. Depending on the angular velocities, two different
regimes occur. At low rotation speed the free surface
of the pile is inclined and flat, but a significant cur-
vature appears at high rotation speed: the so called S
shape [4, 5, 6]. Up until now this transition remains
relatively unexplored [1, 7]. Different explanations have
been proposed, but no consensus has been reached. One
possible origin of the curvature of the bed is the cen-
trifugal forces acting on the granular flow. This effect
can be quantified by the Froude number: Fr = R Ω2/g,
where Ω is the angular rotation speed of the drum, R its
radius and g the gravitational acceleration. Another pos-
sible cause of the S shape is the “feeding inertia” of the
grains. If the rotation speed is high then the velocity of
the grains, v, can be very high and the grains can display
ballistic trajectories. The vertical distance, ∆, traveled
by such a grain should be compared to the radius of the
drum. This effect is again quantified by the Froude num-
ber: ∆/R = v2/(2gd) = R2Ω2/(2gR) = Fr/2. Although
these effects can indeed account for the curvature of the
free surface, the S shape can be observed for very low val-
ues of the Froude number (typically, Fr = 10−4, see [7]
or Fr = 10−3 in fig. 2). This indicates that, in this case,
the centrifugal force is not the origin of the S shape. An-
other explanation is then needed.

Several other models have been proposed [2, 8, 9, 10]
and were able to recover the S shape. Yet, none has
taken into account the influence of the end plates. Here
instead, we show that in short drums, the S shape can
be explained by the friction of the end plates of the
cylinders. This idea is based on recent work on con-
fined granular flows which have shown that the side-walls
of a channel can drastically influence the flow proper-
ties [11, 12, 13, 14, 15, 16]. In particular, Khakhar et

al. [11] reported that the inclination of a flow on a heap
increases with increasing flow rate, a phenomenon later
explained by Taberlet et al. [13]. These authors have de-
rived a law linking the inclination of the free surface, ϕ,
with the flow thickness, h, and the channel width, L:

tan ϕ = µi + µw
h

L
, (1)

where µi and µw are two effective friction coefficients de-
scribing the internal and side-walls frictional properties,
respectively (see [13] for details). In a rotating drum,
the flow rate is the highest near the center of the drum,
which is also the point at which the free surface is the
steepest. This supports the idea that the end plates can
have a crucial influence on the shape of the free surface.
The outline of the paper is as follows: first the simulation
method is presented. The crucial effect of the end plates
on the shape of the pile is then evidenced by two numeri-
cal tests: one with frictional and one with frictionless end
plates. A theoretical model is presented and the equation
of the free surface is derived. Finally, the scaling laws of
the system are discussed.

FIG. 1: We consider a half-filled three dimensional drum of
radius R and length L. The local slope of the free surface
is denoted ϕ(x). Right: light grey corresponds to flowing
material and dark grey to solid rotation.

In this paper, we consider a cylindrical drum of radius
R which rotates at a constant angular velocity Ω. The
drum is partially filled with granular material. The posi-
tion along the horizontal and vertical axes are labeled x
and y, respectively, and the local slope of the free surface
is denoted ϕ(x) (see Fig. 1). For all the results shown
in this paper, Ω is large enough to produce continuous
flows but small enough to neglect centrifugal forces and
the feeding inertia effects, the Froude number being kept
below 1.

The shape of the free surface of the pile is investigated
through numerical simulations of soft-sphere molecular
dynamics method. Although not flawless, this type of
simulation has been widely used in the past two decades
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and has proven to be very reliable for the study of gran-
ular flows in a rotating drum [17, 18, 19]. The forces
acting between two colliding grains are computed from
the normal overlap, δn, and the equations of motion (dis-
placement and rotation) are integrated using the Verlet
method [20]. The schemes used for the forces calcula-
tions are the spring-dashpot and the regularized Coulomb
laws, with the following values: particle diameter d=8
mm, mass=0.16 g, spring constant kn=40000 N.m−1,
viscous damping γn=0.5 s−1, leading to a normal coef-
ficient of restitution en = 0.64, regularization constant
γt=5 s−1, time step dt = 10−6 s and, unless otherwise
mentioned, µ=0.3. Note that the restitution, i.e. the
inelasticity, does not seem to play a role. Different val-
ues of en were tried (0.3 < en < 0.8) and did not affect
the shape of the pile. The collisions against the wall and
the end plates are treated like particle-particle collisions
with one of the particles having infinite mass and radius,
which mimics a flat surface. Note that the mechanical
properties of the grain/end plate collisions can be cho-
sen independently of those of the grain/grain collisions.
In particular, it is possible to simulate frictional grains
placed in a drum with frictionless end plates.

The radius of the drum R is typically 100d, and its
length, L, is varied from 10d to 200d. The grains are
first released in the drum and rotation is started (at ro-
tation speed Ω) only after they have settled. The number
of grains is chosen so that the drum is half-filled. Our
simulations contain a large number of particles, between
5 000 and 70 000, and run for typically 5 full rotations of
the drum. The granular material is made slightly polydis-
perse with an equal number of grains of diameter d and
4/5d, in order to avoid crystallization. The snapshots
of the pile were taken after two full rotations after the
shape has reached a steady state. On such short times
no radial (or axial) segregation was observed. Note that
no interstitial fluid is present in our simulation but its
effect is expected to be negligible for the low values of Ω
(typically Fr = 10−3.

FIG. 2: Side views of the 3D drum. In both cases, R =
80 d, L = 10 d, µ = 0.3, Ω=0.1 rad/s and N=36 000 grains.
a) frictional and b) frictionless end plates. The difference
in shape is very clear and originates from a change in the
frictional properties of the end plates. This provides evidence
of the crucial role of the end plates on the shape of the free
surface.

In order to demonstrate the crucial influence of the
end plates, and in particular their frictional properties,

two simulations differing only by their end plate friction
coefficients were performed. Figure 2 shows two runs
with identical values of all parameters, one with frictional
end plates (a) and the other with frictionless end plates
(b). The two shapes are very different, displaying on one
hand the S shape (a), and on the other hand a flat surface
(b). The rotation speed being the same in both cases
(meaning that Fr is the same) this result gives strong
evidence that the end plates have a crucial influence on
the shape of the free surface and shows that neither the
centifugal force nor the feeding inertia is responsible for
the S shape.

Let us now present a theoretical model based on
Eq.(1). The aim of our model is to derive the equa-
tion for the position of the free surface, that is, to find
an expression for ysurf (x). The following notations will
be used: ρ̄ is the average density of the material (in
kgm−3), qfeed(x) is the local feeding rate per unit length
and width along the flow (in kg s−1m−2), Qflow(x) is the
local flow rate per unit width (in kg s−1m−1), γ̇ is the
shear rate, h(x) is the local thickness of the flow, g is the
gravity, and d is the grain diameter.

Some authors mentioned the dependence of γ̇ on the
flow properties [7, 21]. Yet, in many cases this depen-
dence is weak [22] so, in order to simplify our analysis
we assume that the shear rate is a constant. For geomet-
rical reasons, the feeding rate, qfeed, increases linearly
with the distance from the center of the drum, r, and is
positive in one half of the drum (x > 0) and negative in
the other half. The feeding rate then reads

qfeed(x) = ρ̄ Ω r. (2)

Because of mass conservation, the flow rate at a given
point of the free surface (at the postion {x, ysurf (x)})
has to be equal to the integral of the feeding rate coming
from the solid rotation between the outer cylinder and

the considered radius, r =
√

x2 + y2

surf :

Qflow(x) =

∫ R

r

qfeed(r) dr =
ρ̄ Ω

2
(R2 − r2),

=
ρ̄ Ω

2
(R2 − x2 − y2

surf ).

(3)

To go further, one needs a relation between the flow
thickness and flow rate. Previous theories for the shape,
e.g., [8, 9], have made different assumptions about the ve-
locity profiles and the thickness of the flowing layer but
those predate experimental observations. Here we build
a model based on the observations in [3] which report a
linear velocity profile with a near universal shear rate.
Since we consider that the shear rate is a constant, di-
mensional analysis yields γ̇ = a

√

g/d. For simplicity we
use a = 1 but this value has no effect on the qualitative
results presented below. Hence the mass flow in the layer
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of thickness h with the linear velocity gradient γ̇ is

Qflow(x) =
1

2
ρ̄ γ̇ h(x)2 =

ρ̄

2

√

g

d
h(x)2. (4)

The slope of the free surface (i.e. ∂ysurf/∂x) is given by
equation (1)

∂ysurf

∂x
= tanϕ(x) = µi + µw

h(x)

L
. (5)

Using (3) and (4), one can express h as a function of x
and plugging it into (5) leads to:

∂ysurf

∂x
= µi+µw

(

d Ω2

g

)1/4
1

L

√

R2 − x2 − y2

surf . (6)

Equation (6) shows that the slope has a minimum value
µi at the outer cylinder and a maximum at the center. It
can be numerically integrated and the shape of the pile
can be plotted for different values of the parameters (see
Fig. 3). The equation is integrated outwards starting
from the center of the drum (x = y = 0) using the Eu-
ler method. Note that no additional condition is needed
since the size of the drum is embedded in Eq. (6) while
its symmetry ensures a total mass of 1/2. Note, how-
ever, that Eqs.(1)-(6) do not require any assumptions
regarding the filling ratio. Therefore, equation (6) can
be integrated from any point, for instance on the outer
boundary, after what the corresponding filling ratio could
be computed. For frictionless end plates (i.e. µw=0), the
free surface is a flat plane of equation y = µi x, which
confirms the results of Fig. 2. With increasing influ-
ence of the end plates a curvature appears and the pile
displays an S shape, which qualitatively reproduces the
experimental and numerical behavior.

One major criticism can be made regarding the present
model: Eq (1) was derived for uniform flows and its va-
lidity for flows in a rotating drum is questionable since
the flow rate varies along the flow. Moreover, when the
grains have acquired a high velocity during the flow, they
can form an upward tail at the end of the slope. There-
fore our model cannot reproduce this upward tail since
the inertia of the grains is neglected.

The model indicates that there are different ways of
changing the influence of the end plates. One way is to
reduce their frictional properties as demonstrated by Fig.
2, and another way is to increase the length of the drum.
Indeed, when L increases, the second term in Eq. (6)
vanishes and the free surface should tend toward a flat
plane. This is demonstrated by Fig. 4, which shows three
runs with increasing drum length while keeping the ra-
dius, filling ratio, frictional properties, and rotation speed
constant. In a narrow drum [Fig. 4a, L = 10 d] the pile
displays a well-marked S shape. In a longer drum [Fig 4b,
L = 50 d] the free surface flattens although a curvature is
still visible. When the length is further increased [Fig 4c,

FIG. 3: (Color online) Numerical solutions for ysurf for R =

1, µi = α = 0.3 and various values of β = µw/L (dΩ2/g)1/4.
For β = 0, the influence of the end plates is null and the free
surface is flat. When β is increased, i.e. increasing influence
of the end plates, a curvature appears and the free surface
displays an S shape.

ba c

FIG. 4: Side-views of the 3D-drum. In all cases, R = 40 d,
µ = 0.3, and Ω=0.2 rad/s. a) L = 10 d, b) L = 50 d, c)
L = 300 d. The longer the channel, the flatter the surface.
This result gives further support to the idea that the end
plates are responsible for the S shape of the free surface.

L = 300 d] the system relaxes to its ground state consist-
ing of a flat surface. This fact gives further support to
our model. Once again, since the radius and the rotation
speed are identical for all three runs, Fr is identical as
well, which shows that in this case, the S shape originates
neither from the centrifugal force nor the feeding inertia.

Let us now discuss the scaling laws of the system.
First, note that Eq. (6) can be made dimensionless using
the reduced variables x̃ = x/R and ỹ = ysurf/R















∂ỹ

∂x̃
= µi + µw Λ

√

1 − x̃2 − ỹ2

Λ =

(

d Ω2

g

)1/4
R

L

. (7)

Equation (7) states that the free surface has a ground
state consisting of a plane of slope µi from which it devi-
ates when the end plates play an important role. More-
over, the shape of the free surface in dimensionless units
depends only on the value of Λ which therefore contains
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FIG. 5: (Color online) Rescaled plots of the position of the
free surface for various values of R, L and Ω: Triangles: R =
80d, L = 10d, Ω = 0.05rad/s, Squares: R = 80d, L = 20d,
Ω = 0.2rad/s, Circles: R = 40d, L = 10d, Ω = 0.2rad/s. In
the simulation, the position of the free surface is calculated
by identifying the highest grain located at a position x. R, L
and Ω are varied while keeping Λ constant. The data collapse
onto one unique curve which validates the proposed scaling
laws.

all the scaling laws of the system. Among them, if the
radius R is varied while keeping d, g, and L constant,
the rotation speed should scale as the inverse of R2:
Ω ∝ 1/R2. Similarly, one can find the following scal-
ing laws linking the rotation speed to the drum length
and particle diameter: Ω ∝ L2 and Ω ∝ 1/

√
d. In par-

ticular, if the radius of the drum is doubled, the rotation
speed should be reduced by a factor of 4 in order to keep
Λ constant and obtain identical shapes. Similarly, if the

length of the drum is doubled, the rotation speed has to
increase by a factor 4. These two examples are illustrated
on Fig. 5 which shows rescaled plots of the free surface
for various values of R, L, and Ω while keeping Λ con-
stant. The different sets of data collapse onto one unique
curve, giving numerical confirmation of the scaling laws
inferred from Eq. (7). Let us mention here that the scal-

ing law Ω ∝ 1/R2 and Ω ∝ 1/
√

d are compatible with
experimental observations reported by Felix [7]. One can
also notice that Λ4 = Fr d/R (R/L)4. With the Froude
number and the ratio d/R being small it appears that
the end plates have a significant effect only if the aspect
ratio R/L is large.

We have shown that frictional end plates have a major
and nontrivial influence on the shape of a granular pile
in a rotating drum. Through numerical simulations we
have demonstrated that the S shape disappears when the
friction on the end plates vanishes or when the drum is
long enough. Our theoretical model supports the idea
that the end plates are responsible for the curvature of
the free surface and shows that the dimensionless num-
ber Λ (which includes all the relevant parameters: par-
ticle size, drum length and radius, rotation speed, and
gravity) entirely describes the shape of the pile. Our
theoretical analysis could be improved by including the
inertia of the grains. A model similar to that of Khakhar
et al. [23] could be adapted by adding a friction term ac-
counting for the effect of the end plates. Such a model
will be presented in a future paper. Finally, we have
presented only a few scaling laws regarding the shape of
the free surface but many more can be inferred from the
expression of Λ.

The authors would like to thank D.V. Khakhar and A.
Caprihan for fruitful discussions.
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