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Abstract

The 4f electrons of lanthanides, because of their strong localiza-

tion in the region around the nucleus, are traditionally included in a

pseudopotential core. This approximation is scrutinized by optimizing

the structures and calculating the interaction energies of Gd3+(H2O)

and Gd3+(NH3) microsolvation complexes within plane wave PBE cal-

culations using ultrasoft pseudopotentials where the 4f electrons are

included either in the core or in the valence space. Upon comparison
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to quantum chemical MP2 and CCSD(T) reference calculations it is

found that the explicit treatment of the 4f electrons in the valence

shell yields quite accurate results including the required small spin

polarization due to ligand charge transfer with only modest computa-

tional overhead.

Introduction

At the heart of lanthanide complexation chemistry [1] is the common belief

that the so–called ‘4f electrons’ do not participate in coordinative bonds

with ligands, which are thus considered to be largely electrostatic. And

indeed, the rather compact but energetically high-lying 4f orbitals are in-

contestably shielded from the environment by the more diffuse 5s and 5p

closed shells. In quantum mechanical studies, this chemical inactivity trans-

lates into semiempirical models where the lanthanide cation is represented

by a central model potential [2], or into ab initio methods resorting to pseu-

dopotentials (PP) that include the 4f electrons within a frozen core [3, 4].

The unimportance of the role played by the 4f electrons in the complexation

of lanthanides may then be reinforced by comparing to reference calculations

that mix a small-core pseudopotential (i.e., putting the 4f , 4s, 4p, and 4d

electrons into the valence space) with a density functional [5]. However, such

calculations certainly invite caution as these PPs are not adjusted to Density

Functional Theory (DFT) all-electron (AE) data [6]. Moreover, second-order

Møller-Plesset perturbation theory (MP2) calculations [7, 8] using a PP that

includes the 4f electrons into the valence space [9] in conjunction with an ex-
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tended basis set have revealed the existence of some charge transfer between

the 4f orbitals of a Gd3+ cation and the oxygen atoms of coordinating water

molecules; this effect is found to increase with the number of solvating wa-

ter molecules. These authors also established that the stabilizing exchange

interaction between the (4fα)7 shell and the formally unoccupied 5dα spin

orbitals enhances the ability of the latter to accept α-spin density from the

ligand, leading to a measurable spin polarization. It therefore appears that

the question of the chemical inertness of the 4f electrons is not completely

settled.

On pratical grounds, the explicit treatment of the 4f electrons increases

the number of active electronic degrees of freedom, requires better basis sets,

introduces open-shell complications, and thus adds considerable to the com-

putation cost of such calculations. If bulk aqueous solution is the targeted

medium, an additional difficulty arises when the convenient plane wave (PW)

basis set is used to represent such a liquid within periodic boundary condi-

tions. Indeed, expanding these strongly peaked 4f orbitals in terms of PWs

requires many reciprocal space vectors and thus high plane wave cutoffs.

However, the pseudization of the valence wave functions advantageously re-

duces the plane wave cutoff. This is best achieved with Vanderbilt’s ultrasoft

(US) pseudopotentials [10, 11, 12, 13], which allow for large cutoff radii (i.e.,

exceeding the outermost maximum of the radial all-electron wave function)

without sacrificing transferability. Whether the 4f electrons are part of the

valence [14] or kept in the core [15], USPPs for lanthanides have however been

restricted so far to solid state applications. The objective of the present work
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is rather to focus on small gadolinium(III) complexes whose properties can

also be computed with high-level quantum chemistry methods in order to set

the stage for a more detailed ab initio study of their dynamic properties in

aqueous solution.

Ultrasoft pseudopotentials and 4f electrons:

Gadolinium

The quest for smooth pseudized wave functions led Vanderbilt [10] to the

construction of a new family of PPs that relax the familiar norm-conservation

constraint (i.e., the equality of the norms of the AE and pseudized atomic

wave functions, ψi and φi, respectively, inside the core region). The price to

pay besides the more complex formalism is then to optimize the Kohn-Sham

orbitals φnk under a generalized orthonormality condition and to recover the

valence electron density according to

nv(r) =
∑

nk

| φnk(r) |
2 +

∑

ij

ρijQij(r) (1)

where ρij are φnk-dependent weights and Qij(r) are augmentation functions

defined by

Qij(r) = ψ∗
i (r)ψj(r) − φ∗

i (r)φj(r) . (2)

As these functions are localized in the core region, the second term of the

right-hand side of Eq. (1) is so ’hard’ that they are first expressed as a sum

over all the permissible total angular momenta [10, 11, 12],

Qij(r) =

li+lj
∑

l=|li−lj |

l
∑

m=−l

c
ij
lmYlm(θ, φ)Ql

ij(r) (3)
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where the Clebsch-Gordan coefficients c
ij
lm are defined by the real Gaunt

integrals [16]

c
ij
lm =

∫ π

0

dθ sin θ

∫ 2π

0

dφ Y ∗
limi

(θ, φ)Yljmj
(θ, φ)Y ∗

lm(θ, φ) . (4)

In Eq. (3), the augmentation functions were made l-dependent and preserve

the corresponding spherical multipolar moments. They are then smoothened

inside an inner cutoff radius by means of an expansion in polynomials of r.

We have modified the CPMD program package [17, 18] in order to calculate

the Clebsch-Gordan coefficients in a convenient way, namely by integrating

directly Eq. (4) via the Lebedev-Läıkov [19] spherical quadrature formula

c
ij
lm =

N
∑

k=1

wkY
∗
limi

(θk, φk)Yljmj
(θk, φk)Y

∗
lm(θk, φk) (5)

with the number of points of the octahedral symmetric mesh N set to 74 to

ensure the angular integration of polynomials of order less than or equal to 13

with a relative accuracy of 2× 10−14 (since the order must obey the relation

n = 2m+ 1, m = 1, 2, . . . , 15 [19] and the f angular momentum implies that

max l + li + lj = 12), and where wk are the associated normalized weights.

For comparison, the PWscf suite of programs [20] performs this quadrature

with random uniform deviates on the unitary sphere.

Using this implementation, two ‘small core’ (SC) PPs, where the 4f

electrons belong to the valence space, and two ‘large core’ (LC) PPs were

generated [21] based on AE calculations on the spherically symmetric atom

using the Perdew-Burke-Ernzerhof (PBE) [22] gradient corrected exchange-

correlation functional including scalar relativistic effects (in the Koelling-

Harmon approximation [23]: mass-velocity term and Darwin shift are re-

tained but not spin-orbit coupling). As our target systems are formally
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trivalent Gd complexes, the reference (spin-averaged) electronic configura-

tions were [1s2 −4d10]4f 7 5s2 5p5.5 5d0.5 for the SC USPPs [24] and [1s2 −

4d10, 4f 7]5s2 5p6 (i.e., ground state of Gd3+) for the LC USPPs. When in-

cluded in the core, the 4f orbitals overlap with the 5s and 5p valence orbitals,

so that the unscreening procedure that removes the valence contribution

to the nonlinear density-dependent exchange-correlation potential can be a

source of inaccuracy. This problem was circumvented during the pseudopo-

tential PW calculations on Gd(III) complexes by applying a nonlinear core

correction (NLCC) [25] which consists in calculating the core plus valence

exchange-correlation energy with the core electron density being replaced by

a smooth function up to a cutoff radius where the exact core electron density

is restored (otherwise the convergence in reciprocal space would be slow).

The same analysis can hold for the overlap between the 4s, 4p, and 4d core

orbitals and the 4f valence orbital so that we apply a NLCC to one of the

SC USPPs as well. Moreover, Porezag et al. [26] also showed that such a

correction improves the transferability of spin-neutral pseudopotentials [26].

The corresponding cutoff radius was set to 0.6 a.u. for the LC USPP and to

0.95 a.u. for the SC USPP (in order to obtain better convergence properties,

vide infra). All PPs were constructed with two reference energies per angular

momentum channel such that the local part of the PPs has correct scattering

properties in the f channel; the cutoff radius was set to 2.5 a.u. for the local

PP, and 2.0 a.u. for all the angular momentum channels but f , where it was

set to 1.9 a.u; the inner cutoff radius was set to 1.06 a.u. for the SC USPPs

and to 1.00 a.u. for the LC USPPs. A comparison between the 4f AE and
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pseudized radial wave functions is shown in Figure 1.

[Figure 1 about here.]

Computational details

Convergence of the plane wave basis set

As the systems under study were not neutral, all plane wave calculations were

performed with an isolated box (15 × 15 × 15) Å3 large, with the Hockney

Poisson solver. The quality of a PW basis depends only on the energy cutoff

and, moreover, such a basis set does not suffer from the Basis Set Superpo-

sition Error (BSSE) [18]. As a first test of the SC USPPs, we compute the

total integrated absolute value of the local spin polarization

ζ =

∫

dr

∣

∣

∣

∣

ρα(r) − ρβ(r)

ρα(r) + ρβ(r)

∣

∣

∣

∣

(6)

for the triply charged gadolinium ion, Gd3+.

[Figure 2 about here.]

As can be observed in Fig. 2 the value of ζ nicely approaches the target value

of 7 stemming from the seven unpaired 4f electrons localized on the Gd3+

ion upon increasing the cutoff; in particular a value of only 25 Ry already

yields an acceptable PP quality. This is especially true for the SC USPP

that includes the NLCC correction.

We have also calculated the interaction energy and the optimized Gd–O

distance of the microsolvated Gd3+(H2O) complex as a function of PW cutoff

using the SC and LC USPPs (see Figs. 3 and 4, respectively).
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[Figure 3 about here.]

[Figure 4 about here.]

Except for the SC USPP that includes NLCC, for which an almost converged

Gd–O distance can only be obtained for at least 30 Ry, increasing the cutoff

from 20 to 25 Ry is sufficient to converge also these properties to a useful

accuracy. In addition, although our calculations were not symmetry con-

strained, the C2v and C3v symmetries of the water and ammonia molecules

(the latter data are not shown) are very well reproduced and no significant

tilt angle (i.e., angle between the Gd–O / Gd–N axis and the dipole moment

axis of H2O / NH3) is observed. From these convergence checks we conclude

that the calculation of these properties is converged to a satisfactory level

at 30 Ry for the SC USPP that includes NLCC and at 25 Ry for the other

USPPs.

Reference calculations using Gaussian basis sets

Prior to an analysis of the role of the 4f electrons in the complexation of

gadolinium, we will first establish the transferability of the new USPPs. Ac-

cordingly, we will compare our results with data obtained from ‘effective core

potential’ (ECP) calculations using Gaussian basis sets. In order to calcu-

late interaction energies corrected for the BSSE the minimum of a potential

energy surface will then be determined not by direct optimization but rather

by interpolation between points separated by 0.1 Å. The BSSE was evalu-

ated from an adaptation of the a posteriori counterpoise correction method

of Boys and Bernardi [27].
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We used ECPs of various sizes from the Stuttgart/Cologne group (with

their associated basis sets) and from Cundari and Stevens [9] (with the aug-

mented triple-ζ basis set developed by Glendening et al. [7]). Thus, our LC

USPPs will be compared with a large (and frozen) core ECP [3, 4] of same

size, while our SC USPPs will be compared with either an ECP of same

size [9] or with an ECP that puts in addition the 4s, 4p, and 4d orbitals

into the valence space [28, 29, 30]. All calculations were performed with the

MOLPRO quantum chemistry package [31] with the default numerical integra-

tion grid for DFT. Finally, it is stressed that the USPPs were constructed

from atomic AE calculations using the identical electronic structure method

(i.e., Kohn–Sham DFT together with the PBE functional) whereas the ECPs

to be used with the Gaussian basis sets in PBE, MP2, and CCSD(T) calcu-

lations were constructed from Hartree-Fock atomic reference calculations.

Results and discussion

The transferability and accuracy of the Gd USPPs will be judged by looking

at structural and energetic results obtained on the Gd3+(H2O) and Gd3+(NH3)

microsolvation complexes compiled in Tables 1 and 2, respectively. The main

data have been grouped into two blocks in which the 4f electrons are either

included in the valence (group I) or in the core (group II) space.

[Table 1 about here.]

[Table 2 about here.]
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Within group I, we first expect that the USPP (with no NLCC) should be

similar to the ECP that shares the same core size. This is more apparent in

the case of ammonia, with corresponding interaction energies only differing

by 2.6%, whereas the difference amounts to 5.8% with respect to the ECP

with the smaller core. However, we also expect that the agreement with the

latter PP should be more favorable if the USPP is corrected with the NLCC.

And indeed, the absolute errors on the corresponding interaction energies are

then reduced to only 1.2% and 1.3% for water and ammonia, respectively.

Having established the validity of our SC USPPs, we now judge their accuracy

in comparison with post Hartree-Fock methods. It appears that PBE can

overbind up to approximately 15 kcal/mol with respect to the CCSD refer-

ence calculations, the [1s2−4d10] ECP/PBE calculation providing the smallest

error (i.e., about 5 kcal/mol). However, such an overbinding tendency is a

known feature of GGA calculations and therefore should not be corrected

by any pseudopotential (whose aim is really to reproduce all-electron data).

The small errors obtained from the [1s2−4d10] ECP/PBE calculation is prob-

ably an artifact stemming from the non negligible interactions between the

4f and the 4s, 4p and 4d orbitals. Concerning the ion–ligand distances, the

PBE/USPP calculations correctly reproduce the MP2 and CCSD(T) values

(the maximum error is only 0.02 Å). We will now examine the results ob-

tained with larger cores in order to check whether computational time could

be saved.

Distances within group II are all larger and (absolute) interaction energies

smaller (for a given method) than within group I. However, we remark a close
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proximity first between the ECP/PBE results (both the interaction energies

and the distances) in group II and the PBE results in group I obtained with

the [1s2−4d10] ECP, and then between the USPP/PBE interaction energies in

group II and in group I, both obtained without NLCC (the distances for water

and ammonia being respectively 0.07 and 0.08 Å too large in group II). In

order to increase the ability of these ’large core’ PPs to reproduce ’small core’

data, we have considered for both of them two corrections different in nature.

For the USPP, this is the NLCC, whereas for the ECP it consists in correcting

the absence of polarization of the core due to the charges of the valence

electrons and of all other cores. This polarization has been taken into account

by adding an effective core polarization potential (CPP) in the Müller et

al. framework [32]. The parameters of the CPP for the Gd3+ ion were

already determined in a previous work [33]. Surprisingly, the USPP/PBE

with NLCC results in a worse agreement, even producing the largest ion–

ligand distances and the smallest (absolute) interaction energies (although

the error on the latter with respect to ECP/CCSD(T) is lower than 2%).

PBE calculations using CPPs, which are reported within group III, produce

worse results too but just in the opposite direction, namely leading to the

shortest ion–ligand distances and the largest (absolute) interaction energies.

In contrast, when the CCSD(T) method is used, a better agreement with

group I is observed. We interpret this failure by emphasizing the importance

of combining the right pseudopotential with the right method (according to

the target property): clearly, while this CPP is very well suited to post-HF

calculations (see also [34]), it cannot be used safely within DFT to determine
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with accuracy geometries and interaction energies. Eventually, the failure of

both corrections limits the efficiency of both LC pseudopotentials (within

DFT) to the accuracy priorly achieved.

We conclude this section by a comment on the role of the 4f electrons in

the complexation. Clearly, the error on the metal–ligand distance becomes

very small as soon as the 4f electrons are treated explicitly. A further evi-

dence for their participation in the complexation is the contribution to the

total integrated absolute value of the local spin polarization due to the pres-

ence of the ligand, which is 0.033 (i.e., ζ = 7.047) for H2O and 0.059 (i.e.,

ζ = 7.073) for NH3 at 30 Ry using our SC USPP with NLCC. By compari-

son, the LC USPPs lead to a contribution of zero by definition. Indeed, this

result can be interpreted as a net charge transfer of α-spin density from the

ligand to the Gd(III) ion [7]. Thus, these fine details can only be captured

when the 4f electrons are treated in the valence shell.

Conclusions

In summary, we have constructed Vanderbilt’s ultrasoft pseudopotentials for

gadolinium, where the 4f electrons belong either to the core or to the valence

space. Using small complexes, we have established that PBE calculations

with the small-core USPPs can compete with CCSD(T) reference calculations

using equivalent pseudopotentials. If one would like to perform calculations

with the large-core USPPs (mainly because of the closed shell configuration

and reduced computational cost), it is necessary to keep in mind that only

a qualitative behavior could be obtained and that a large error on both
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geometry and interaction energy could appear.
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UKS/PBE [1s2−3d10] ECP 2.22 -117.25

UKS/PBE [1s2−4d10] USPP w NLCC 2.20 -118.67

UKS/PBE [1s2−4d10] ECP 2.21 -107.75

UKS/PBE [1s2−4d10] USPP w/o NLCC 2.19 -113.13

MP2 [1s2−3d10] ECP 2.19 -104.54

MP2 [7] [1s2−4d10] ECP 2.18 -105.15

CCSD(T) [1s2−4d10] ECP 2.19 -103.23

Group II (‘large core’):

KS/PBE [1s2−4d10, 4f 7] ECP 2.22 -106.84

KS/PBE [1s2−4d10, 4f 7] USPP w/o NLCC 2.26 -115.69

KS/PBE [1s2−4d10, 4f 7] USPP w/ NLCC 2.31 -92.08

CCSD(T) [1s2−4d10, 4f 7] ECP 2.25 -93.7

Group III (core polarization):

UKS/PBE [1s2−4d10, 4f 7] CPP 2.10 -130.2

CCSD(T) [1s2−4d10, 4f 7] CPP 2.22 -101.0

aKS = spin-unpolarized (closed-shell) Kohn-Sham, UKS = unrestricted spin-polarized

(open-shell) Kohn-Sham.
bEnergy cutoff for plane wave expansion set to 25 Ry for all USPPs but the [1s2−4d10]

USPP with NLCC for which it is set to 30 Ry.
cGd–0 distance in Å.
dInteraction energy in kcal/mol.

Table 1: R. Pollet et al
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method Gd PP Gd–Na Eint

Group I (‘small core’):

UKS/PBE [1s2−3d10] ECP 2.34 -138.46

UKS/PBE [1s2−4d10] USPP w NLCC 2.35 -136.51

UKS/PBE [1s2−4d10] ECP 2.34 -127.08

UKS/PBE [1s2−4d10] USPP w/o NLCC 2.33 -130.40

MP2 [1s2−3d10] ECP 2.33 -124.34

MP2 [7] [1s2−4d10] ECP 2.32 -121.28

CCSD(T) [1s2−4d10] ECP 2.33 -122.40

Group II (‘large core’):

KS/PBE [1s2−4d10, 4f 7] ECP 2.36 -126.93

KS/PBE [1s2−4d10, 4f 7] USPP w/o NLCC 2.41 -128.68

KS/PBE [1s2−4d10, 4f 7] USPP w/ NLCC 2.49 -109.02

CCSD(T) [1s2−4d10, 4f 7] ECP 2.40 -111.46

Group III (core polarization):

UKS/PBE [1s2−4d10, 4f 7] CPP 2.23 -146.90

CCSD(T) [1s2−4d10, 4f 7] CPP 2.36 -118.80

aGd–N distance in Å.

Table 2: R. Pollet et al
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