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Abstract: In this contribution, predictive control of switched nonlinear systems is
considered. A simple open loop switching parametrization is proposed to efficiently
deal with the combinatorics associated with the discrete part of the dynamics.
As an application, the problem of actuator switching for wave suppression in
the Kuramoto-Sivashinsky PDE is considered. Numerical experiments are reported
for some pathological cases to testify the tractability of the scheme.Copyright c©

1. INTRODUCTION

Model Predictive Control MPC or Receding Hori-

zon Control RHC is becoming an almost stan-
dard control technique in the process industry.
This success is mainly due to its ability to han-
dle in a natural way constraints on both the
inputs and outputs. With the advent of power-
ful dedicated processors and efficient optimization
techniques, MPC is moving towards nonconven-
tional applications where continuous and discrete
dynamics are interacting, i.e. hybrid systems. A
rather mature theory including modelling and
control frameworks exist for such systems and
some computational optimal open loop control
schemes for specific classes have also been formu-
lated see e.g. (Xu and Antsaklis, 2003) and the
references therein.

In optimal control for general hybrid systems
(Branicky et al., 1998). One has to deal not only
with the infinite dimensional optimization prob-
lems related to the continuous dynamics, but also
with a potential combinatoric explosion related
to the discrete part. In this context, one can

distinguish three major approaches to tackle the
problem. The first consists in approximating the
continuous nonlinear dynamics by piecewise affine
funcions and put the general model in the Mixed

Logical Dynamical framework see, e.g. (Bemporad
and Morari, 1999) where a mixed integer pre-
dictive controller is developed to stabilize MLD
systems on desired reference trajectories. The re-
sulting on line optimizations are solved through
mixed integer quadratic programming tools.The
second approach includes algorithms that are es-
sentially based on the two stages optimization
approach initiated independently in (Cassandras
et al., 2001) and (Xu and Antsaklis, 2003). At
the first stage the aim is to find an optimal con-
tinuous control and the switching instants while,
the second allows the variation of the sequences
of active locations and the number of switches.
This also includes some approaches based on new
versions of the Maximum principle, see (Shaikh
and Caines, 2003). The third approach consists
in using effective open loop parametrization i.e.
reduction of the set of admissible controls and
switching paths. In this context embedding and
pruning techniques have shown promising results



for an abstracted class of hybrid systems i.e.
switched systems, see e.g. respectively (Alamir
and Attia, 2004),(Attia et al., 2005),(Bengea and
DeCarlo, 2005) and (Lincoln and Bernhardsson,
2002).

In this paper we propose a closed loop predictive
control strategy for switched nonlinear systems.
The peculiarity of the approach lies in the fact
that a local feedback control policy is used in each
location. The problem is then to find a switching
strategy that minimizes a problem related cost
functional. A combinatoric free open loop switch-
ing parametrization is then proposed to extract
such a switching feedback. As an application, ac-
tuator switching policy for wave suppression in
fluid dynamics systems is investigated. Stability
and performance enhancement by switching are
then reported for this case study. The application
driven conclusions are those reported for some
finite dimensional systems (McClamroch and Kol-
manovsky, 2000).

The paper organization is as follows : section
2 presents basic definitions of switched systems.
Section 3 is devoted to the predictive control for-
mulation. In section 4, based on standard mod-
elling assumptions see e.g. (El-Farra et al., 2003),
an application is fully treated and some validating
numerical scenarios are reported. Finally, some
conclusions and future work orientations are given
in section 5.

2. SWITCHED NONLINEAR SYSTEMS

Definition 1. A controlled switched system is a
tuple S = (D,F ,K) where

• D = (Q, E) is a directed graph representing
the discrete structure of the system. The
node or location set Q = {1, 2, . . . , Q} is
the set of indices for the configurations. The
directed edge set E is a subset of the carte-
sian product Q×Q which contains all valid
controlled transitions represented by the el-
ements of the type (q1, q2) meaning that a
switching from location q1 to location q2 is
allowed.

• F = {fq : R
n × R

m → R
n, q ∈ Q} is a set of

vector fields, where with each location q ∈ Q
is associated a vector field fq(x, u), x ∈ R

n

is the state vector and uq ∈ Uq ⊂ R
m is the

control input, Uq is some compact set.
• K = {Kq : R

n → R
m, q ∈ Q} is a set of local

feedback control strategies. The system in
location q is then described by the following
dynamics

ẋ = fq(x, uq) (1)

uq = Kq(x) (2)

Locality of the feedback controllers Kp’s is to be
understood w.r.t. physical location and can be
seen as a strategy to reduce the complexity of
designing controllers for hybrid systems.

For the controlled switched system S, the control
input consists in a global switching strategy de-
fined below

Definition 2. For a controlled switched system S,
an admissible switching strategy or profile q(·)
is a piecewise constant function defined for all
t ∈ [ts0, ∞) as

q(t) =































q0 ts0 ≤ t < ts1
q1 ts1 ≤ t < ts2
...

...
qK tsK ≤ t < tsK+1
...

...

(3)

where {tsk}k∈N constitutes a strictly increasing
sequence of switching instants, and (qk, qk+1) ∈ E
for all k ∈ N meaning that q(·) follows the path
as described in the discrete structure. Define also
Σ as the set of all admissible switching strategies,
Σ , {q(·) defined on [t0, ∞)}.

The formulation allows the system to dwell in a
location for a certain minimum time, thus exclud-
ing pathological phenomena like Zeno or Fuller,
i.e., accumulation of location switching at finite
time.

3. THE PREDICTIVE CONTROL STRATEGY

Definition 3. A constant open loop switching pro-
file is a switching strategy that belongs to the
following set

ΣQ = {q(·) ∈ Σ | ∀t ∈ [t0, ∞), q(t) = q∗, q∗ ∈ Q}
(4)

subset of Σ.

Let us denote a finite time switching signal as
qt1,t2 : [t1, t2] → Q. The signal qt1,t2 represents
a portion starting at t1 and ending at t2 of a
switching signal.
By denoting the i−th sampling period as ti = iTs

where i is a nonnegative integer and Ts the sam-
pling period. The goal is to determine a sampled
switching feedback law of the type

q(t) = s(x(ti)), t ∈ [ti, ti+1) (5)

which asymptotically stabilizes the origin or at
least enhance the performance of the switched
system in some sense. By defining one step ahead
reachable locations from p as

Rp = {s ∈ Q | (p, s) ∈ E} (6)



the discrete dynamics are captured and the fol-
lowing finite horizon optimal control problem can
be formulated.

Problem 1. Given a prediction horizon Npr, at
every sampling instant ti minimize with respect
to qti,ti+NprTs

∈ ΣQ the following cost

J(x(ti), q(·)) = ψf (x(ti + NprTs)) + (7)
∫ ti+NprTs

ti

L(x(τ), q(τ))dτ

subject to the following mixed dynamics

ẋ = fq(x, Kq(x)) (8)

q(ti) ∈ Rq(ti−1) (9)

with x(t0) = x0, q(t0) = q0, L : R
n × Q → R≥0

and ψf : R
n → R≥0 is a terminal penalty.

From the computational view point, solution to
problem 1 can be found by an exhaustive search
which consists in comparing the cost (7) for at
most card(Q) trajectories, meaning that the com-
plexity is linear in the number of locations (this
follows from the cardinality of the set ΣQ). This
combinatoric free parametrization can thus be
suitable for fast systems where hard real time
contraints are to be met.

According to the receding horizon approach,
the state feedback Model Predictive Controller
(MPC) law is then derived by solving the open
loop finite horizon problem 1 at every sampling
time instant ti

qo
ti,ti+NprTs

(x(ti), q(ti−1)) = arg min
q∈ΣQ

J(x(ti), q(·))
(10)

under (8)-(9). Applying

q(t) = qo
ti,ti+1

= sRH(x(ti), q(ti−1)), t ∈ [ti, ti+1)
(11)

where qo
ti,ti+1

is the first part of the optimal
switching signal qo

ti,ti+NprTs
clearly defines a state

feedback switching controller sRH .

4. NUMERICAL EXPERIMENTS :
STABILIZATION OF THE

KURAMOTO-SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky Equation KSE is a
nonlinear dissipative Partial Differential Equation

PDE that describes a variety of physical phe-
nomena including flame fronts propagation fluid
particles mixtures and falling liquid films (Chen
and Chang, 1986). The equation is of the following
form

∂h

∂t
= −ν

∂4h

∂z4
− ∂2h

∂z2
− h

∂h

∂z
(12)

�

�
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Configuration 1 Configuration p 

Configuration 2 

���

Fig. 1. Multi actuator multi configuration control
architecture

where h is the internal state, the film height in
falling liquids, and ν the instability parameter

that depends on the fluid characteristics.

The control architecture of interest in this work
is the one depicted in figure 1. It reflects the
case where different configurations are available
for control purposes or equivalently the case of
moving, within a pre specified positions, actua-
tors.

For the case of Q configurations each equipped
with l distributed actuators with z as the spatial
coordinate and [−π, π] as the normalized evolu-
tion domain, the KSE while in configuration q is
described as follows

∂h

∂t
= −ν

∂4h

∂z4
− ∂2h

∂z2
− h

∂h

∂z
+

l
∑

i=1

biq(z)uiq(t)

(13)

with the following periodic boundary conditions

∂jh

∂zj
(−π, t) =

∂jh

∂zj
(π, t) j = 0, . . . 3 (14)

h(z, 0) = h0(z) (15)

where biq(·) represents the spatial distribution of
the i− th actuator in the q− th configuration. For
the case of pointwise actuation and by denoting
z̄iq as the spatial coordinate of actuator i located
in configuration q, biq can be written as

biq(z) =
1

ε

[

Γ(z̄iq −
ε

2
) − Γ(z̄iq +

ε

2
)
]

(16)

where Γ(·) is the spatial step function and ε

a small positive real number representing the
actuator spread.

Using standard arguments see e.g., (Chen and
Chang, 1986; El-Farra et al., 2003) the solution
y(z, t) to equation (12) can be expanded in terms
of the following orthonormal eigenfunctions

y(z, t) =
1√
π

∞
∑

k=1

xk(t) sin(kz) (17)

where xk is the k − th eigenmode’s amplitude.
After some basic manipulations and truncation
of order r (for more details see e.g., (Chen and



Chang, 1986)) one obtains the following system
of ODE written in matrix notations

ẋ = Fx + Bquq + f(x) = f̄(x) + Bquq (18)

where F is an r×r diagonal matrix containing the
r eigenvalues, f is a nonlinear vector function and
Bq is an r × l location dependent input matrix.

The state vector can be partitioned into xs and
xf vectors x = xs ⊕ xf (⊕ is the concatenation
operator) where xs represents the first (unstable
for ν < 1 ) rs modes, and xf the fastest rf

(r = rs + rf ) modes. Based on this partition,
the feedback controller associated to each con-
figuration, while retaining the rs slow modes, is
based on the construction of quadratic location
dependent Lyapunov function candidates Vq (El-
Farra et al., 2003). Using standard notations the
controller writes

uq = Kq(xs) =







kq(xs) (LBq
Vq)

T LBq
Vq 6= 01×l

0l×1 LBq
Vq = 01×l

(19)

with kq(xs) =

−

Lf̄ Vq +

√

[

Lf̄ Vq

]2
+ (umax

q (LBq
Vq)umax

q (LBq
V )T )2

(LBq
Vq)(LBq

Vq)T
[

1 +
√

1 + (umax
q (LBq

Vq)umax
q (LBq

Vq)T )
]

where umax
q denotes the actuator saturation level.

By combining equations (18) and (19) the switched
system can be written in the standard form (1)-
(2). It is shown in (El-Farra et al., 2003) that
under the feedback control (19), local asymptotic
stability of the KSE is achieved provided that
the number of retained modes is large enough.
The appropriate number is usually tested via
closed loop simulation since no precise systematic
methodology exists. The switching problem under
interest reduces to the case where one has to
activate at each instant a locally asymptotically
stable vector field in such way that the closed loop
switched system remains stable, while minimizing
the following quadratic performance measure

J = xs(t0 + NprTs)
T Pfxs(t0 + NprTs) +

∫ t0+NprTs

t0

xs(τ)T Pxs(τ)dτ (20)

where P and Pf are respectively positive definite
and semi definite matrices of appropriate dimen-
sions. For simulation purposes a nonlinear model
of order r = 30 is chosen, the model used in the
controller (19) only retains the first two unstable
modes (rs = 2) with eigenvalues λ1 and λ2 of
multiplicity 2, λ1 = λ2 = 0.8 for ν = 0.2. The
model used for prediction is based on the reduced

�
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Local 
feedback 

Local 
feedback 

Local 
feedback 

Predictive switching 
strategy 

Fig. 2. The implemented control architecture

order model (rs). The sampling period Ts is taken
equal to 0.2 sec and the initial condition h0(z) as

h0(z) = a1 sin(z) + a2 sin(2z) + sin(
z

4
) + sin(

z

16
)

(21)
with a1 = 0.2√

π
and a2 = 1.5√

π
. In figure 3 is

illustrated the open loop spatiotemporal evolution
of h. As shown, the oscillations are sustained. The
primary objective is to suppress such oscillations
by actuator switching. In order to illustrate the
control approach a set of actuators placement are
taken into account. Three configurations with two
actuators per configuration is taken. Indeed this
is the least number of actuators per configuration
that guarantees stabilizability of the reduced or-
der model (since the eigenvalues are of multiplicity
two). The actuators placement is reported in ta-
ble 1. The control saturation levels are taken as
umax

q = 2, q = 1, 2, 3.

Configuration z̄q

q = 1 (−0.4π − 0.2π)

q = 2 (0.6π 0.8π)

q = 3 (0.3π 0.9π)

Table 1. The different configurations
and their corresponding actuators

placement

The overall control architecture is reported in
figure 2. The fluid dynamic system block is used
to schematize the process described by a 30th
order Galerkin approximation of the KS equation.
The predictive switching strategy block depicted
in figure 2 is based on the reduced order model
(retaining only the first unstable modes) and the
receding horizon strategy (11) with the quadratic
cost functional (20). The local feedback laws are
based on the expression (19).
The numerical experiments are conducted using
the Matlab software and Mex compiled Fortran
subroutines. The worst case execution times al-
though not systematically reported are well under
the allowed time slot of Ts = 0.2 sec (beyond
Npr = 5 the execution times exceeds the sampling
period). In figure 4 is reported the spatiotemporal
evolution of h, under the initial profile (21), when
the first pair of actuators (first configuration) is
active. As it can be seen, stability is not guaran-
teed since the initial conditions are far from the
equilibria’s region of attraction (the same holds
when respectively only the second or third set



of actuators is active). The situation is better
understood in the light of figure 5 where a phase
portrait (retaining the two first modes) together
with estimates of the regions of attraction are
depicted. In figure 6 is shown the spatiotemporal
profile of h under the predictive control strategy
for the prediction horizon Npr = 1. Stability is
recovered and the wavy behaviour suppressed.
Allowing actuator switching has thus enlarged the
basin of attraction of the equilibrium. The phase
portrait is the one depicted in figure 7. The cor-
responding switching profile is reported in figure
8. The region of attraction of the switched system
can be numerically estimated by initializing the
system at different initial conditions. In figure 9 is
plotted the phase portrait of the switched system
for initial conditions taken outside the regions
of attraction. In figure 10 is depicted a scenario
where the initial conditions is within the region
of attraction. The predictive approach improves
the behaviour even for these conditions. Indeed,
the performance index as measured by (20) over
the simulation horizon, has been almost quartered
when actuator switching is allowed.

5. CONCLUSIONS

In this paper, a predictive control strategy for
switched systems is presented. The approach
is based on an efficient and simple open loop
parametrization. An important example arising in
fluid dynamics systems is investigated and some
pathological interesting scenarios are shown to
exist.
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Fig. 3. Open loop spatiotemporal profile 30th

order Galerkin model. This corresponds to
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system.
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Fig. 5. Phase portrait together with the estimated
regions of attraction without the predictive
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This figure is to be compared with figure
4. By allowing actuators switching the wavy
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of attraction, see figure 5
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