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Abstract

Constrained nonlinear receding horizon control scheme is proposed to optimize the production in emulsion polymerization
processes. The control has the ability to rigorously handle the process constraints (input saturation, maximum allowed heat
production, maximal temperature values and rate of change) and can be implemented experimentally due to the low dimensional
control parametrization being used. The controller is validated first by simulation to show its efficiency. Then, the controller
performance is validated experimentally on a laboratory scale reactor during the polymerization of styrene.
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1 Introduction

Polymerization processes are not considered as rapid
since the sampling time is in general in seconds (1-20 sec-
onds for monomer conversion). However, rapid changes
can be observed in these systems, such as particle nucle-
ation, but there are no online sensors for observing these
phenomena. Controlling these phenomena is of high im-
portance since these systems are exothermic and irre-
versible. Moreover, they are sensitive to impurities. One
of the main concern of the industrialization of these pro-
cesses is maximizing the productivity and ensuring its
security.

In emulsion polymerization, the reaction rate is related
to the reaction temperature and to the concentration
of monomer.The concentration of monomer in the poly-
mer particles is proportional to the reaction rate. Con-
trolling this parameter can be done by manipulating the
feed rate of monomer. It was usually used to control the
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production rate (Buruaga et al. (1997)[2], Zeaiter et al.
(2002)[6] and Vicente et al. (2003)[5], Sheibat-Othman
et al. (2004)[4]). In all these cases, the reaction temper-
ature was maintained at a fixed value. However, the re-
action temperature has a direct influence on the reac-
tion rate. Gentric et al. (1999)[3] used the input/output
linearization and optimization of the reactor tempera-
ture in order to minimize the process time and to con-
trol the polymer molecular weight. For a best control of
the process productivity, the reaction temperature pro-
file should be optimized as well as the concentration
of monomer in the polymer particles. Araujo and Giu-
dici (2003)[1] used an iterative dynamic programming
technique to minimize the reaction time and control the
polymer composition by manipulating both the reaction
temperature and the monomer flow rate.

In this work, the nonlinear receding horizon control is
used to maximize the process productivity by manipu-
lating the monomer flow rate and the reaction tempera-
ture. The process constraints, due to physical limitations
such as the maximum admissible heat or the maximum
possible flow rate are explicitly taken into account in
the control scheme. The calorimetry is used to estimate
the heat produced by the reaction which allows us to
estimate the reaction rate. The number of moles of free
monomer in the reactor and the concentration of radi-
cals in the polymer particles are then estimated. Based
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on this information, the controller is applied to control
the heat produced by the reaction. The controller is val-
idated experimentally on a 3 liters reactor during the
polymerization of styrene.

The paper is organized as follows. First, the system
model is described and the control problem is formulated
in section 2. The principle of receding horizon control is
briefly recalled in section 3 together with the particular
formulation adopted in the present paper. In particu-
lar, the control parameterization and the definition of a
modified cost function that takes into account the state
constraints handling are described. Then, some validat-
ing simulations are proposed in order to assess the im-
plementability, the efficiency and the robustness proper-
ties of the proposed feedback law. Finally, the strategy is
validated experimentally during the emulsion polymer-
ization of styrene .

2 Problem formulation

First, the system dynamic model is described, then the
control objective and the associated operational con-
straints are detailed.

2.1 The system model

A simplified model of emulsion polymerization process
is given by the following four dimensional ODE’s:

ṄT = F (1)

Ṅ = F − Rp(N
T , N, T, V ) (2)

Ṫ =
1

ρmCpV

[

(−∆H)Rp + UA(Tj − T ) + Qfeed

]

(3)

V̇ =
MWm

ρm
F (4)

where NT (mole) is the total number of moles of
monomer introduced to the reactor. N (mole) is
the number of residual monomer. F (mole/s) is the
monomer input flow rate. Rp (mole/s) is the rate of
transformation of monomer into polymer. T (o) is the
reactor temperature. Tj (o) is the jacket temperature.
V (cm3) is the total volume of the reaction.
The reaction rate Rp(N

T , N, T, V ) is a state function
that is given by

Rp = µ · V · kp0
e−EA/(RT ) · M(NT , N) (5)

where µ is the concentration of radicals in the monomer
particles and M is the concentration of monomer in the
polymer particles. This latter is given by :

M(N, NT ) =











(1−φp
p)ρm

MWm
if Γ(NT , N) ≥ 0

N

MWm

(

NT
−N

ρp
+ N

ρm

) otherwise (6)

where

Γ(NT , N) :=
MWm

ρm
N −

1 − φp
p

φp
p

[MWm

ρm
(NT − N)

]

≥ 0

where the following notations have been used

MWm molecular weight of monomer
ρm, ρp monomer and polymer densities
EA the activation energy of the reaction
R Universal gas constant
kp0 pre-exponential factor
∆H Reaction enthalpy
U Heat transfer coefficient
A heat transfer area between the jacket and the reactor
Cp heat capacity of the reaction medium
Qfeed heat exchanged with the entering components
φp

p volume fraction of polymer in the polymer particles

Note that the first two equations (1)-(2) express the
mass balance of NT and N . Equation (3) is the heat
transfer balance between the reactor and the jacket
while the last equation (4) represents the evolution of
the reaction volume due to the flow input.

Note that equations (1)-(4) give the nonlinear state
space model of the polymerization reactor with the
state being defined as follows

x :=
(

NT N T V
)T

∈ R
4

2.2 State measurement

In the remainder of this paper, the state represented
above is assumed to be completely measurable by
calorimetry and using a balance. The heat produced
at some instant t, namely QR(t) = (−∆H) · Rp(t) is
computed using the heat balance and the measurement
of the reaction temperature T . This enables Rp(·) to
be known and hence used to measure N by integrating
equation (2). This scheme leads to measurements that
can be acquired once each 10 s.

µ is also a state of the system that is not taken into
account in x since it is not modelled here since it is
sensitive to impurities and its model is very complicated
and infers several other nonmeasurable variables. µ is
not measured but can be estimated online from the other
measurements. This is to keep in mind in the prediction
scheme.

2.3 The operational constraints

Assume that the reaction duration is tf . In order to
properly express the control objective, the operational
constraints have to be clearly stated. These are the fol-
lowing :
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(1) The maximal admissible flow rate :

F (τ) ∈ [0, Fmax] ; ∀τ ∈ [0, tf ]

(2) The admissible range for the jacket temperature :

Tj(τ) ∈ [Tmin
j , Tmax

j ] ; ∀τ ∈ [0, tf ]

(3) The maximal rate of variation of the control input
Tj (due to thermal inertia)

|Ṫj | ≤ Ṫmax
j

(4) The maximal allowed heat production :

QR(τ) := (−∆H) · Rp(τ) ≤ Qmax
R ; ∀τ ∈ [0, tf ]

2.4 The control objective

The control objective is to control maximize the quan-
tity of polymer produced during the interval [0, tf ] while
respecting the operational constraints (1)-(5) defined
in section 2.3. Maximizing the reaction rate implies
minimizing the process time for a constant quantity of
monomer to consume. This can be formally written as
follows

max
F (·),Tj(·)

[

NT (tf ) − N(tf )
]

under (1)-(4) of section 2.3

This objective has to be satisfied by a feedback design
in order to be robust against model uncertainties.

3 The proposed control scheme

Since a receding horizon control scheme is adopted in the
present paper, let us first of all recall the basic features
underlying this principle.

3.1 Control parametrization

The control parametrization used in the present paper
for the control inputs Tj and F are depicted on Fig. 1
and Fig. 2 respectively. More precisely, the admissible
profiles for Tj over some time interval [0, tf ] are given
by the following three dimensional parametrization with
the parameter vector given by (w1, w2, t1) :

Tj(t) = Sat
T max

j

T min
j

(

Tj(0) +

∫ t

0

w(τ)dτ
)

(7)

w(t) :=

{

w1 if t < t1 t1 ∈ [0, tf ]

w2 if t ∈ [t1, tf ]
(8)

where w1 and w2 are restricted to [−Ṫmax
j , Ṫmax

j ] in
order to meet the constraint (3) of section 2.3 while the

constraint (2) is structurally imposed by the use of the
saturation function in equation (7).

The parametrization of the input flow rate F over a

Fig. 1. Parametrization of the control input Tj(·) over a time
interval [0, tf ]. This parametrization is used in the definition
of the receding horizon control formulation. Tj(·) is defined
by three parameters: the two slopes w1 and w2 that have
to belong to the admissible range [−Ṫ max

j , Ṫ max
j ] and the

switching time t1 ∈ [0, tf ].

time interval [0, tf ] is given by (see Fig. 2) :

F (t) = F (0) + (F f − F (0))[1 − e−λt] (9)

this is a scalar parametrization with the only parameter
F f ∈ [0, Fmax] enabling the constraint (1) of section 2.3
to be structurally satisfied.

Fig. 2. Parametrization of the control input F (·) over a time
interval [0, tf ]. This parametrization is used in the definition
of the receding horizon control formulation. F (·) is defined
by one parameter, namely its asymptotic value F f .

To summarize, the control input parametrization is de-
fined over a time interval [0, tf ] by the following four
dimensional parameter vector

p :=















w1/Ṫmax
j

w2/Ṫmax
j

t1/tf

F f/Fmax















∈ P := [−1, 1]2 × [0, 1]2 (10)
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This control parametrization structurally leads to the
satisfaction of the operational constraints (1)-(3) of sec-
tion 2.3. The satisfaction of the remaining constraint (4)
of section 2.3 is guaranteed by a suitable modification
of the cost function. This is explained in the following
section.

In the remainder of this paper, the control profile Tj(·)
and F (·) associated to a particular choice of tf and
p ∈ P are denoted as follows

Tj(·, p, tf ) ; F (·, p, tf )

3.2 Modified cost function

Assume that the reaction takes place during Tbatch units
of time. Assume some instant t ∈ [0, Tbatch]. The predic-
tion horizon at that instant is then given by :

Tp(t) = Tbatch − t (11)

Each choice of the control parametrization p ∈ P re-
sults in the following two open-loop control profiles over
[t, Tbatch],

Tj(·, p, Tp(t)) ; F (·, p, Tp(t)) (12)

The modified cost function at instant t is given by :

J(p, t) =

[

1 −
1

ε
max

(

0, sup
τ∈[t,Tbatch]

QR(τ, p) − Qmax
R

Qmax
R

)

]

×

[

N(Tbatch, p) − NT (Tbatch, p)

]

(13)

where QR(·, p), N(·, p) and NT (·, p) are the predicted
values given the initial state x(t) and the control profiles
(12) that would be used on [t, Tbatch]. ε > 0 is a small
parameter.

The relevance of the cost function (13) is shown by the
following straightforward result :

Proposition 1 Provided that there are admissible
control profiles over [t, Tbatch] that lead to the satis-
faction of constraint QR(τ) ≤ Qmax

R over [t, Tbatch], a
parameter vector p̂(x(t), Tp(t)) that minimizes J(p, t)
leads to state trajectories satisfying

QR(τ) ≤ (1 + ε)Qmax
R (14)

for all τ ∈ [t, Tbatch]

In other words, proposition 1 states that whenever there
are solutions that respect the constraint (4) of section
2.3, the modified cost function (13) leads to trajectories

that do not violate this constraint by more than ε%.

Proof

This comes from the fact that if p1 is an admissible
parametrization that meets the constraint, then one has

J(p1, t) = N(Tbatch, p1) − NT (Tbatch, p1) < 0 (15)

(such p1 exists by assumption). This is because for such
p1, one clearly has

sup
τ∈[t,Tbatch]

QR(τ, p1) − Qmax
R

Qmax
R

≤ 0

and therefore

max
(

0, sup
τ∈[t,Tbatch]

QR(τ, p1) − Qmax
R

Qmax
R

)

= 0

Now let p∗ be a solution that violates the constraint by
more than ε%, this clearly means that

sup
τ∈[t,Tbatch]

QR(τ, p∗) − Qmax
R

Qmax
R

> ε

and hence

1 −
1

ε
max

(

0, sup
τ∈[t,Tbatch]

QR(τ, p∗) − Qmax
R

Qmax
R

)

≤ 0 (16)

and since N(Tbatch, p∗) − NT (Tbatch, p∗) < 0, equation
(16) clearly implies that

J(p∗, t) ≥ 0 > J(p1, t)

which clearly indicates that p∗ is not an optimal solution
as soon as it violates the constraint by more than ε%.
This clearly ends the proof. ♦

3.3 Receding horizon feedback

Let τs > 0 be some sampling period for control. The
instants (kτs)k≥0 becomes the decision instants where
the optimization problems P (x(kτs), Tp(kτs)) are solved
in order to update the control inputs to apply to the
system on [kτs, (k + 1)τs]. More precisely, let p̂(kτs) be
given by :

p̂(kτs) := Arg min
p∈P

J(p, kτs) (17)

the receding horizon control scheme amounts to apply
the following control over the sampling period
[kτs, (k + 1)τs] :

Tj(kτs + τ) := Tj(τ, p̂(kτs), Tp(kτs)) ∀τ ∈ [0, τs] (18)

F (kτs + τ) := F (τ, p̂(kτs), Tp(kτs)) ∀τ ∈ [0, τs] (19)
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where Tp(t) is given by (11).

4 Simulation results

Simulation of the closed loop system performance under
the proposed constrained receding horizon control are
proposed to assess the efficiency and the robustness of
the proposed feedback in presence of model uncertain-
ties. The parameters of the polymerization of styrene
were used in the simulations.

Very often, model uncertainties are due to the presence
of complex phenomena that are difficult to model by
explicit mathematical framework. This is the case for
instance when the evolution of the concentration of rad-
icals µ is considered. Remember that µ appears in the
very definition (5) of the reaction rate Rp.

In order to test the robustness of the controller against
high variation of µ with time, the following model is
used for µ(t) during the reaction (note that this model
is not known by the controller that only measures the
value of µ at each sampling instant) :

µ(t) =
[

1 +
ψf · t

Tbatch

]

· µnom ; µnom :=
n̄ · Np

NA
(20)

Fig. 3 shows the behavior of the closed loop system for
ψf = 1. Note that the controller avoids constraint vio-
lation (by more than 5%) despite the fact that µ is mul-
tiplied by 2 during the reaction duration.

5 Experimental results

Styrene was used for the experimental validation of the
controller. The desired heat produced by the reaction
was set to 60W. The maximum number of function eval-
uations has been taken equal to 150 in this experiment.
The used recipe is given in table 1.

Initial charge (g) Feed

Styrene 145 1000

Dodecyl sulfate, sodium salt 4 8

Potassium persulfate 4 −

H2O 1000 500

Table 1
Experimental validation of the controller

Fig. 4 shows the evolution of QR during two experi-
ments realized with the same recipe. No attempt was
done to accelerate the convergence time to the set-point
by increasing the reaction temperature during the first
15 minutes in order to anticipate the important heat
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NT (·) (–) / N(·) (-.) T (·)

F (·) Tj(·)

QR(·)

Time (min)
Fig. 3. Behavior of the closed loop system under the reced-
ing horizon feedback. Qmax

R = 60, T max
j = 80o, T min

j = 50o,

Fmax = 0.001 mol/s. λ = 1/10s−1. Sampling period
τs = 1 min. ε = 0.05. Initial conditions N(0) = NT (0) = 1,
T = 50o, V (0) = 2 with the model uncertainty on the con-
centration of radicals given by (20). Case where ψf = 1,
namely, the value of µ in (5) increases linearly from µnom to
2 ·µnom during the reaction time interval [0, Tbatch]. The dy-
namic of µ is unknown to the controller but current values
are accessible to measurement according to section 2.2

generated by the nucleation taking place at the begin-
ning of the reaction. The jacket temperature was there-
fore fixed at 60C during this time (Fig. 5). By the same
way, the monomer flow rate (Fig. 6) was fixed at 0 when
Γ(NT, N) = 0 which means that the polymer particles
are saturated with monomer. This corresponds to the
first 20 minutes of the reaction. Fig. 6 shows both the
desired monomer flow rate calculated by the controller
and the real one obtained experimentally while coupled
with the local controller. The desired flow rate does not
oscillate which means that the nonlinear controller is
well tuned and oscillations are due to the local controller
tuning. These oscillations affect the heat produced by
the reaction as shown on Fig. 4. QR presents also some
important oscillations that seem to be due to an impor-
tant unpredicted change in the reaction rate that can
be due to a change in mu. This experiment shows that
even if the process model seems simple its dynamics can
change rapidly in an unpredicted way.

6 Conclusions

Multi-variable constrained receding horizon control
scheme has been proposed to maximize the production
during polymerization reactions. Two control inputs
are used: the inlet flow rate and the jacket tempera-
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Heat of the reaction

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100
Time (min)

W

Qmax
Exp 1
Exp 2

Fig. 4. Experimental validation of the controller. The heat
produced by the reaction with a maximal constraint at 60 W

Reactor and jacket temperatures
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Fig. 5. Experimental validation of the controller. Reactor
and jacket temperatures (Exp2)

ture. A key feature of the proposed scheme is the very
simple control parametrization enabling a real time
implementability of the proposed scheme despite the
relatively low sampling time (60 s). Another interesting
feature is the explicit handling of all operational con-
straints that would be difficult to be rigorously handled
by more classical schemes.

Investigations also showed nice robustness properties
against unmodeled dynamics like the one affecting the
concentration of radicals in the polymer particles that
might increase during the reaction due to the gel effect
following very complex and unpredictable laws.

The computation times needed to solve the optimiza-

Monomer input flow rate
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m
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Fig. 6. Experimental validation of the controller. Controlled
monomer flow rate and the reaction rate (Exp2)

tion problem (less than 0.5s) are even compatible with a
higher measurement acquisition frequency (say 0.1 Hz)
that is practically feasible. This leads to more reactive
controller that would certainly make the results even
better than it appears from the simulations proposed in
this paper.

The controller was also found to be stable enough while
implemented experimentally.
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