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Gas-liquid ritiality in ioni �uids is studied in exatly soluble spherial models that use interlaed

sublatties to represent hard-oremultiomponent systems. Short range attrations in the unharged

�uid drive ritiality but harged ions do not alter the universality lass. Debye sreening remains

exponential at ritiality in harge-symmetri 1:1 models. However, asymmetry ouples harge and

density �utuations in a diret manner: the harge orrelation length then diverges preisely as the

density orrelation length and the Stillinger-Lovett rule is violated at ritiality.

PACS numbers: 64.60.Fr, 61.20.Qg, 05.50.+q, 64.70.Fx

The nature of gas-liquid (or, more generally �uid-�uid)

ritiality in systems in whih long-range ioni intera-

tions play a signi�ant role has been a fous of attention

sine still-puzzling experiments questioned the appropri-

ate universality lass [1℄. Beyond further experiments [1℄,

numerous theoretial [2, 3, 4, 5℄ and omputational [6℄

studies have been reported; however, basi questions re-

main open. Certainly, the harater of ritiality depends

on the range of the interations: One expets an Ising

ritial point in a �uid with short-range ouplings but

mean-�eld behavior for interations of su�iently long-

range. So, might the introdution of ions interating via

long-range Coulomb fores destroy an Ising-type ritial

point? Coulomb interations are exponentially sreened

in a onduting lassial �uid, as proved rigorously at low

densities [7℄. Charge �utuations in a �uid of S speies

of harges qσ and valenes zσ = qσ/q (where q is an ele-

mentary harge), thus deay over a few Debye sreening

lengths ξD, where

ξ−2
D

(T, ρ) = 4πρq2
∑S

σ=1
z2σxσ/kBT , (1)

in whih ρ =
∑

σ ρσ is the overall density while the mole

frations are xσ = ρσ/ρ. But, does exponential sreening
on this sale hold near and at ritiality?

Indeed, a major open issue is the behavior of the pair-

wize harge orrelations near the ritial point, where the

density �utuations diverge strongly. With

Gστ (r) = 〈ρσ(0)ρτ (r)〉 − ρσρτ , (2)

the orrelation funtions, GNN , GZZ , and GNZ for the

density, harge, and harge-density, are [4℄

GXY (r;T, ρ) =
∑

σ,τ
qϑX

σ qϑY

τ Gστ (r;T, ρ) , (3)

where X and Y may be N or Z while ϑN = 0 and ϑZ =
1. Exept at the ritial point (Tc, ρc), itself, we may

suppose that the orresponding struture fator, SNN ,

has the small k = |k| expansion

SNN(k)/SNN(0) = 1 +
∑

p≥1
(−)pξ2p

N,p(T, ρ) k
2p . (4)

Near ritiality, SNN(0;T, ρc) diverges as 1/t
γ
when t ≡

(T − Tc)/Tc → 0+, while the length ξN,∞ harateriz-

ing the exponential deay of GNN(r;T, ρc) diverges as

ξ0

N
/tν (where short-range fores have been assumed).

At ritiality, density �utuations are long-ranged and

SNN(k;Tc, ρc) ∼ 1/k2−η
.

By ontrast, the harge struture fator should obey

SZZ(k) = 0 + ξ2
Z,1k

2 −
∑

p≥2
(−)pξ2p

Z,p(T, ρ)k
2p , (5)

where the �rst vanishing term results from eletroneu-

trality re�eting the internal sreening in an ioni �uid,

while the Stillinger-Lovett sum-rule [8, 9℄

ξZ,1(T, ρ) = ξD(T, ρ) , (6)

haraterizes the sreening of external harges. Does this

hold near and at ritiality? Finally, we fous also on the

harge orrelation length ξZ,∞(T, ρ), that spei�es the

exponential deay of GZZ(r) when r → ∞. How does

ξZ,∞ vary when ξN,∞ diverges near ritiality?

To obtain insight into these questions, we study mul-

tiomponent lattie gas generalizations of the spherial

model [10, 11, 12℄ spei�ally designed to represent hard-

ore interations and thus avoid the mutual �annihila-

tion� of oppositely harged ions on the same site. This

ruial feature, whih (in ontrast to [11℄) allows gas-

liquid ritiality to survive in the presene of Coulomb

interations, is aomplished by using a set of equivalent

interlaing sublatties (with sites i atRσ
i with spaing a),

one for eah of the σ = 1, 2, . . . ,S distint partile speies

[13℄. Thereby unlike harges annot approah loser than

an e�etive hard-ore diameter a0: see, e.g., Fig. 1.
To speify the models more fully, onsider a multiom-

ponent grand anonial lattie gas with site oupany

variables nσ
i = 0, 1; this is equivalent to an Ising magnet

with spins sσi = 2nσ
i − 1 = ±1, subjet to �elds hσ (lin-

early related to the hemial potentials, µσ). For attra-

tive interpartile potentials, the orresponding spin-spin

ouplings, Jστ (R), at lattie separations R, are positive.

We deompose these ouplings as

Jστ (R) = J0
στ (R)− 1

4qσqτϕ
C(R) , (7)

http://arxiv.org/abs/cond-mat/0311478v1
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FIG. 1: Interlaed + and − s sublatties with a0 = 1
2

√
3a.

where J0
στ (R) represents short-range or, more generally,

integrable interpartile interations whih we suppose

su�e to drive gas-liquid ritiality (even if the harges qσ
vanish). We take the d-dimensional Coulomb potential,

ϕC(R) ∼ 1/Rd−2
(d > 2), as the solution of an appropri-

ate disrete Laplae equation [14℄ (with, for onveniene,

a uniform neutralizing bakground so that eletroneutral-

ity,

∑
σ xσqσ = 0, must be imposed). Fourier transforms,

Ĵστ (k), are de�ned by summing over one sub-lattie, with

Brillouin zone B, and it is useful to introdue

∆Jστ (k) ≡
1
2 [Ĵστ (0)− Ĵστ (k)] . (8)

To model a simple 1:1 eletrolyte one needs only S = 2
omponents, say + and − with q± = ±q. We may then

identify basi energy and range sales, j0 and R0, via

Ĵ 0
+−(0) ≡ kBT0 ≡ 2j0 > 0 , (9)

and, assuming short-range isotropi nonioni ouplings,

∆J0
++ + 2∆J0

+− +∆J0
−− ≈ 2j0R

2
0k

2 > 0 , (10)

as k → 0. Now, if J++(R) = J−−(R), the model is

(fully) harge symmetri (as is the well known ontin-

uum Restrited Primitive Model or RPM [1, 2, 3, 6℄). A

suitable harge asymmetry parameter is then [14℄

δJ = max
k∈B

|∆J++(k) −∆J−−(k)|/kBT0 , (11)

whih might, e.g., be used to represent distint ioni sizes,

a+ and a− [6(a)℄. As the simplest �Basi Ioni Model � it

su�es to take only nearest neighbor ouplings, J0
+− > 0

and J0
++ = −J0

−−; then one has j0 = 2d−1J0
+− and δJ =

d|J0
++|/2

d−2|J0
+−|. Finally, as a dimensionless measure

of the relative strength of the Coulomb interations, it is

helpful to introdue the ioniity [15℄

I0 = q2/ad−2kBT0 . (12)

Of ourse, even this Basi Ioni Model is insoluble for

d ≥ 2. Aordingly, in the standard way [10, 11, 12℄,

we �spherialize� these multiomponent models by taking

the spins sσi as unbounded ontinuous variables subjet

only to S spherial onstraints, 〈s2σ〉 = 1, enfored with

the aid of S Lagrange multipliers whih, for later onve-

niene, we write as λσ + 1
2 Ĵσσ(0). In full generality, the

singular part of the total free energy f [T,h;λ(T,h)] in
the thermodynami limit, is then [14℄

fs(T ;λ) =
1
2kBT

∫

k

ln
{
|Λ(k;λ)| /(kBT )

S
}
, (13)

where

∫
k

≡ (a/2π)d
∫
k∈B

ddk and h = (hσ) and λ =
(λσ), while the S×S matrix Λ has elements

Λστ =
[
λσ +∆Jσσ(k)

]
δστ − 1

2 (1 − δστ )Ĵστ (k) . (14)

The �eld-dependent ontribution to the free energy is

fh = − 1
4 〈h|Λ

−1(0;λ)|h〉 with h = 2Λ(0;λ)m , (15)

wherem = (mσ) andmσ = 〈sσ〉 = 2〈nσ〉−1 so that ρσ =
1
2ρ

max
σ (1+mσ). Finally, the Lagrange multipliers λ(T,h)

are determined impliitly via the S spherial onstraints

〈s2σ〉 = (∂f/∂λσ) = 1. These results are valid while the

eigenvalues of Λ remain positive; the vanishing of any

one of them signals a thermodynami singularity.

For brevity hereon we fous on the two-speies, 1:1

ase (with q± = ±q), the + and − ions residing on one

of two hyperubi sublatties displaed by

1
2 (a, a, · · · , a):

see Fig.1 for d = 3. The eigenvalues of Λ, to be alled ΛZ

and ΛN for reasons soon to be evident, are then simply

the + and − roots of the quadrati equation |Λ−xI| = 0,

ΛX(k;λ) = λ̄+∆J̄(k)− (−)ϑX D(k;λ) with (16)

D2(k;λ) ≡ [λ† +∆J†(k)]2 + 1
4 Ĵ

2
+−(k) , (17)

where, for eah variable g+, g−, g++, et., we have

introdued the mean ḡ = 1
2 (g+ + g−) and di�erene

g† = 1
2 (g+ − g−), while the square root is hosen so that

D(0;λ) > 0 and ΛX(k) is analyti.
A pivotal result now transpires [14℄, namely, the linear

deomposition of the struture fators via

SXY (k;λ)

kBT/4ρad
=

BN

XY
(k;λ)

ΛN(k;λ)
+

BZ

XY
(k;λ)

ΛZ(k;λ)
, (18)

in whih BN

NN
= BZ

ZZ
= 1−BZ

NN
= 1−BN

ZZ
, while

BN

NN
(k;λ) = 1

2 + 1
4 |Ĵ+−(k)|/D(k;λ) , (19)

and BN

NZ
+ BZ

NZ
= 0. In the harge symmetri ases,

all the g† variables vanish by de�nition, so BN

NN
≡ 1

and BZ

NN
= BN

ZZ
≡ 0: this implies that SNN is entirely

governed by ΛN , and, likewise, SZZ by ΛZ, so justifying

the notation. Conversely, in nonsymmetri models, both

ΛN and ΛZ ontribute to all the struture funtions.

Finally, the spherial onstraints redue, �rst, to

kBTJd(λ) + h̄2/4λ2 = 1 with λ = λ̄− j′0 , (20)
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where j′0 = 1
2 Ĵ+−(0) [14℄, while the basi integral

Jd(λ) =
1
4

∫

k

[
Λ−1

N
(k;λ) + Λ−1

Z
(k;λ)

]
, (21)

beomes singular, typially as ∆Jd ∼ −λ1/γ
, when λ (∼

tγ) vanishes, where γ is the appropriate ritial exponent

[10, 12, 14℄; lastly λ†
is given (impliitly) by

λ†

∫

k

1/ |Λ(k;λ)| = −

∫

k

∆J†(k)/ |Λ(k;λ)| . (22)

Reall, however, that λ†
vanishes identially in harge

symmetri ases: more generally, this result relates λ†
to

the asymmetry parameter δJ [see Eq. (11)℄ via

λ†
c ≈ cδ[Jστ ] δJ , (23)

where, however, cδ[Jστ ] might vanish �aidentally�.

We are now in a position to answer, with explanations,

the questions posed after Eqns. (1)-(6). For spei� nu-

merial results we will invoke the Basi Ioni Spheri-

al Model (BISM), i.e., the spherialized version of the

d = 3, S = 2, 1:1 model with ρ+ = ρ− = 1
2ρ and nearest-

neighbor interations as set out with Eqns. (9)-(12).

When δJ = I0 = 0 one readily �nds from the vanish-

ing of ΛN(0) when λ → 0 [10, 11, 12, 14℄ that standard

spherial-model ritiality and saling pertains, with ex-

ponents β = 1
2 and γ = 1 − α = (2 − η)ν, where short-

range (non-Coulomb) interations [16℄ lead to η = 0 and

γ = max{2/(d− 2); 1} (for d ≥ 2).
For I0 and δJ not too large, the same situation pre-

vails�ontrary to speulations (for hard-ore ontinuum

ioni models) that lak of symmetry might lead to mean-

�eld ritiality [3℄. This follows most diretly from the

small k behavior of the eigenvalues, namely,

ΛN(k;λ) = λ+ j0R
2
N
(λ) k2 +O(k4) ,

ΛZ(k;λ) = (Sdq
2/4ad)[1/k2 +R2

Z
+O(k2)] , (24)

where Sd is the area of a unit d-sphere, while [14℄

R2
N
(λ) = R2

0 − S′
da

2I0 − 2a2λ†2/SdI0j
2
0 ,

R2
Z
(λ, k̂) = 2a2(λ+ j′0)/SdI0j0 + a2Σ4(k̂) , (25)

in whih S′
3 = π/144 and Σ4 ≡ 1

48

∑
α k4α/k

4
. The ruial

feature, following diretly from (16), is that the Coulomb

singularity, haraterized by ϕ̂C(k) ∼ 1/k2, anels out
of ΛN exatly thanks to eletroneutrality. (The absene

of this possibility for S = 1 results in the destrution of

gas-liquid ritiality by Coulomb interations [11(b)℄.)

To ensure the stability of the ritial point, one also

needs [14℄: (i) I0 < Imax
d , with Imax

3 = 96
11π ≃ 2.77;

(ii) R2
N

> 0, whih restrits I0 and δJ to the interior

of an ellipsoid with a vertex at δJ = I0 = 0, whih,
for d = 3, is

1
72δ

2
J
+ [ 1

72πI0 − (R2
0/a

2)]2 < R4
0/a

4
;

and (iv) the absene of ompeting minima in ΛN(k),

whih is satis�ed for su�iently small δJ , spei�ally

by δJ < 1 − 1
12πI0 in the BISM. The solution λ†(λ)

of (22) then varies smoothly when λ → 0 and (23) ap-

plies. By (20) ritiality is restrited to h̄ = 0 and ours

at kBTc = 1/Jd(0, λ
†
c) and ρc = a−d = 1

2ρmax. For the

BISM, we �nd Tc ≈ T0/Kbcc, to lowest order in δJ and

I0, with Kbcc ≃ 1.39 [10℄. It transpires [14℄ that Tc(δJ) is
a dereasing funtion of the asymmetry in aord with re-

ent simulations of hard-ore ontinuum eletrolyte mod-

els [6(a)℄ that, however, ontradit various approximate

theories. Furthermore, a term varying as I
3/2
0 (in d = 3)

appears [14℄, in aord with [15℄ and in analogy with [17℄.

As regards the density orrelation lengths, (18) yields

ξN,1(T, ρ) = RN [λ(T, ρ)] [j0/λ(T, ρ)]
1/2

, (26)

for all aeptable I0 and δJ ; when ρ = ρc, this diverges
as ξ0

N
/tν . Furthermore, all higher moments [see (4)℄, in-

luding the �true� orrelation length ξN,∞ [18℄, satisfy

ξN,p/ξN,1 → 1 when (T, ρ) → (Tc, ρc). For the BISM,

with small I0 and δJ we have ξ0

N
≈ a/πKbcc ≃ 0.229 a,

lose to the d = 3, nearest neighbor Ising model value

[18℄.

By ontrast, the near-ritial harge orrelation lengths

depend radially on symmetry. In harge symmetri

models, where BZ

ZZ
= 1, it follows from (18) and (24)

that the Stillinger-Lovett sum-rule (6) is valid for all �uid

regimes inluding the ritial point. However, the true

harge sreening length is given by

ξZ,∞(T, ρ) = RZ(T, ρ)[1 +O(I2
0 )] , (27)

where, from (25) we �nd RZ/ξD → 1 as ρ → 0 whereas

near ritiality one has RZ,c/ξD,c ≈ 2
√
T0/Tc; that yields

RZ,c/ξD,c ≃ 2.36 for the BISM (for I0 and δJ not too

large). Furthermore, when t → 0, the sreening length,

ξZ,∞(ρc, T ) gains, in general, a singular orretion fator

[1 + c1−αt
1−α] [14℄. Up to O(I0), the higher moments of

SZZ satisfy (ξZ,p)
p ≈ ξDR

p−1
Z .

On the other hand, in nonsymmetri ases BN

ZZ
in (18)

does not vanish : rather one has

BN

ZZ
(k;λ) = 4λ†2k4a4/S2

dI
2
0j

2
0 [1 +O(k2)] > 0 . (28)

Consequently, all harge orrelations beome infeted by

the divergent density �utuations ontrolled by ΛN(k).
Nevertheless, beause of the fator k4, the Stillinger-

Lovett relation (6) remains valid in the �uid regime ex-

ept at ritiality where it fails and we �nd [14, 16℄

(ξZ,1/ξD)
2
c = 1 + w2

cλ
†2

c = 1 + w2
cc

2
δδ

2
J
+ . . . , (29)

where w2 = 2a2/SdI0R
2
N
j20 and, realling (23), we note

that cδ[Jστ ] 6= 0 for the BISM. This ritial point failure

implies a breakdown of full sreening that is neessarily

assoiated with slow deay of ertain ioni orrelations

[9℄. Indeed, when (T, ρ) → (Tc, ρc) the harge deay
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TABLE I: Charge orrelation lengths near ritiality where

ξN diverges, while RZ/ξD = O(1). The ioniity, I0 ∝ q2, and
asymmetry fator wccδδJ , are de�ned in (12), (23) and (29).

harge symmetri non-symmetri

ξZ,1 = ξD = (4πρq2/kBT )
1/2, = ξD for (T, ρ) 6= (Tc, ρc),

the Debye length, > ξD,c at (Tc, ρc),

ξ4Z,2 = ξ2DR2
Z(T, ρ) = O(ξ4D), = −ξ2D[(wccδδJ )

2ξ2N −R2
Z ],

ξ2pZ,p = ξ2DR
2(p−1)
Z [1 +O(I0)], ≈ −(wccδδJ)

2ξ2Dξ
2(p−1)
N ,

ξZ,∞ = RZ [1+O(I2
0 )] = O(ξD), ≈ ξN ∼ 1/tν .

length ξZ,∞ asymptotially approahes the density or-

relation length, ξN,∞, and thus diverges as ξ0

N
/tν (for

ρ = ρc).
However, the fourth harge orrelation moment is given

(exept at ritiality) by

ξ4
Z,2(T, ρ) = ξ2

D
[R2

Z
− ξ2

N,1w
2λ†2 ] , (30)

so that |ξZ,2(ρc, T )| diverges more weakly as 1/tν/2. Note
also that on approahing ritiality, ξ4

Z,2 hanges sign

(with respet to the symmetri ase); for small δJ this

rossover ours in the BISM at t = t× ≈ 0.265 δJ.

More generally the higher moments in nonsymmetri sys-

tems satisfy ξ2pZ,p ≈ −ξ
2(p−1)
N,∞ ξ2

D,cw
2
cλ

†2

c leading to a hier-

arhy of ritial exponents |ξZ,p| ∼ 1/tν(1−1/p)
. Notwith-

standing the divergene of the harge orrelation length,

ξZ,∞ ≈ ξN → ∞, the harge-harge pair orrelation fun-

tion, GZZ(r), deays exponentially at (Tc, ρc)! Indeed on

approah to ritiality we obtain

GZZ(r) ∝ 2δ2
J

T0

Tc

c2δ
j20

ξ4
D

R2
N

e−r/ξN

ξ4
N
(T, ρ)r

−
ξ2
D

R4
Z

e−r/RZ

r
, (31)

to leading orders for d = 3. At Tc only the seond term

survives sine the �rst vanishes as t4ν .
Finally, as regards the ross-orrelations embodied

in the harge-density struture fator SNZ, we �nd

SNZ(k = 0;T, ρ) ≡ 0 exept at (Tc, ρc) where the value

(λ†2ξ2
D
/j0R

2
N
)c is realized. Moreover, on de�ning mo-

ments in analogy to (5), one obtains

ξ2p
NZ,p(T, ρ) ≈ (λ†ξ2

D
/j0R

2
N
)ξ2p

N,∞(T, ρ) , (32)

near ritiality; of ourse, all these moments vanish iden-

tially in harge symmetri models sine λ† ≡ 0.
In summary, we have analyzed a lass of exatly solu-

ble spherial models for 1:1 ioni systems and shown that

the Coulomb interations do not hange the gas-liquid

ritial universality lass�ontrary to some suggestions

[1, 3℄. The ouplings between the harge orrelations and

the divergent ritial density �utuations [14, 16℄ follow

mainly from a remarkable struture-funtion deomposi-

tion, Eq. (18), that respets the Stillinger-Lovett (SL)

sum rule (unlike [5℄). Our prinipal results are olleted

in Table I : they are broadly onsistent with Ornstein-

Zernike-based arguments advaned for hard-ore ontin-

uum eletrolytes [3℄. In harge-symmetri models density

�utuations are not diretly oupled to two-point harge

orrelations whih remain of short-range and obey SL

near and at ritiality; but in more realisti nonsymmet-

ri systems the density �utuations �infet� the harge

orrelations whih hene exhibit the same diverging or-

relation length. Moreover, the SL rule is then violated

at ritiality [14, 16℄ indiating an anomalous onduting

state [9℄.

The authors are grateful to F. Cornu, B. Janovii,

E.R. Smith and G. Stell for orrespondene, and to Y.

C. Kim for his interest. Support from the NSF (under

grants CHE 99-81772 and 03-01101) and assistane to J.-

N.A. from the Frenh Ministry of Foreign A�airs under

the Lavoisier Fellowship program, is gratefully aknowl-

edged.

[1℄ See H. Weingärtner and W. Shröer, Adv. Chem. Phys.

116, 1 (2001) and referenes therein.

[2℄ M. E. Fisher, J. Stat. Phys. 75, 1 (1994).

[3℄ G. Stell, J. Stat. Phys. 78, 197 (1995).

[4℄ B. P. Lee and M. E. Fisher, Phys. Rev. Lett. 76, 2906

(1996); S. Bekiranov and M. E. Fisher, ibid 81, 5836

(1998).

[5℄ A. Muratov, Sov. Phys.-JETP 93, 89 (2000).

[6℄ See, e.g., (a) J. M. Romero-Enrique et al., Phys. Rev.

Lett. 85, 4558 (2000); (b) E. Luijten et al., ibid 88,

185701 (2002); () Y. C. Kim et al., ibid 91, 065701

(2003).

[7℄ D. C. Brydges and P. Federbush, Commun. Math. Phys.

73, 197 (1980).

[8℄ F. Stillinger and R. Lovett, J. Chem. Phys. 48, 3858

(1968).

[9℄ P.-A. Martin, Rev. Mod. Phys. 60, 1075 (1988).

[10℄ G. S. Joye, in C. Domb and M.S. Green, Eds, Phase

Transitions and Critial Phenomena, vol. 2, p.375 (Aa-

demi, New York, 1972).

[11℄ (a) E. R. Smith, J. Stat. Phys. 50, 813 (1988); (b) J.

Stat. Phys. [in press℄.

[12℄ M. C. Barbosa and M. E. Fisher, Phys. Rev. B. 43, 10635

(1991).

[13℄ F. Cornu and B. Janovii, J. Stat. Phys. 49, 33 (1987).

[14℄ J.-N. Aqua and M. E. Fisher : details will be published.

[15℄ A. G. Moreira et al., J. Chem. Phys. 110, 10058 (1999).

[16℄ Signi�ant di�erenes that arise when J0
στ (R) ∼ 1/Rd+ς

,

implying η > 0 when ς < 2, will be desribed elsewhere.

[17℄ Y. C. Kim and M. E. Fisher, J. Phys. Chem. 105, 11785

(2001).

[18℄ M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583

(1967).


